Clinical Reviews in Allergy & Immunology

, Volume 57, Issue 3, pp 403–414 | Cite as

The Effects of Air Pollution on the Development of Atopic Disease

  • Yasmin Hassoun
  • Christine James
  • David I. BernsteinEmail author


Air pollution is defined as the presence of noxious substances in the air at levels that impose a health hazard. Thus, there has been long-standing interest in the possible role of indoor and outdoor air pollutants on the development of respiratory disease. In this regard, asthma has been of particular interest but many studies have also been conducted to explore the relationship between air pollution, allergic rhinitis, and atopic dermatitis. Traffic-related air pollutants or TRAP refers to a broad group of pollutants including elemental carbon, black soot, nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2), particulate matter (PM2.5 and PM10), carbon monoxide (CO), and carbon dioxide (CO2). In this review, we aim to examine the current literature regarding the impact of early childhood exposure to TRAP on the development of asthma, allergic rhinitis, and atopic dermatitis. Although there is growing evidence suggesting significant associations, definitive conclusions cannot be made with regard to the effect of TRAP on these diseases. This conundrum may be due to a variety of factors, including different definitions used to define TRAP, case definitions under consideration, a limited number of studies, variation in study designs, and disparities between studies in consideration of confounding factors. Regardless, this review highlights the need for future studies to be conducted, particularly with birth cohorts that explore this relationship further. Such studies may assist in understanding more clearly the pathogenesis of these diseases, as well as other methods by which these diseases could be treated.


Asthma Incident asthma Allergic rhinitis Atopic dermatitis Air pollution TRAP Childhood 



This study was funded by the NIAID Allergy Training Grant T32 AI060515 and NIEHS Training Grant T32 ES010957-16.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    USEPA (2016) NArAQS table. Usepa
  2. 2.
    Air quality | History of air pollution in the UK. Accessed 7 Feb 2018
  3. 3.
    Stern AC History of air pollution legislation in the United States. J Air Pollut Control Assoc 32(1):44–61CrossRefGoogle Scholar
  4. 4.
    Safety and health topics | Indoor air quality | Occupational safety and health administration. Accessed 7 Feb 2018
  5. 5.
    Greenbaum D. Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects. Presented at the Clean Air Act Advisory Committee. 2009. Crystal City, VAGoogle Scholar
  6. 6.
    Products - Data briefs - Number 10 - October 2008. Accessed 5 Dec 2017
  7. 7.
    Peterson B, Saxon A (1996) Global increases in allergic respiratory disease: the possible role of diesel exhaust particles. Ann Allergy Asthma Immunol 77:263–270. CrossRefPubMedGoogle Scholar
  8. 8.
    Favarato G, Anderson HR, Atkinson R, Fuller G, Mills I, Walton H (2014) Traffic-related pollution and asthma prevalence in children. Quantification of associations with nitrogen dioxide. Air Qual Atmos Health 7:459–466. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ 42:7561–7578. CrossRefGoogle Scholar
  10. 10.
    Ryan PH, LeMasters GK (2007) A review of land-use regression models for characterizing intraurban air pollution exposure. Inhal Toxicol 19(Suppl 1):127–133. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kawasaki S, Takizawa H, Takami K, Desaki M, Okazaki H, Kasama T, Kobayashi K, Yamamoto K, Nakahara K, Tanaka M, Sagai M, Ohtoshi T (2001) Benzene-extracted components are important for the major activity of diesel exhaust particles. Am J Respir Cell Mol Biol 24:419–426. CrossRefPubMedGoogle Scholar
  12. 12.
    Takano H, Yoshikawa T, Ichinose T et al (1997) Diesel exhaust particles enhance antigen-induced airway inflammation and local cytokine expression in mice. Am J Respir Crit Care Med 156:36–42. CrossRefPubMedGoogle Scholar
  13. 13.
    Takenaka H, Zhang K, Diaz-Sanchez D, Tsien A, Saxon A (1995) Enhanced human IgE production results from exposure to the aromatic hydrocarbons from diesel exhaust: direct effects on B-cell IgE production. J Allergy Clin Immunol 95:103–115CrossRefGoogle Scholar
  14. 14.
    Fernvik E, Scharnweber T, Knopp D, Niessner R, Vargaftig BB, Peltre G (2002) Effects of fractions of traffic particulate matter on Th2-cytokines, IgE levels, and bronchial hyperresponsiveness in mice. J Toxicol Environ Health A 65:1025–1045. CrossRefPubMedGoogle Scholar
  15. 15.
    Diaz-Sanchez D, Garcia MP, Wang M, Jyrala M, Saxon A (1999) Nasal challenge with diesel exhaust particles can induce sensitization to a neoallergen in the human mucosa. J Allergy Clin Immunol 104:1183–1188. CrossRefPubMedGoogle Scholar
  16. 16.
    Salvi S, Blomberg A, Rudell B et al (1999) Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 159:702–709. CrossRefPubMedGoogle Scholar
  17. 17.
    Salvi SS, Nordenhall C, Blomberg A et al (2000) Acute exposure to diesel exhaust increases IL-8 and GRO-alpha production in healthy human airways. Am J Respir Crit Care Med 161:550–557. CrossRefPubMedGoogle Scholar
  18. 18.
    Nightingale JA, Maggs R, Cullinan P et al (2000) Airway inflammation after controlled exposure to diesel exhaust particulates. Am J Respir Crit Care Med 162:161–166. CrossRefPubMedGoogle Scholar
  19. 19.
    Sehlstedt M, Behndig AF, Boman C, Blomberg A, Sandström T, Pourazar J (2010) Airway inflammatory response to diesel exhaust generated at urban cycle running conditions. Inhal Toxicol 22:1144–1150. CrossRefPubMedGoogle Scholar
  20. 20.
    Xu X, Deng F, Guo X, Lv P, Zhong M, Liu C, Wang A, Tzan K, Jiang SY, Lippmann M, Rajagopalan S, Qu Q, Chen LC, Sun Q (2012) Association of systemic inflammation with marked changes in particulate air pollution in Beijing in 2008. Toxicol Lett 212:147–156. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kajekar R (2007) Environmental factors and developmental outcomes in the lung. Pharmacol Ther 114:129–145. CrossRefPubMedGoogle Scholar
  22. 22.
    LeMasters G, Levin L, Bernstein DI, Lockey SD IV, Lockey JE, Burkle J, Khurana Hershey GK, Brunst K, Ryan PH (2015) Secondhand smoke and traffic exhaust confer opposing risks for asthma in normal and overweight children. Obesity 23:32–36. CrossRefPubMedGoogle Scholar
  23. 23.
    Dong GH, Qian Z, Liu M-M, Wang D, Ren WH, Fu Q, Wang J, Simckes M, Ferguson TF, Trevathan E (2013) Obesity enhanced respiratory health effects of ambient air pollution in Chinese children: the seven northeastern cities study. Int J Obes 37:94–100. CrossRefGoogle Scholar
  24. 24.
    Brunst KJ, Ryan PH, Brokamp C, Bernstein D, Reponen T, Lockey J, Khurana Hershey GK, Levin L, Grinshpun SA, LeMasters G (2015) Timing and duration of traffic-related air pollution exposure and the risk for childhood wheeze and asthma. Am J Respir Crit Care Med 192:421–427. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Clark NA, Demers PA, Karr CJ, Koehoorn M, Lencar C, Tamburic L, Brauer M (2010) Effect of early life exposure to air pollution on development of childhood asthma. Environ Health Perspect 118:284–290. CrossRefPubMedGoogle Scholar
  26. 26.
    Leon Hsu H-H, Mathilda Chiu Y-H, Coull BA, Kloog I, Schwartz J, Lee A, Wright RO, Wright RJ (2015) Prenatal particulate air pollution and asthma onset in urban children. Identifying sensitive windows and sex differences. Am J Respir Crit Care Med 192:1052–1059. CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Gehring U, Wijga AH, Brauer M, Fischer P, de Jongste JC, Kerkhof M, Oldenwening M, Smit HA, Brunekreef B (2010) Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am J Respir Crit Care Med 181:596–603. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gehring U, Beelen R, Eeftens M, Hoek G, de Hoogh K, de Jongste JC, Keuken M, Koppelman GH, Meliefste K, Oldenwening M, Postma DS, van Rossem L, Wang M, Smit HA, Brunekreef B (2015) Particulate matter composition and respiratory health: the PIAMA birth cohort study. Epidemiology 26:300–309. CrossRefPubMedGoogle Scholar
  29. 29.
    Gruzieva O, Bergström A, Hulchiy O, Kull I, Lind T, Melén E, Moskalenko V, Pershagen G, Bellander T (2013) Exposure to air pollution from traffic and childhood asthma until 12 years of age. Epidemiology 24:54–61. CrossRefPubMedGoogle Scholar
  30. 30.
    Carlsten C, Dybuncio A, Becker A, Chan-Yeung M, Brauer M (2011) Traffic-related air pollution and incident asthma in a high-risk birth cohort. Occup Environ Med 68:291–295. CrossRefPubMedGoogle Scholar
  31. 31.
    Fuertes E, Standl M, Cyrys J, Berdel D, von Berg A, Bauer CP, Krämer U, Sugiri D, Lehmann I, Koletzko S, Carlsten C, Brauer M, Heinrich J (2013) A longitudinal analysis of associations between traffic-related air pollution with asthma, allergies and sensitization in the GINIplus and LISAplus birth cohorts. PeerJ 1:e193. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gehring U, Wijga AH, Hoek G, Bellander T, Berdel D, Brüske I, Fuertes E, Gruzieva O, Heinrich J, Hoffmann B, de Jongste JC, Klümper C, Koppelman GH, Korek M, Krämer U, Maier D, Melén E, Pershagen G, Postma DS, Standl M, von Berg A, Anto JM, Bousquet J, Keil T, Smit HA, Brunekreef B (2015) Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: a population-based birth cohort study. Lancet Respir Med 3:933–942. CrossRefPubMedGoogle Scholar
  33. 33.
    Jerrett M, Shankardass K, Berhane K, Gauderman WJ, Künzli N, Avol E, Gilliland F, Lurmann F, Molitor JN, Molitor JT, Thomas DC, Peters J, McConnell R (2008) Traffic-related air pollution and asthma onset in children: a prospective cohort study with individual exposure measurement. Environ Health Perspect 116:1433–1438. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Krämer U, Sugiri D, Ranft U, Krutmann J, von Berg A, Berdel D, Behrendt H, Kuhlbusch T, Hochadel M, Wichmann HE, Heinrich J, GINIplus and LISAplus study groups (2009) Eczema, respiratory allergies, and traffic-related air pollution in birth cohorts from small-town areas. J Dermatol Sci 56:99–105. CrossRefPubMedGoogle Scholar
  35. 35.
    Lindgren A, Stroh E, Björk J, Jakobsson K (2013) Asthma incidence in children growing up close to traffic: a registry-based birth cohort. Environ Health 12:91. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    McConnell R, Islam T, Shankardass K, Jerrett M, Lurmann F, Gilliland F, Gauderman J, Avol E, Künzli N, Yao L, Peters J, Berhane K (2010) Childhood incident asthma and traffic-related air pollution at home and school. Environ Health Perspect 118:1021–1026. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mölter A, Agius R, de Vocht F, Lindley S, Gerrard W, Custovic A, Simpson A (2014) Effects of long-term exposure to PM10 and NO2 on asthma and wheeze in a prospective birth cohort. J Epidemiol Community Health 68:21–28. CrossRefPubMedGoogle Scholar
  38. 38.
    Mölter A, Simpson A, Berdel D, Brunekreef B, Custovic A, Cyrys J, de Jongste J, de Vocht F, Fuertes E, Gehring U, Gruzieva O, Heinrich J, Hoek G, Hoffmann B, Klümper C, Korek M, Kuhlbusch TAJ, Lindley S, Postma D, Tischer C, Wijga A, Pershagen G, Agius R (2015) A multicentre study of air pollution exposure and childhood asthma prevalence: the ESCAPE project. Eur Respir J 45:610–624. CrossRefPubMedGoogle Scholar
  39. 39.
    Morgenstern V, Zutavern A, Cyrys J, Brockow I, Gehring U, Koletzko S, Bauer CP, Reinhardt D, Wichmann HE, Heinrich J (2007) Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup Environ Med 64:8–16. CrossRefPubMedGoogle Scholar
  40. 40.
    Morgenstern V, Zutavern A, Cyrys J, Brockow I, Koletzko S, Krämer U, Behrendt H, Herbarth O, von Berg A, Bauer CP, Wichmann HE, Heinrich J (2008) Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med 177:1331–1337. CrossRefPubMedGoogle Scholar
  41. 41.
    Oftedal B, Nystad W, Brunekreef B, Nafstad P (2009) Long-term traffic-related exposures and asthma onset in schoolchildren in Oslo, Norway. Environ Health Perspect 117:839–844. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wu T-J, Wu C-F, Chen B-Y, Lee YL, Guo YL (2016) Age of asthma onset and vulnerability to ambient air pollution: an observational population-based study of adults from Southern Taiwan. BMC Pulm Med 16:54. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Castro-Giner F, Künzli N, Jacquemin B, Forsberg B, de Cid R, Sunyer J, Jarvis D, Briggs D, Vienneau D, Norback D, González JR, Guerra S, Janson C, Antó JM, Wjst M, Heinrich J, Estivill X, Kogevinas M (2009) Traffic-related air pollution, oxidative stress genes, and asthma (ECHRS). Environ Health Perspect 117:1919–1924. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lindgren A, Stroh E, Montnémery P, Nihlén U, Jakobsson K, Axmon A (2009) Traffic-related air pollution associated with prevalence of asthma and COPD/chronic bronchitis. A cross-sectional study in Southern Sweden. Int J Health Geogr 8:2. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lindgren A, Stroh E, Nihlén U, Montnémery P, Axmon A, Jakobsson K (2009) Traffic exposure associated with allergic asthma and allergic rhinitis in adults. A cross-sectional study in southern Sweden. Int J Health Geogr 8:25. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Environmental Protection Agency (2015) Volatile organic compounds’ impact on indoor air quality. Accessed 7 Jun 2018
  47. 47.
    Tunnicliffe WS, Burge PS, Ayres JG (1994) Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. Lancet 344:1733–1736. CrossRefPubMedGoogle Scholar
  48. 48.
    Van Winkle MR, Scheff PA (2001) INDOOR AIR Volatile organic compounds, polycyclic aromatic hydrocarbons and elements in the air of ten urban homes. Indoor Air C Indoor Air 11:49–64. CrossRefGoogle Scholar
  49. 49.
    Lin W, Brunkeef B, Gehring U (2013) Meta-analysis of the effects of indoor nitrogen dioxide and gas cooking on asthma and wheezing in children. Int J Epidemiol 42(6):1724–1737. CrossRefPubMedGoogle Scholar
  50. 50.
    Arif AA, Shah SM (2007) Association between personal exposure to volatile organic compounds and asthma among US adult population. Int Arch Occup Environ Health 80:711–719. CrossRefPubMedGoogle Scholar
  51. 51.
    Norbäck D, Björnsson E, Janson C et al (1995) Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings. Occup Environ Med 52:388–395. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rumchev K, Spickett J, Bulsara M, Phillips M, Stick S (2004) Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 59:746–751. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nurmatov UB, Tagiyeva N, Semple S, Devereux G, Sheikh A (2015) Volatile organic compounds and risk of asthma and allergy: a systematic review. Eur Respir Rev 24:92–101. CrossRefPubMedGoogle Scholar
  54. 54.
    Smedje G, Norbäck D (2001) Incidence of asthma diagnosis and self-reported allergy in relation to the school environment--a four-year follow-up study in schoolchildren. Int J Tuberc Lung Dis 5:1059–1066PubMedGoogle Scholar
  55. 55.
    US EPA, OAR,ORIA I Lead’s impact on indoor air quality Accessed 13 Jun 2018
  56. 56.
    Medical surveillance - formaldehyde - 1910.1048 App C | Occupational safety and health administration. Accessed 13 Jun 2018
  57. 57.
    Gilbert NL, Gauvin D, Guay M, Héroux MÈ, Dupuis G, Legris M, Chan CC, Dietz RN, Lévesque B (2006) Housing characteristics and indoor concentrations of nitrogen dioxide and formaldehyde in Quebec City, Canada. Environ Res 102:1–8. CrossRefPubMedGoogle Scholar
  58. 58.
    Guo H, Kwok NH, Cheng HR, Lee SC, Hung WT, Li YS (2009) Formaldehyde and volatile organic compounds in Hong Kong homes: concentrations and impact factors. Indoor Air 19:206–217. CrossRefPubMedGoogle Scholar
  59. 59.
    Casset A, Marchand C, Purohit A, le Calve S, Uring-Lambert B, Donnay C, Meyer P, de Blay F (2006) Inhaled formaldehyde exposure: effect on bronchial response to mite allergen in sensitized asthma patients. Allergy Eur J Allergy Clin Immunol 61:1344–1350. CrossRefGoogle Scholar
  60. 60.
    CDC (2009) Phthalates. Cent Dis Control:1–3Google Scholar
  61. 61.
    Rudel RA, Perovich LJ (2009) Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ 43:170–181. CrossRefPubMedCentralGoogle Scholar
  62. 62.
    Hsu NY, Lee CC, Wang JY, Li YC, Chang HW, Chen CY, Bornehag CG, Wu PC, Sundell J, Su HJ (2012) Predicted risk of childhood allergy, asthma, and reported symptoms using measured phthalate exposure in dust and urine. Indoor Air 22:186–199. CrossRefPubMedGoogle Scholar
  63. 63.
    Bertelsen RJ, LØdrup Carlsen KC, Calafat AM et al (2013) Urinary biomarkers for phthalates associated with asthma in Norwegian children. Environ Health Perspect 121:251–256. CrossRefPubMedGoogle Scholar
  64. 64.
    Just AC, Whyatt RM, Miller RL, Rundle AG, Chen Q, Calafat AM, Divjan A, Rosa MJ, Zhang H, Perera FP, Goldstein IF, Perzanowski MS (2012) Children’s urinary phthalate metabolites and fractional exhaled nitric oxide in an urban cohort. Am J Respir Crit Care Med 186:830–837. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gruzieva O, Bellander T, Eneroth K, Kull I, Melén E, Nordling E, van Hage M, Wickman M, Moskalenko V, Hulchiy O, Pershagen G (2012) Traffic-related air pollution and development of allergic sensitization in children during the first 8 years of life. J Allergy Clin Immunol 129(1):240–246CrossRefGoogle Scholar
  66. 66.
    Codispoti CD, LeMaster GK, Levin L et al (2015) Traffic pollution is associated with early childhood aeroallergen sensitization. Ann Allergy Asthma Immunol 114(2):126–133CrossRefGoogle Scholar
  67. 67.
    Jung D, Leem J, Kim H et al (2015) Effect of traffic-related air pollution on allergic disease: results of the children’s health and environmental research. Allergy Asthma Immunol Res 7(4):359–366CrossRefGoogle Scholar
  68. 68.
    Lee YL, Su HJ, Sheu HM, Yu HS, Guo YL (2008) Traffic-related air pollution, climate and prevalence of eczema in Taiwanese school children. J Invest Dermatol 128(10):2412–2420CrossRefGoogle Scholar
  69. 69.
    Penard-Morand C, Raherison C, Charpin D, Kopferschmitt C, Lavaud F, Caillaud D, Annesi-maesano I (2010) Long-term exposure to close-proximity air pollution and asthma and allergies in urban children. Eur Respir J 36:33–40CrossRefGoogle Scholar
  70. 70.
    Morganstern V, Zutavern A, Cyrys J et al (2008) Atopic diseases, allergic sensitizations, exposure to traffic-related air pollution in children. Am J Respir Crit Care Med 177:1331–1337CrossRefGoogle Scholar
  71. 71.
    China’s Olympian efforts to tackle air pollution - SciDevNet Accessed 7 Jun 2018
  72. 72.
    Environmental hazards - Chapter 2 - 2018 Yellow book | Travelers’ health | CDC. Accessed 7 Jun 2018
  73. 73.
    USEPA (2014) Air quality index (AQI). A guide to air quality your health 12Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yasmin Hassoun
    • 1
  • Christine James
    • 1
  • David I. Bernstein
    • 1
    Email author
  1. 1.Division of Immunology, Allergy, and Rheumatology, College of MedicineUniversity of CincinnatiCincinnatiUSA

Personalised recommendations