Advertisement

The Role of MIF on Eosinophil Biology and Eosinophilic Inflammation

  • Marcelo T. BozzaEmail author
  • Leticia Lintomen
  • Jamil Z. Kitoko
  • Cláudia N. Paiva
  • Priscilla C. Olsen
Article
  • 105 Downloads

Abstract

Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that participates in innate and adaptive immune responses. MIF contributes to the resistance against infection agents, but also to the cellular and tissue damage in infectious, autoimmune, and allergic diseases. In the past years, several studies demonstrated a critical role for MIF in the pathogenesis of type-2-mediated inflammation, including allergy and helminth infection. Atopic patients have increased MIF amounts in affected tissues, mainly produced by immune cells such as macrophages, Th2 cells, and eosinophils. Increased MIF mRNA and protein are found in activated Th2 cells, while eosinophils stock pre-formed MIF protein and secrete high amounts of MIF upon stimulation. In mouse models of allergic asthma, the lack of MIF causes an almost complete abrogation of the cardinal signs of the disease including mucus secretion, eosinophilic inflammation, and airway hyper-responsiveness. Additionally, blocking the expression of MIF in animal models leads to significant reduction of pathological signs of eosinophilic inflammation such as rhinitis, atopic dermatitis, eosinophilic esophagitis and helminth infection. A number of studies indicate that MIF is important in the effector phase of type-2 immune responses, while its contribution to Th2 differentiation and IgE production is not consensual. MIF has been found to intervene in different aspects of eosinophil physiology including differentiation, survival, activation, and migration. CD4+ T cells and eosinophils express CD74 and CXCR4, receptors able to signal upon MIF binding. Blockage of these receptors with neutralizing antibodies or small molecule antagonists also succeeds in reducing the signals of inflammation in experimental allergic models. Together, these studies demonstrate an important contribution of MIF on eosinophil biology and in the pathogenesis of allergic diseases and helminth infection.

Keywords

MIF Eosinophil Inflammation Helminth Allergy 

Notes

Funding

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 to MT Bozza.

Compliance with Ethical Standards

This work is in accordance with the ethical standards of the COPE guidelines.

Conflict of Interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    David JR (1966) Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci U S A 56:72–77CrossRefGoogle Scholar
  2. 2.
    Bloom BR, Bennett B (1966) Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153:80–82CrossRefGoogle Scholar
  3. 3.
    Weiser WY, Temple PA, Witek-Giannotti JS, Remold HG, Clark SC, David JR (1989) Molecular cloning of a cDNA encoding a human macrophage migration inhibitory factor. Proc Natl Acad Sci U S A 86:7522–7526CrossRefGoogle Scholar
  4. 4.
    Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W, Manogue KR, Cerami A, Bucala R (1993) MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 365:756–759CrossRefGoogle Scholar
  5. 5.
    Calandra T, Bernhagen J, Mitchell RA, Bucala R (1994) The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med 179:1895–1902CrossRefGoogle Scholar
  6. 6.
    Herriott J, Jiang H, Stewart CA et al (1993) Mechanistic differences between migration inhibitory factor (MIF) and IFN-γ for macrophage activation: MIF and IFN-γ synergize with lipid A to mediate migration inhibition but only IFN-γ induces production of TNF-α and nitric oxide. J Immunol 10:4524–4531Google Scholar
  7. 7.
    Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R (1994) Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor (MIF). Biochemistry 33:14144–14155CrossRefGoogle Scholar
  8. 8.
    Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, Bucala R (1995) MIF as a glucocorticoid-induced modulator of cytokine production. Nature 377:68–71CrossRefGoogle Scholar
  9. 9.
    Bozza M, Satoskar AR, Lin G, Lu B, Humbles AA, Gerard C, David JR (1999) Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J Exp Med 189:341–346CrossRefGoogle Scholar
  10. 10.
    Roger T, David J, Glauser MP, Calandra T (2001) MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature 414:920–924CrossRefGoogle Scholar
  11. 11.
    Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R (2003) MIF signal transduction initiated by binding to CD74. J Exp Med 197:1467–1476CrossRefGoogle Scholar
  12. 12.
    Gregory JL, Morand EF, McKeown SJ et al (2006) Macrophage migration inhibitory factor induces macrophage recruitment via CC chemokine ligand 2. J Immunol 177:8072–8079CrossRefGoogle Scholar
  13. 13.
    Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13:587–596CrossRefGoogle Scholar
  14. 14.
    Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 3:791–800CrossRefGoogle Scholar
  15. 15.
    Snider HM, Lezama-Davila C, Rodríguez-Sosa M et al (2007) MIF in parasitic and helminthic infections. In: MIF: A Most Interesting Factor. World Scientific, Hackensack, pp 133–151CrossRefGoogle Scholar
  16. 16.
    Greven D, Leng L, Bucala R (2010) Autoimmune diseases: MIF as a therapeutic target. Expert Opin Ther Targets 14:253–264CrossRefGoogle Scholar
  17. 17.
    Cavalcanti MG, Mesquita JS, Madi K, Feijó DF, Assunção-Miranda I, Souza HSP, Bozza MT (2011) MIF participates in Toxoplasma gondii-induced pathology following oral infection. PLoS One 6:e25259CrossRefGoogle Scholar
  18. 18.
    Bifulco C, McDaniel K, Leng L, Bucala R (2008) Tumor growth-promoting properties of macrophage migration inhibitory factor. Curr Pharm Des 14:3790–3801CrossRefGoogle Scholar
  19. 19.
    Assunção-Miranda I, Amaral FA, Bozza FA, Fagundes CT, Sousa LP, Souza DG, Pacheco P, Barbosa-Lima G, Gomes RN, Bozza PT, da Poian AT, Teixeira MM, Bozza MT (2010) Contribution of macrophage migration inhibitory factor to the pathogenesis of dengue virus infection. FASEB J 24:218–228CrossRefGoogle Scholar
  20. 20.
    Ghoochani A, Schwarz MA, Yakubov E, Engelhorn T, Doerfler A, Buchfelder M, Bucala R, Savaskan NE, Eyüpoglu IY (2016) MIF-CD74 signaling impedes microglial M1 polarization and facilitates brain tumorigenesis. Oncogene 35:6246–6261CrossRefGoogle Scholar
  21. 21.
    Calandra T, Bucala R (2017) Macrophage migration inhibitory factor (MIF): a glucocorticoid counter-regulator within the immune system. Crit Rev Immunol 37:359–370CrossRefGoogle Scholar
  22. 22.
    Tilstam PV, Qi D, Leng L, Young L, Bucala R (2017) MIF family cytokines in cardiovascular diseases and prospects for precision-based therapeutics. Expert Opin Ther Targets 21:671–683CrossRefGoogle Scholar
  23. 23.
    Rossi AG, Haslett C, Hirani N, Greening AP, Rahman I, Metz CN, Bucala R, Donnelly SC (1998) Human circulating eosinophils secrete macrophage migration inhibitory factor (MIF). Potential role in asthma. J Clin Invest 101:2869–2874CrossRefGoogle Scholar
  24. 24.
    de Souza HS, Tortori CA, Lintomen L, Figueiredo RT, Bernardazzi C, Leng L, Bucala R, Madi K, Buongusto F, Elia CCS, Castelo-Branco MTL, Bozza MT (2015) Macrophage migration inhibitory factor promotes eosinophil accumulation and tissue remodeling in eosinophilic esophagitis. Mucosal Immunol 8:1154–1165CrossRefGoogle Scholar
  25. 25.
    Vieira-de-Abreu A, Calheiros AS, Mesquita-Santos FP, Magalhães ES, Mourão-Sá D, Castro-Faria-Neto HC, Bozza MT, Bandeira-Melo C, Bozza PT (2011) Cross-talk between macrophage migration inhibitory factor and eotaxin in allergic eosinophil activation forms leukotriene C4-synthesizing lipid bodies. Am J Respir Cell Mol Biol 44:509–516CrossRefGoogle Scholar
  26. 26.
    Magalhães ES, Paiva CN, Souza HSP, Pyrrho AS, Mourão-Sá D, Figueiredo RT, Vieira-de-Abreu A, Dutra HS, Silveira MS, Gaspar-Elsas MIC, Xavier-Elsas P, Bozza PT, Bozza MT (2009) Macrophage migration inhibitory factor is critical to interleukin-5-driven eosinophilopoiesis and tissue eosinophilia triggered by Schistosoma mansoni infection. FASEB J 23:1262–1271CrossRefGoogle Scholar
  27. 27.
    Mizue Y, Ghani S, Leng L, McDonald C, Kong P, Baugh J, Lane SJ, Craft J, Nishihira J, Donnelly SC, Zhu Z, Bucala R (2005) Role for macrophage migration inhibitory factor in asthma. Proc Natl Acad Sci U S A 102:14410–14415CrossRefGoogle Scholar
  28. 28.
    Magalhães ES, Mourao-Sa DS, Vieira-de-Abreu A et al (2007) Macrophage migration inhibitory factor is essential for allergic asthma but not for Th2 differentiation. Eur J Immunol 37:1097–1106CrossRefGoogle Scholar
  29. 29.
    Wang B, Huang X, Wolters PJ, Sun J, Kitamoto S, Yang M, Riese R, Leng L, Chapman HA, Finn PW, David JR, Bucala R, Shi GP (2006) Cutting edge: deficiency of macrophage migration inhibitory factor impairs murine airway allergic responses. J Immunol 177:5779–5784CrossRefGoogle Scholar
  30. 30.
    Chen P-F, Luo Y, Wang W, Wang JX, Lai WY, Hu SM, Cheng KF, al-Abed Y (2010) ISO-1, a macrophage migration inhibitory factor antagonist, inhibits airway remodeling in a murine model of chronic asthma. Mol Med 16:400–408CrossRefGoogle Scholar
  31. 31.
    Amano T, Nishihira J, Miki I (2007) Blockade of macrophage migration inhibitory factor (MIF) prevents the antigen-induced response in a murine model of allergic airway inflammation. Inflamm Res 56:24–31CrossRefGoogle Scholar
  32. 32.
    Das R, Moss JE, Robinson E, Roberts S, Levy R, Mizue Y, Leng L, McDonald C, Tigelaar RE, Herrick CA, Bucala R (2011) Role of macrophage migration inhibitory factor in the Th2 immune response to epicutaneous sensitization. J Clin Immunol 31:666–680CrossRefGoogle Scholar
  33. 33.
    Nakamaru Y, Oridate N, Nishihira J et al (2005) Macrophage migration inhibitory factor (MIF) contributes to the development of allergic rhinitis. Cytokine 31:103–108CrossRefGoogle Scholar
  34. 34.
    Yoshihisa Y, Makino T, Matsunaga K, Honda A, Norisugi O, Abe R, Shimizu H, Shimizu T (2011) Macrophage migration inhibitory factor is essential for eosinophil recruitment in allergen-induced skin inflammation. J Invest Dermatol 131:925–931CrossRefGoogle Scholar
  35. 35.
    Nagata Y, Yoshihisa Y, Matsunaga K, Rehman MU, Kitaichi N, Shimizu T (2015) Role of macrophage migration inhibitory factor (MIF) in pollen-induced allergic conjunctivitis and pollen dermatitis in mice. PLoS One 10:e0115593CrossRefGoogle Scholar
  36. 36.
    Bozza PT, Yu W, Penrose JF, Morgan ES, Dvorak AM, Weller PF (1997) Eosinophil lipid bodies: specific, inducible intracellular sites for enhanced eicosanoid formation. J Exp Med 186:909–920CrossRefGoogle Scholar
  37. 37.
    Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174CrossRefGoogle Scholar
  38. 38.
    Fulkerson PC, Schollaert KL, Bouffi C, Rothenberg ME (2014) IL-5 triggers a cooperative cytokine network that promotes eosinophil precursor maturation. J Immunol 193:4043–4052CrossRefGoogle Scholar
  39. 39.
    Baumann R, Casaulta C, Simon D et al (2003) Macrophage migration inhibitory factor delays apoptosis in neutrophils by inhibiting the mitochondria-dependent death pathway. FASEB J 17:2221–2230CrossRefGoogle Scholar
  40. 40.
    Shimizu T, Abe R, Ohkawara A, Mizue Y, Nishihira J (1997) Macrophage migration inhibitory factor is an essential immunoregulatory cytokine in atopic dermatitis. Biochem Biophys Res Commun 240:173–178CrossRefGoogle Scholar
  41. 41.
    Shimizu T, Abe R, Ohkawara A, Nishihira J (1999) Increased production of macrophage migration inhibitory factor by PBMCs of atopic dermatitis. J Allergy Clin Immunol 104:659–664CrossRefGoogle Scholar
  42. 42.
    Hart SP, Rossi AG, Dransfield I (1998) You can lead a macrophage to an inflammatory site but can you make it eat? Biochem Soc Trans 26:650–652CrossRefGoogle Scholar
  43. 43.
    Yamaguchi E, Nishihira J, Shimizu T et al (2000) Macrophage migration inhibitory factor (MIF) in bronchial asthma. Clin Exp Allergy 30:1244–1249CrossRefGoogle Scholar
  44. 44.
    Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, Gemsa D, Donnelly T, Bucala R (1996) An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci U S A 93:7849–7854CrossRefGoogle Scholar
  45. 45.
    Makita H, Nishimura M, Miyamoto K et al (1998) Effect of anti-macrophage migration inhibitory factor antibody on lipopolysaccharide-induced pulmonary neutrophil accumulation. Am J Respir Crit Care Med 158:573–579CrossRefGoogle Scholar
  46. 46.
    Hizawa N, Yamaguchi E, Takahashi D, Nishihira J, Nishimura M (2004) Functional polymorphisms in the promoter region of macrophage migration inhibitory factor and atopy. Am J Respir Crit Care Med 169:1014–1018CrossRefGoogle Scholar
  47. 47.
    Wu J, Fu S, Ren X, Jin Y, Huang X, Zhang X, Bai J, Fu S (2009) Association of MIF promoter polymorphisms with childhood asthma in a northeastern Chinese population. Tissue Antigens 73:302–306CrossRefGoogle Scholar
  48. 48.
    Kobayashi M, Nasuhara Y, Kamachi A, Tanino Y, Betsuyaku T, Yamaguchi E, Nishihira J, Nishimura M (2006) Role of macrophage migration inhibitory factor in ovalbumin-induced airway inflammation in rats. Eur Respir J 27:726–734CrossRefGoogle Scholar
  49. 49.
    Torii M, Wang L, Ma N, Saito K, Hori T, Sato-Ueshima M, Koyama Y, Nishikawa H, Katayama N, Mizoguchi A, Shiku H, Yodoi J, Kuribayashi K, Kato T (2010) Thioredoxin suppresses airway inflammation independently of systemic Th1/Th2 immune modulation. Eur J Immunol 40:787–796CrossRefGoogle Scholar
  50. 50.
    Son A, Kato N, Horibe T, Matsuo Y, Mochizuki M, Mitsui A, Kawakami K, Nakamura H, Yodoi J (2009) Direct association of thioredoxin-1 (TRX) with macrophage migration inhibitory factor (MIF): regulatory role of TRX on MIF internalization and signaling. Antioxid Redox Signal 11:2595–2605CrossRefGoogle Scholar
  51. 51.
    Kleemann R, Kapurniotu A, Mischke R et al (1999) Characterization of catalytic centre mutants of macrophage migration inhibitory factor (MIF) and comparison to Cys81Ser MIF. Eur J Biochem 261:753–766CrossRefGoogle Scholar
  52. 52.
    Potolicchio I, Santambrogio L, Strominger JL (2003) Molecular interaction and enzymatic activity of macrophage migration inhibitory factor with immunorelevant peptides. J Biol Chem 278:30889–30895CrossRefGoogle Scholar
  53. 53.
    Thiele M, Bernhagen J (2005) Link between macrophage migration inhibitory factor and cellular redox regulation. Antioxid Redox Signal 7:1234–1248CrossRefGoogle Scholar
  54. 54.
    Saglani S, Lloyd CM (2015) Novel concepts in airway inflammation and remodelling in asthma. Eur Respir J 46:1796–1804CrossRefGoogle Scholar
  55. 55.
    Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna E, Ghiran S, Gerard NP, Yu C, Orkin SH, Gerard C (2004) A critical role for eosinophils in allergic airways remodeling. Science 305:1776–1779CrossRefGoogle Scholar
  56. 56.
    Fattouh R, Al-Garawi A, Fattouh M et al (2011) Eosinophils are dispensable for allergic remodeling and immunity in a model of house dust mite-induced airway disease. Am J Respir Crit Care Med 183:179–188CrossRefGoogle Scholar
  57. 57.
    Gregory LG, Lloyd CM (2011) Orchestrating house dust mite-associated allergy in the lung. Trends Immunol 32:402–411CrossRefGoogle Scholar
  58. 58.
    Lambrecht BN, Hammad H (2015) The immunology of asthma. Nat Immunol 16:45–56CrossRefGoogle Scholar
  59. 59.
    Nakamaru Y, Oridate N, Nishihira J et al (2004) Macrophage migration inhibitory factor in allergic rhinitis: its identification in eosinophils at the site of inflammation. Ann Otol Rhinol Laryngol 113:205–209CrossRefGoogle Scholar
  60. 60.
    Weidinger S, Novak N (2016) Atopic dermatitis. Lancet 387:1109–1122CrossRefGoogle Scholar
  61. 61.
    Yoshihisa Y, Andoh T, Matsunaga K, Rehman MU, Maoka T, Shimizu T (2016) Efficacy of astaxanthin for the treatment of atopic dermatitis in a murine model. PLoS One 11:e0152288CrossRefGoogle Scholar
  62. 62.
    Yawalkar N, Uguccioni M, Schärer J, Braunwalder J, Karlen S, Dewald B, Braathen LR, Baggiolini M (1999) Enhanced expression of eotaxin and CCR3 in atopic dermatitis. J Invest Dermatol 113:43–48CrossRefGoogle Scholar
  63. 63.
    Shimizu T (2005) Role of macrophage migration inhibitory factor (MIF) in the skin. J Dermatol Sci 37:65–73CrossRefGoogle Scholar
  64. 64.
    Yasuda C, Enomoto A, Ishiwatari S, Mori N, Kagoyama K, Matsunaga K, Yoshihisa Y, Matsukuma S, Shimizu T (2014) Macrophage migration inhibitory factor (MIF) in the stratum corneum: a marker of the local severity of atopic dermatitis. Exp Dermatol 23:764–766CrossRefGoogle Scholar
  65. 65.
    Hamasaka A, Abe R, Koyama Y, Yoshioka N, Fujita Y, Hoshina D, Sasaki M, Hirasawa T, Onodera S, Ohshima S, Leng L, Bucala R, Nishihira J, Shimizu T, Shimizu H (2009) DNA vaccination against macrophage migration inhibitory factor improves atopic dermatitis in murine models. J Allergy Clin Immunol 124:90–99CrossRefGoogle Scholar
  66. 66.
    O’Shea KM, Aceves SS, Dellon ES, Gupta SK, Spergel JM, Furuta GT, Rothenberg ME (2018) Pathophysiology of eosinophilic esophagitis. Gastroenterology 154:333–345CrossRefGoogle Scholar
  67. 67.
    Davis BP (2018) Pathophysiology of eosinophilic esophagitis. Clin Rev Allergy Immunol 55:19–42CrossRefGoogle Scholar
  68. 68.
    Chehade M, Sampson HA, Morotti RA, Magid MS (2007) Esophageal subepithelial fibrosis in children with eosinophilic esophagitis. J Pediatr Gastroenterol Nutr 45:319–328CrossRefGoogle Scholar
  69. 69.
    Li-Kim-Moy JP, Tobias V, Day AS, Leach S, Lemberg DA (2011) Esophageal subepithelial fibrosis and hyalinization are features of eosinophilic esophagitis. J Pediatr Gastroenterol Nutr 52:147–153CrossRefGoogle Scholar
  70. 70.
    Rieder F, Cheng L, Harnett KM, Chak A, Cooper GS, Isenberg G, Ray M, Katz JA, Catanzaro A, O’Shea R, Post AB, Wong R, Sivak MV, McCormick T, Phillips M, West GA, Willis JE, Biancani P, Fiocchi C (2007) Gastroesophageal reflux disease-associated esophagitis induces endogenous cytokine production leading to motor abnormalities. Gastroenterology 132:154–165CrossRefGoogle Scholar
  71. 71.
    Pawig L, Klasen C, Weber C et al (2015) Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front Immunol 6:429CrossRefGoogle Scholar
  72. 72.
    Nagase H, Miyamasu M, Yamaguchi M, Fujisawa T, Ohta K, Yamamoto K, Morita Y, Hirai K (2000) Expression of CXCR4 in eosinophils: functional analyses and cytokine-mediated regulation. J Immunol 164:5935–5943CrossRefGoogle Scholar
  73. 73.
    Iikura M, Miyamasu M, Yamaguchi M, Kawasaki H, Matsushima K, Kitaura M, Morita Y, Yoshie O, Yamamoto K, Hirai K (2001) Chemokine receptors in human basophils: inducible expression of functional CXCR4. J Leukoc Biol 70:113–120Google Scholar
  74. 74.
    Blanchard C, Rothenberg ME (2008) Basic pathogenesis of eosinophilic esophagitis. Gastrointest Endosc Clin N Am 18:133–143CrossRefGoogle Scholar
  75. 75.
    Noti M, Wojno EDT, Kim BS, Siracusa MC, Giacomin PR, Nair MG, Benitez AJ, Ruymann KR, Muir AB, Hill DA, Chikwava KR, Moghaddam AE, Sattentau QJ, Alex A, Zhou C, Yearley JH, Menard-Katcher P, Kubo M, Obata-Ninomiya K, Karasuyama H, Comeau MR, Brown-Whitehorn T, de Waal Malefyt R, Sleiman PM, Hakonarson H, Cianferoni A, Falk GW, Wang ML, Spergel JM, Artis D (2013) Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat Med 19:1005–1013CrossRefGoogle Scholar
  76. 76.
    McDermott DH, Liu Q, Velez D et al (2014) A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood 123:2308–2316CrossRefGoogle Scholar
  77. 77.
    Stavitsky AB, Metz C, Liu S, Xianli J, Bucala R (2003) Blockade of macrophage migration inhibitory factor (MIF) in Schistosoma japonicum-infected mice results in an increased adult worm burden and reduced fecundity. Parasite Immunol 25:369–374CrossRefGoogle Scholar
  78. 78.
    Reiman RM, Thompson RW, Feng CG, Hari D, Knight R, Cheever AW, Rosenberg HF, Wynn TA (2006) Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect Immun 74:1471–1479CrossRefGoogle Scholar
  79. 79.
    Fallon PG, Richardson EJ, McKenzie GJ, McKenzie AN (2000) Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J Immunol 164:2585–2591CrossRefGoogle Scholar
  80. 80.
    Rodríguez-Sosa M, Rosas LE, David JR et al (2003) Macrophage migration inhibitory factor plays a critical role in mediating protection against the helminth parasite Taenia crassiceps. Infect Immun 71:1247–1254CrossRefGoogle Scholar
  81. 81.
    David JR, Butterworth AE, Vadas MA (1980) Mechanism of the interaction mediating killing of Schistosoma mansoni by human eosinophils. Am J Trop Med Hyg 29:842–848CrossRefGoogle Scholar
  82. 82.
    Davies SJ, Smith SJ, Lim KC, Zhang H, Purchio AF, McKerrow JH, West DB (2005) In vivo imaging of tissue eosinophilia and eosinopoietic responses to schistosome worms and eggs. Int J Parasitol 35:851–859CrossRefGoogle Scholar
  83. 83.
    Swartz JM, Dyer KD, Cheever AW, Ramalingam T, Pesnicak L, Domachowske JB, Lee JJ, Lee NA, Foster PS, Wynn TA, Rosenberg HF (2006) Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 108:2420–2427CrossRefGoogle Scholar
  84. 84.
    Damle SR, Martin RK, Cross JV, Conrad DH (2017) Macrophage migration inhibitory factor deficiency enhances immune response to Nippostrongylus brasiliensis. Mucosal Immunol 10:205–214CrossRefGoogle Scholar
  85. 85.
    Bozza MT, Martins YC, Carneiro LAM, Paiva CN (2012) Macrophage migration inhibitory factor in protozoan infections. J Parasitol Res 2012:413052CrossRefGoogle Scholar
  86. 86.
    Sparkes A, De Baetselier P, Roelants K et al (2017) The non-mammalian MIF superfamily. Immunobiology 222:473–482CrossRefGoogle Scholar
  87. 87.
    Vermeire JJ, Cho Y, Lolis E, Bucala R, Cappello M (2008) Orthologs of macrophage migration inhibitory factor from parasitic nematodes. Trends Parasitol 24:355–363CrossRefGoogle Scholar
  88. 88.
    Falcone FH, Loke P, Zang X, MacDonald AS, Maizels RM, Allen JE (2001) A Brugia malayi homolog of macrophage migration inhibitory factor reveals an important link between macrophages and eosinophil recruitment during nematode infection. J Immunol 167:5348–5354CrossRefGoogle Scholar
  89. 89.
    Zang X, Taylor P, Wang JM, Meyer DJ, Scott AL, Walkinshaw MD, Maizels RM (2002) Homologues of human macrophage migration inhibitory factor from a parasitic nematode. Gene cloning, protein activity, and crystal structure. J Biol Chem 277:44261–44267CrossRefGoogle Scholar
  90. 90.
    Prieto-Lafuente L, Gregory WF, Allen JE, Maizels RM (2009) MIF homologues from a filarial nematode parasite synergize with IL-4 to induce alternative activation of host macrophages. J Leukoc Biol 85:844–854CrossRefGoogle Scholar
  91. 91.
    Younis AE, Soblik H, Ajonina-Ekoti I, Erttmann KD, Luersen K, Liebau E, Brattig NW (2012) Characterization of a secreted macrophage migration inhibitory factor homologue of the parasitic nematode Strongyloides acting at the parasite-host cell interface. Microbes Infect 14:279–289CrossRefGoogle Scholar
  92. 92.
    Park SK, Cho MK, Park H-K, Lee KH, Lee SJ, Choi SH, Ock MS, Jeong HJ, Lee MH, Yu HS (2009) Macrophage migration inhibitory factor homologs of anisakis simplex suppress Th2 response in allergic airway inflammation model via CD4+CD25+Foxp3+ T cell recruitment. J Immunol 182:6907–6914CrossRefGoogle Scholar
  93. 93.
    Cho MK, Park MK, Kang SA, Park SK, Lyu JH, Kim DH, Park HK, Yu HS (2015) TLR2-dependent amelioration of allergic airway inflammation by parasitic nematode type II MIF in mice. Parasite Immunol 37:180–191CrossRefGoogle Scholar
  94. 94.
    Cho MK, Lee CH, Yu HS (2011) Amelioration of intestinal colitis by macrophage migration inhibitory factor isolated from intestinal parasites through toll-like receptor 2. Parasite Immunol 33:265–275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de MicrobiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations