Advertisement

Clinical Reviews in Allergy & Immunology

, Volume 57, Issue 3, pp 350–363 | Cite as

The Human Microbiota and Asthma

  • Aaron Ver Heul
  • Joseph Planer
  • Andrew L. KauEmail author
Article

Abstract

Over the last few decades, advances in our understanding of microbial ecology have allowed us to appreciate the important role of microbial communities in maintaining human health. While much of this research has focused on gut microbes, microbial communities in other body sites and from the environment are increasingly recognized in human disease. Here, we discuss recent advances in our understanding of host–microbiota interactions in the development and manifestation of asthma focusing on three distinct microbial compartments. First, environmental microbes originating from house dust, pets, and farm animals have been linked to asthma pathogenesis, which is often connected to their production of bioactive molecules such as lipopolysaccharide. Second, respiratory microbial communities, including newly appreciated populations of microbes in the lung have been associated with allergic airway inflammation. Current evidence suggests that the presence of particular microbes, especially Streptococcus, Haemophilus, and Morexella species within the airway may shape local immune responses and alter the severity and manifestations of airway inflammation. Third, the gut microbiota has been implicated in both experimental models and clinical studies in predisposing to asthma. There appears to be a “critical window” of colonization that occurs during early infancy in which gut microbial communities shape immune maturation and confer susceptibility to allergic airway inflammation. The mechanisms by which gut microbial communities influence lung immune responses and physiology, the “gut–lung axis,” are still being defined but include the altered differentiation of immune cell populations important in asthma and the local production of metabolites that affect distal sites. Together, these findings suggest an intimate association of microbial communities with host immune development and the development of allergic airway inflammation. Improved understanding of these relationships raises the possibility of microbiota-directed therapies to improve or prevent asthma.

Keywords

Asthma Allergy Microbiota Microbiome Gut–lung axis 

Notes

Acknowledgements

The authors would like to thank Anne Rosen for her helpful input during the writing of this review.

Compliance with Ethical Standards

Conflict of Interest

Aaron Ver Heul, MD, PhD has received research support from the National Institutes of Health (5T32DK077653–27).

Joseph Planer, MD/PhD is a resident in internal medicine at Massachusetts General Hospital. He has no other conflicts of interest to declare.

Andrew L. Kau, MD/PhD has received research support from the National Institutes of Health (K08AI113184) and the AAAAI Foundation. Dr. Kau also reports equity interest in Gilead Sciences, Inc.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

This is a review article. Informed consent is not required.

References

  1. 1.
    Duclaux É (1885) Presentée par M. Pasteur, Physiologie végétale. Sur la germination dans un sol riche en matières organiques, mais exempt de microbes. C R Acad Sci 100:66–68Google Scholar
  2. 2.
    Pasteur L (1885) Observations relatives à la Note précédente de. M. Duclaux. Comptes rendus de Académie des sciences 100:68Google Scholar
  3. 3.
    Falony G, Joossens M, Vieira-Silva S et al (2016) Population-level analysis of gut microbiome variation. Science 352:560–564.  https://doi.org/10.1126/science.aad3503 CrossRefPubMedGoogle Scholar
  4. 4.
    Zhernakova A, Kurilshikov A, Bonder MJ et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569.  https://doi.org/10.1126/science.aad3369 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gritz EC, Bhandari V (2015) The human neonatal gut microbiome: a brief review. Front Pediatr 3:17.  https://doi.org/10.3389/fped.2015.00017 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227.  https://doi.org/10.1038/nature11053 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339.  https://doi.org/10.1136/gutjnl-2015-309990 CrossRefPubMedGoogle Scholar
  8. 8.
    Honda K, Littman DR (2016) The microbiota in adaptive immune homeostasis and disease. Nature 535:75–84.  https://doi.org/10.1038/nature18848 CrossRefPubMedGoogle Scholar
  9. 9.
    Lawley TD, Walker AW (2013) Intestinal colonization resistance. Immunology 138:1–11.  https://doi.org/10.1111/j.1365-2567.2012.03616.x CrossRefPubMedGoogle Scholar
  10. 10.
    Maslowski KM, Vieira AT, Ng A et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286.  https://doi.org/10.1038/nature08530 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450.  https://doi.org/10.1038/nature12721 CrossRefPubMedGoogle Scholar
  12. 12.
    Hall AB, Tolonen AC, Xavier RJ (2017) Human genetic variation and the gut microbiome in disease. Nat Rev Genet 18:690–699.  https://doi.org/10.1038/nrg.2017.63 CrossRefPubMedGoogle Scholar
  13. 13.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031.  https://doi.org/10.1038/nature05414 CrossRefPubMedGoogle Scholar
  14. 14.
    Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214.  https://doi.org/10.1126/science.1241214 CrossRefPubMedGoogle Scholar
  15. 15.
    Smith MI, Yatsunenko T, Manary MJ et al (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339:548–554.  https://doi.org/10.1126/science.1229000 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mullish BH, Williams HR (2018) Clostridium difficile infection and antibiotic-associated diarrhoea. Clin Med (Lond) 18:237–241.  https://doi.org/10.7861/clinmedicine.18-3-237 CrossRefGoogle Scholar
  17. 17.
    Berer K, Gerdes LA, Cekanaviciute E et al (2017) Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 114:10719–10724.  https://doi.org/10.1073/pnas.1711233114 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cekanaviciute E, Yoo BB, Runia TF et al (2017) Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A 114:10713–10718.  https://doi.org/10.1073/pnas.1711235114 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584.  https://doi.org/10.1056/NEJMoa1109400 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299:1259–1260CrossRefGoogle Scholar
  21. 21.
    Rook GAW (2010) 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clinical &amp. Exp Immunol 160:70–79.  https://doi.org/10.1111/j.1365-2249.2010.04133.x CrossRefGoogle Scholar
  22. 22.
    Dick S, Friend A, Dynes K, AlKandari F, Doust E, Cowie H, Ayres JG, Turner SW (2014) A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years. BMJ Open 4:e006554.  https://doi.org/10.1136/bmjopen-2014-006554 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Asthma TISo, Committee AiCIS (1998) Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet (London, England) 351:1225–1232CrossRefGoogle Scholar
  24. 24.
    Garcia-Marcos L, Robertson CF, Ross Anderson H, Ellwood P, Williams HC, Wong GW, Group tIPTS (2014) Does migration affect asthma, rhinoconjunctivitis and eczema prevalence? Global findings from the international study of asthma and allergies in childhood. Int J Epidemiol 43:1846–1854.  https://doi.org/10.1093/ije/dyu145 CrossRefPubMedGoogle Scholar
  25. 25.
    Roduit C, Wohlgensinger J, Frei R, et al. (2011) Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis. J Allergy Clin Immunol 127:179-185- 185.e171.  https://doi.org/10.1016/j.jaci.2010.10.010 CrossRefGoogle Scholar
  26. 26.
    Ege MJ, Bieli C, Frei R et al (2006) Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J Allergy Clin Immunol 117:817–823.  https://doi.org/10.1016/j.jaci.2005.12.1307 CrossRefPubMedGoogle Scholar
  27. 27.
    Loss G, Bitter S, Wohlgensinger J, et al. (2012) Prenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study. J Allergy Clin Immunol 130:523-530.e529.  https://doi.org/10.1016/j.jaci.2012.05.049 CrossRefGoogle Scholar
  28. 28.
    Ege MJ, Herzum I, Büchele G, et al. (2008) Prenatal exposure to a farm environment modifies atopic sensitization at birth. J allergy Clin Immunol 122:407-412- 412.e401-404. doi:  https://doi.org/10.1016/j.jaci.2008.06.011 CrossRefGoogle Scholar
  29. 29.
    Douwes J, Cheng S, Travier N et al (2008) Farm exposure in utero may protect against asthma, hay fever and eczema. Eur Respir J 32:603–611.  https://doi.org/10.1183/09031936.00033707 CrossRefPubMedGoogle Scholar
  30. 30.
    Milligan KL, Matsui E, Sharma H (2016) Asthma in urban children: epidemiology, environmental risk factors, and the public health domain. Curr Allergy Asthma Rep 16:33.  https://doi.org/10.1007/s11882-016-0609-6 CrossRefPubMedGoogle Scholar
  31. 31.
    Jie Y, Isa ZM, Jie X, Ju ZL, Ismail NH (2013) Urban vs. rural factors that affect adult asthma. Rev Environ Contam Toxicol 226:33–63.  https://doi.org/10.1007/978-1-4614-6898-1_2 CrossRefPubMedGoogle Scholar
  32. 32.
    von Mutius E, Schmid S, Group PS (2006) The PASTURE project: EU support for the improvement of knowledge about risk factors and preventive factors for atopy in Europe. Allergy 61:407–413.  https://doi.org/10.1111/j.1398-9995.2006.01009.x CrossRefGoogle Scholar
  33. 33.
    Alfvén T, Braun-Fahrländer C, Brunekreef B et al (2006) Allergic diseases and atopic sensitization in children related to farming and anthroposophic lifestyle—the PARSIFAL study. Allergy 61:414–421.  https://doi.org/10.1111/j.1398-9995.2005.00939.x CrossRefPubMedGoogle Scholar
  34. 34.
    Ege MJ, Mayer M, Normand A-C et al (2011) Exposure to environmental microorganisms and childhood asthma. N Engl J Med 364:701–709.  https://doi.org/10.1056/NEJMoa1007302 CrossRefPubMedGoogle Scholar
  35. 35.
    Brunekreef B, Von Mutius E, Wong GK, Odhiambo JA, Clayton TO (2012) Early life exposure to farm animals and symptoms of asthma, rhinoconjunctivitis and eczema: an ISAAC Phase Three Study. Int J Epidemiol 41:753–761.  https://doi.org/10.1093/ije/dyr216 CrossRefPubMedGoogle Scholar
  36. 36.
    Gehring U, Strikwold M, Schram-Bijkerk D et al (2008) Asthma and allergic symptoms in relation to house dust endotoxin: phase two of the International Study on Asthma and Allergies in Childhood (ISAAC II). Clinical &amp. Exp Allergy 38:1911–1920.  https://doi.org/10.1111/j.1365-2222.2008.03087.x CrossRefGoogle Scholar
  37. 37.
    Illi S, Depner M, Genuneit J, et al. (2012) Protection from childhood asthma and allergy in Alpine farm environments—the GABRIEL Advanced Studies. J allergy Clin Immunol 129:1470-1477.e1476.  https://doi.org/10.1016/j.jaci.2012.03.013 CrossRefGoogle Scholar
  38. 38.
    Debarry J, Garn H, Hanuszkiewicz A et al (2007) Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol 119:1514–1521.  https://doi.org/10.1016/j.jaci.2007.03.023 CrossRefPubMedGoogle Scholar
  39. 39.
    Peters M, Kauth M, Scherner O, Gehlhar K, Steffen I, Wentker P, Von Mutius E, Holst O, and Bufe A (2010) Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. J Allergy Clin Immunol 126:648-656.e641-644. doi:  https://doi.org/10.1016/j.jaci.2010.05.011 Google Scholar
  40. 40.
    Vogel K, Blümer N, Korthals M, et al. (2008) Animal shed Bacillus licheniformis spores possess allergy-protective as well as inflammatory properties. J allergy Clin Immunol 122:307-312- 312.e301-308.  https://doi.org/10.1016/j.jaci.2008.05.016 CrossRefGoogle Scholar
  41. 41.
    Conrad ML, Ferstl R, Teich R et al (2009) Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med 206:2869–2877.  https://doi.org/10.1084/jem.20090845 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Heydenreich B, Bellinghausen I, König B, Becker W-M, Grabbe S, Petersen A, Saloga J (2012) Gram-positive bacteria on grass pollen exhibit adjuvant activity inducing inflammatory T cell responses. Clin Exp Allergy 42:76–84.  https://doi.org/10.1111/j.1365-2222.2011.03888.x CrossRefPubMedGoogle Scholar
  43. 43.
    Stein MM, Hrusch CL, Gozdz J et al (2016) Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med 375:411–421.  https://doi.org/10.1056/NEJMoa1508749 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lynch SV, Wood RA, Boushey H et al (2014) Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol 134:593–601.e512.  https://doi.org/10.1016/j.jaci.2014.04.018 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    O'Connor GT, Lynch SV, Bloomberg GR, et al. (2017) Early-life home environment and risk of asthma among inner-city children. J Allergy Clin Immunol.  https://doi.org/10.1016/j.jaci.2017.06.040 CrossRefGoogle Scholar
  46. 46.
    Call RS, Smith TF, Morris E, Chapman MD, Platts-Mills TA (1992) Risk factors for asthma in inner city children. J Pediatr 121:862–866.  https://doi.org/10.1016/S0022-3476(05)80329-4 CrossRefPubMedGoogle Scholar
  47. 47.
    Gelber LE, Seltzer LH, Bouzoukis JK, Pollart SM, Chapman MD, Platts-Mills TA (1993) Sensitization and exposure to indoor allergens as risk factors for asthma among patients presenting to hospital. Am Rev Respir Dis 147:573–578.  https://doi.org/10.1164/ajrccm/147.3.573 CrossRefPubMedGoogle Scholar
  48. 48.
    Rosenstreich DL, Eggleston P, Kattan M et al (1997) The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med 336:1356–1363.  https://doi.org/10.1056/NEJM199705083361904 CrossRefGoogle Scholar
  49. 49.
    Lau S, Illi S, Sommerfeld C, Niggemann B, Bergmann R, von Mutius E, Wahn U (2000) Early exposure to house-dust mite and cat allergens and development of childhood asthma: a cohort study. Multicentre Allergy Study Group. Lancet (London, England) 356:1392–1397CrossRefGoogle Scholar
  50. 50.
    Ownby DR, Johnson CC, Peterson EL (2002) Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA 288:963–972.  https://doi.org/10.1001/jama.288.8.963 CrossRefPubMedGoogle Scholar
  51. 51.
    von Mutius E, Braun-Fahrländer C, Schierl R, Riedler J, Ehlermann S, Maisch S, Waser M, Nowak D (2000) Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clin Exp Allergy 30:1230–1234CrossRefGoogle Scholar
  52. 52.
    Braun-Fahrländer C, Riedler J, Herz U et al (2002) Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347:869–877.  https://doi.org/10.1056/NEJMoa020057 CrossRefPubMedGoogle Scholar
  53. 53.
    Kerkhof M, Daley D, Postma DS et al (2012) Opposite effects of allergy prevention depending on CD14 rs2569190 genotype in 3 intervention studies. J Allergy Clin Immunol 129:256–259.  https://doi.org/10.1016/j.jaci.2011.08.040 CrossRefPubMedGoogle Scholar
  54. 54.
    Vatanen T, Kostic AD, d’Hennezel E et al (2016) Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165:842–853.  https://doi.org/10.1016/j.cell.2016.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Durack J, Huang YJ, Nariya S et al (2018) Bacterial biogeography of adult airways in atopic asthma. Microbiome 6:104.  https://doi.org/10.1186/s40168-018-0487-3 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Erb-Downward JR, Thompson DL, Han MK et al (2011) Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One 6:e16384.  https://doi.org/10.1371/journal.pone.0016384 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Willner D, Haynes MR, Furlan M, Schmieder R, Lim YW, Rainey PB, Rohwer F, Conrad D (2012) Spatial distribution of microbial communities in the cystic fibrosis lung. Isme J 6:471–474.  https://doi.org/10.1038/ismej.2011.104 CrossRefPubMedGoogle Scholar
  58. 58.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975.  https://doi.org/10.1073/pnas.1002601107 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Biesbroek G, Tsivtsivadze E, Sanders EA, Montijn R, Veenhoven RH, Keijser BJ, Bogaert D (2014) Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med 190:1283–1292.  https://doi.org/10.1164/rccm.201407-1240OC CrossRefPubMedGoogle Scholar
  60. 60.
    Teo SM, Mok D, Pham K et al (2015) The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 17:704–715.  https://doi.org/10.1016/j.chom.2015.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB (2016) The microbiome and the respiratory tract. Annu Rev Physiol 78:481–504.  https://doi.org/10.1146/annurev-physiol-021115-105238 CrossRefPubMedGoogle Scholar
  62. 62.
    Dickson RP, Erb-Downward JR, Huffnagle GB (2015) Homeostasis and its disruption in the lung microbiome. Am J Physiol Lung Cell Mol Physiol 309:L1047–L1055.  https://doi.org/10.1152/ajplung.00279.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184:957–963.  https://doi.org/10.1164/rccm.201104-0655OC CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB, Curtis JL (2015) Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 12:821–830.  https://doi.org/10.1513/AnnalsATS.201501-029OC CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Denner DR, Sangwan N, Becker JB, et al. (2016) Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol 137:1398–1405 e1393.  https://doi.org/10.1016/j.jaci.2015.10.017 CrossRefGoogle Scholar
  66. 66.
    Nembrini C, Sichelstiel A, Kisielow J, Kurrer M, Kopf M, Marsland BJ (2011) Bacterial-induced protection against allergic inflammation through a multicomponent immunoregulatory mechanism. Thorax 66:755–763.  https://doi.org/10.1136/thx.2010.152512 CrossRefPubMedGoogle Scholar
  67. 67.
    McCann JR, Mason SN, Auten RL, St Geme JW 3rd, Seed PC (2016) Early-life intranasal colonization with nontypeable Haemophilus influenzae exacerbates juvenile airway disease in mice. Infect Immun 84:2022–2030.  https://doi.org/10.1128/IAI.01539-15 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Preston JA, Essilfie AT, Horvat JC, Wade MA, Beagley KW, Gibson PG, Foster PS, Hansbro PM (2007) Inhibition of allergic airways disease by immunomodulatory therapy with whole killed Streptococcus pneumoniae. Vaccine 25:8154–8162.  https://doi.org/10.1016/j.vaccine.2007.09.034 CrossRefPubMedGoogle Scholar
  69. 69.
    Preston JA, Thorburn AN, Starkey MR et al (2011) Streptococcus pneumoniae infection suppresses allergic airways disease by inducing regulatory T-cells. Eur Respir J 37:53–64.  https://doi.org/10.1183/09031936.00049510 CrossRefPubMedGoogle Scholar
  70. 70.
    Thorburn AN, Foster PS, Gibson PG, Hansbro PM (2012) Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells. J Immunol 188:4611–4620.  https://doi.org/10.4049/jimmunol.1101299 CrossRefPubMedGoogle Scholar
  71. 71.
    Hilty M, Burke C, Pedro H et al (2010) Disordered microbial communities in asthmatic airways. PLoS One 5:e8578.  https://doi.org/10.1371/journal.pone.0008578 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Huang YJ, Nelson CE, Brodie EL et al (2011) Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol 127:372–381.e373.  https://doi.org/10.1016/j.jaci.2010.10.048 CrossRefPubMedGoogle Scholar
  73. 73.
    Goleva E, Jackson LP, Harris JK et al (2013) The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med 188:1193–1201.  https://doi.org/10.1164/rccm.201304-0775OC CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, Boushey H (2015) The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol 136:874–884.  https://doi.org/10.1016/j.jaci.2015.05.044 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhang Q, Cox M, Liang Z et al (2016) Airway microbiota in severe asthma and relationship to asthma severity and phenotypes. PLoS One 11:e0152724.  https://doi.org/10.1371/journal.pone.0152724 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Durack J, Lynch SV, Nariya S et al (2017) Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol 140:63–75.  https://doi.org/10.1016/j.jaci.2016.08.055 CrossRefPubMedGoogle Scholar
  77. 77.
    Sverrild A, Kiilerich P, Brejnrod A, Pedersen R, Porsbjerg C, Bergqvist A, Erjefalt JS, Kristiansen K, Backer V (2017) Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome. J Allergy Clin Immunol 140:407–417 e411.  https://doi.org/10.1016/j.jaci.2016.10.046 CrossRefPubMedGoogle Scholar
  78. 78.
    Green BJ, Wiriyachaiporn S, Grainge C, Rogers GB, Kehagia V, Lau L, Carroll MP, Bruce KD, Howarth PH (2014) Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLoS One 9:e100645.  https://doi.org/10.1371/journal.pone.0100645 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Taylor SL, Leong LEX, Choo JM et al (2018) Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol 141(94–103):e115.  https://doi.org/10.1016/j.jaci.2017.03.044 CrossRefGoogle Scholar
  80. 80.
    Bisgaard H, Hermansen MN, Buchvald F et al (2007) Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 357:1487–1495.  https://doi.org/10.1056/NEJMoa052632 CrossRefPubMedGoogle Scholar
  81. 81.
    Bisgaard H, Hermansen MN, Bonnelykke K, Stokholm J, Baty F, Skytt NL, Aniscenko J, Kebadze T, Johnston SL (2010) Association of bacteria and viruses with wheezy episodes in young children: prospective birth cohort study. BMJ 341:c4978.  https://doi.org/10.1136/bmj.c4978 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379.  https://doi.org/10.1056/NEJMra1600266 CrossRefPubMedGoogle Scholar
  83. 83.
    Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, Hansbro PM (2017) Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 15:55–63.  https://doi.org/10.1038/nrmicro.2016.142 CrossRefPubMedGoogle Scholar
  84. 84.
    Marsland BJ, Trompette A, Gollwitzer ES (2015) The gut-lung axis in respiratory disease. Ann Am Thorac Soc 12(Suppl 2):S150–S156.  https://doi.org/10.1513/AnnalsATS.201503-133AW CrossRefPubMedGoogle Scholar
  85. 85.
    Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, Umetsu DT, Rudensky AY (2012) Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482:395–399.  https://doi.org/10.1038/nature10772 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, and Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science (New York, NY) 341:569–573.  https://doi.org/10.1126/science.1241165 CrossRefGoogle Scholar
  87. 87.
    Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455.  https://doi.org/10.1038/nature12726 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Cait A, Hughes MR, Antignano F et al (2017) Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol 32, 164.  https://doi.org/10.1038/mi.2017.75 CrossRefGoogle Scholar
  89. 89.
    Trompette A, Gollwitzer ES, Yadava K et al (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20:159–166.  https://doi.org/10.1038/nm.3444 CrossRefPubMedGoogle Scholar
  90. 90.
    Bacher P, Heinrich F, Stervbo U et al (2016) Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 167 e1016:1067–1078.  https://doi.org/10.1016/j.cell.2016.09.050 CrossRefGoogle Scholar
  91. 91.
    Fujimura KE, Sitarik AR, Havstad S et al (2016) Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 22:1187–1191.  https://doi.org/10.1038/nm.4176 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO (2009) A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A 106:19256–19261.  https://doi.org/10.1073/pnas.0812681106 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Palm NW, de Zoete MR, Cullen TW et al (2014) Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:1000–1010.  https://doi.org/10.1016/j.cell.2014.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kau AL, Planer JD, Liu J et al (2015) Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci Transl Med 7:276ra224–276ra224.  https://doi.org/10.1126/scitranslmed.aaa4877 CrossRefGoogle Scholar
  95. 95.
    Dzidic M, Abrahamsson TR, Artacho A, Björkstén B, Collado MC, Mira A, Jenmalm MC (2017) Aberrant IgA responses to the gut microbiota during infancy precede asthma and allergy development. J Allergy Clin Immunol 139:1017–1025.e1014.  https://doi.org/10.1016/j.jaci.2016.06.047 CrossRefPubMedGoogle Scholar
  96. 96.
    Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336.  https://doi.org/10.1146/annurev.immunol.25.022106.141711 CrossRefPubMedGoogle Scholar
  97. 97.
    Kumar A, Suryadevara N, Hill TM, Bezbradica JS, Van Kaer L, Joyce S (2017) Natural killer T cells: an ecological evolutionary developmental biology perspective. Front Immunol 8(1858).  https://doi.org/10.3389/fimmu.2017.01858
  98. 98.
    Olszak T, An D, Zeissig S et al (2012) Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:489–493  https://doi.org/10.1126/science.1219328 CrossRefGoogle Scholar
  99. 99.
    Akbari O, Faul JL, Hoyte EG, Berry GJ, Wahlström J, Kronenberg M, Dekruyff RH, Umetsu DT (2006) CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N Engl J Med 354:1117–1129.  https://doi.org/10.1056/NEJMoa053614 CrossRefPubMedGoogle Scholar
  100. 100.
    Vijayanand P, Seumois G, Pickard C, Powell RM, Angco G, Sammut D, Gadola SD, Friedmann PS, Djukanovic R (2007) Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N Engl J Med 356:1410–1422.  https://doi.org/10.1056/NEJMoa064691 CrossRefPubMedGoogle Scholar
  101. 101.
    Weaver CT, Elson CO, Fouser LA, Kolls JK (2013) The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol 8:477–512.  https://doi.org/10.1146/annurev-pathol-011110-130318 CrossRefPubMedGoogle Scholar
  102. 102.
    Choy DF, Hart KM, Borthwick LA et al (2015) TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med 7:301ra129–301ra129.  https://doi.org/10.1126/scitranslmed.aab3142 CrossRefPubMedGoogle Scholar
  103. 103.
    Newcomb DC, Peebles RS (2013) Th17-mediated inflammation in asthma. Curr Opin Immunol 25:755–760.  https://doi.org/10.1016/j.coi.2013.08.002 CrossRefPubMedGoogle Scholar
  104. 104.
    Nembrini C, Marsland BJ, Kopf M (2009) IL-17-producing T cells in lung immunity and inflammation. J Allergy Clin Immunol 123:986–994- quiz 995–986.  https://doi.org/10.1016/j.jaci.2009.03.033 CrossRefPubMedGoogle Scholar
  105. 105.
    Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin S-L (2013) Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 188:1294–1302.  https://doi.org/10.1164/rccm.201212-2318OC CrossRefPubMedGoogle Scholar
  106. 106.
    Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498.  https://doi.org/10.1016/j.cell.2009.09.033 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Bradley CP, Teng F, Felix KM et al (2017) Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host Microbe 22:697–704.e694.  https://doi.org/10.1016/j.chom.2017.10.007 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Wang J, Li F, Wei H, Lian Z-X, Sun R, Tian Z (2014) Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J Exp Med 211:2397–2410.  https://doi.org/10.1084/jem.20140625 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Tan TG, Sefik E, Geva-Zatorsky N et al (2016) Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A 113:E8141–E8150.  https://doi.org/10.1073/pnas.1617460113 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, and Knight R (2009) Bacterial community variation in human body habitats across space and time. Science (New York, NY) 326:1694–1697.  https://doi.org/10.1126/science.1177486 CrossRefGoogle Scholar
  111. 111.
    Faith JJ, Guruge JL, Charbonneau M et al (2013) The long-term stability of the human gut microbiota. Science (New York, NY) 341:1237439–1237439.  https://doi.org/10.1126/science.1237439 CrossRefGoogle Scholar
  112. 112.
    Bäckhed F, Roswall J, Peng Y et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703.  https://doi.org/10.1016/j.chom.2015.04.004 CrossRefPubMedGoogle Scholar
  113. 113.
    Bokulich NA, Chung J, Battaglia T et al (2016) Antibiotics, birth mode, and diet shape microbiome maturation during early life. In: Sci Transl med 8:343ra382-343ra382.  https://doi.org/10.1126/scitranslmed.aad7121 CrossRefGoogle Scholar
  114. 114.
    Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl 1):4578–4585.  https://doi.org/10.1073/pnas.1000081107 CrossRefPubMedGoogle Scholar
  115. 115.
    Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC (2014) Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 44:842–850.  https://doi.org/10.1111/cea.12253 CrossRefPubMedGoogle Scholar
  116. 116.
    Arrieta M-C, Stiemsma LT, Dimitriu PA et al (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7:307ra152–307ra152.  https://doi.org/10.1126/scitranslmed.aab2271 CrossRefPubMedGoogle Scholar
  117. 117.
    Stiemsma LT, Arrieta M-C, Dimitriu PA et al (2016) Shifts in Lachnospira and Clostridium sp. in the 3-month stool microbiome are associated with preschool age asthma. Clinical science (London, England : 1979) 130:2199–2207.  https://doi.org/10.1042/CS20160349 CrossRefGoogle Scholar
  118. 118.
    Arrieta M-C, Arévalo A, Stiemsma L et al (2017) Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol.  https://doi.org/10.1016/j.jaci.2017.08.041 CrossRefGoogle Scholar
  119. 119.
    Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521.  https://doi.org/10.1542/peds.2005-2824 CrossRefPubMedGoogle Scholar
  120. 120.
    Hyman RW, Fukushima M, Diamond L, Kumm J, Giudice LC, Davis RW (2005) Microbes on the human vaginal epithelium. Proc Natl Acad Sci 102:7952–7957.  https://doi.org/10.1073/pnas.0503236102 CrossRefPubMedGoogle Scholar
  121. 121.
    Gronlund MM, Lehtonen OP, Eerola E, Kero P (1999) Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 28:19–25CrossRefGoogle Scholar
  122. 122.
    Salminen S, Gibson GR, McCartney AL, Isolauri E (2004) Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 53:1388–1389.  https://doi.org/10.1136/gut.2004.041640 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Hällström M, Eerola E, Vuento R, Janas M, Tammela O (2004) Effects of mode of delivery and necrotising enterocolitis on the intestinal microflora in preterm infants. E J Clin Microbiol Infect Dis 23:463–470.  https://doi.org/10.1007/s10096-004-1146-0 CrossRefGoogle Scholar
  124. 124.
    Adlerberth I, Lindberg E, Aberg N, Hesselmar B, Saalman R, Strannegård I-L, Wold AE (2006) Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle? Pediatr Res 59:96–101.  https://doi.org/10.1203/01.pdr.0000191137.12774.b2 CrossRefPubMedGoogle Scholar
  125. 125.
    Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, Björkstén B, Engstrand L, Andersson AF (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566.  https://doi.org/10.1136/gutjnl-2012-303249 CrossRefPubMedGoogle Scholar
  126. 126.
    Dogra S, Sakwinska O, Soh S-E, et al. (2015) Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio 6:e02419–e02414.  https://doi.org/10.1128/MBio.02419-14
  127. 127.
    Rutayisire E, Huang K, Liu Y, Tao F (2016) The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. BMC Gastroenterol 16(86).  https://doi.org/10.1186/s12876-016-0498-0
  128. 128.
    Osterman MJ, Martin JA (2014). Trends in Low-risk Cesarean Delivery in the United States, 1990–2013. Natl Vital Stat Rep 63(6):1–16.  https://doi.org/10.1007/s10995-014-1501-4 CrossRefGoogle Scholar
  129. 129.
    Betran AP, Torloni MR, Zhang J et al (2015) What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reprod Health 12(57).  https://doi.org/10.1186/s12978-015-0043-6
  130. 130.
    Sevelsted A, Stokholm J, Bønnelykke K, Bisgaard H (2015) Cesarean section and chronic immune disorders. Pediatrics 135:e92–e98.  https://doi.org/10.1542/peds.2014-0596 CrossRefPubMedGoogle Scholar
  131. 131.
    Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR (2008) A meta-analysis of the association between caesarean section and childhood asthma. Clin Exp Allergy 38:629–633.  https://doi.org/10.1111/j.1365-2222.2007.02780.x CrossRefPubMedGoogle Scholar
  132. 132.
    Bager P, Wohlfahrt J, Westergaard T (2008) Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy 38:634–642.  https://doi.org/10.1111/j.1365-2222.2008.02939.x CrossRefPubMedGoogle Scholar
  133. 133.
    Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM, Tarr PI, Warner BB, Gordon JI (2016) Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534:263–266.  https://doi.org/10.1038/nature17940 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Martens EC, Chiang HC, Gordon JI (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:447–457.  https://doi.org/10.1016/j.chom.2008.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Rogier EW, Frantz AL, Bruno MEC, Wedlund L, Cohen DA, Stromberg AJ, Kaetzel CS (2014) Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci U S A 111:3074–3079.  https://doi.org/10.1073/pnas.1315792111 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Newburg DS (2005) Innate immunity and human milk. J Nutr 135:1308–1312CrossRefGoogle Scholar
  137. 137.
    Isaacs CE (2005) Human milk inactivates pathogens individually, additively, and synergistically. J Nutr 135:1286–1288CrossRefGoogle Scholar
  138. 138.
    Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C (2014) Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 16:2891–2904.  https://doi.org/10.1111/1462-2920.12238 CrossRefPubMedGoogle Scholar
  139. 139.
    Martín V, Maldonado-Barragán A, Moles L, Rodriguez-Baños M, Campo RD, Fernández L, Rodríguez JM, Jiménez E (2012) Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 28:36–44.  https://doi.org/10.1177/0890334411424729 CrossRefPubMedGoogle Scholar
  140. 140.
    Gueimonde M, Laitinen K, Salminen S, Isolauri E (2007) Breast milk: a source of bifidobacteria for infant gut development and maturation? Neonatology 92:64–66.  https://doi.org/10.1159/000100088 CrossRefPubMedGoogle Scholar
  141. 141.
    Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R, Rodríguez JM (2013) The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69:1–10.  https://doi.org/10.1016/j.phrs.2012.09.001 CrossRefPubMedGoogle Scholar
  142. 142.
    Wolf JH (2003) Low breastfeeding rates and public health in the United States. Am J Public Health 93:2000–2010  https://doi.org/10.2105/AJPH.93.12.2000 CrossRefGoogle Scholar
  143. 143.
    (1989) Protecting, promoting and supporting breast-feeding: the special role of maternity services. A Joint WHO/UNICEF Statement. World Health Organization1–36Google Scholar
  144. 144.
    Dogaru CM, Nyffenegger D, Pescatore AM, Spycher BD, Kuehni CE (2014) Breastfeeding and childhood asthma: systematic review and meta-analysis. Am J Epidemiol 179:1153–1167.  https://doi.org/10.1093/aje/kwu072 CrossRefPubMedGoogle Scholar
  145. 145.
    Lodge CJ, Tan DJ, Lau MXZ, Dai X, Tham R, Lowe AJ, Bowatte G, Allen KJ, Dharmage SC (2015) Breastfeeding and asthma and allergies: a systematic review and meta-analysis. Acta paediatrica (Oslo, Norway : 1992) 104:38–53.  https://doi.org/10.1111/apa.13132 CrossRefGoogle Scholar
  146. 146.
    Ahmadizar F, Vijverberg SJH, Arets HGM, de Boer A, Garssen J, Kraneveld AD, Maitland-van der Zee AH (2017) Breastfeeding is associated with a decreased risk of childhood asthma exacerbations later in life. Pediatr Allergy Immunol 28:649–654.  https://doi.org/10.1111/pai.12760 CrossRefPubMedGoogle Scholar
  147. 147.
    Brew BK, Allen CW, Toelle BG, Marks GB (2011) Systematic review and meta-analysis investigating breast feeding and childhood wheezing illness. Paediatr Perinat Epidemiol 25:507–518.  https://doi.org/10.1111/j.1365-3016.2011.01233.x CrossRefPubMedGoogle Scholar
  148. 148.
    Sharma ND (2017) Breastfeeding and the risk of childhood asthma: a two-stage instrumental variable analysis to address endogeneity. Pediatr Allergy Immunol 28:564–572.  https://doi.org/10.1111/pai.12750 CrossRefPubMedGoogle Scholar
  149. 149.
    Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50.  https://doi.org/10.1016/j.cell.2012.10.052 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Ferrer M, Méndez-García C, Rojo D, Barbas C, Moya A (2017) Antibiotic use and microbiome function. Biochem Pharmacol 134:114–126.  https://doi.org/10.1016/j.bcp.2016.09.007 CrossRefPubMedGoogle Scholar
  151. 151.
    Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108(Suppl 1):4554–4561.  https://doi.org/10.1073/pnas.1000087107 CrossRefPubMedGoogle Scholar
  152. 152.
    Langdon A, Crook N, Dantas G (2016) The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome medicine 8(39).  https://doi.org/10.1186/s13073-016-0294-z
  153. 153.
    Murk W, Risnes KR, Bracken MB (2011) Prenatal or early-life exposure to antibiotics and risk of childhood asthma: a systematic review. Pediatrics 127:1125–1138.  https://doi.org/10.1542/peds.2010-2092 CrossRefPubMedGoogle Scholar
  154. 154.
    Kew KM, Undela K, Kotortsi I, and Ferrara G (2015) Macrolides for chronic asthma. Cochrane Database Syst RevCD002997.  https://doi.org/10.1002/14651858.CD002997.pub4
  155. 155.
    Penders J, Kummeling I, Thijs C (2011) Infant antibiotic use and wheeze and asthma risk: a systematic review and meta-analysis. Eur Respir J 38:295–302.  https://doi.org/10.1183/09031936.00105010 CrossRefPubMedGoogle Scholar
  156. 156.
    Zhao D, Su H, Cheng J, Wang X, Xie M, Li K, Wen L, Yang H (2015) Prenatal antibiotic use and risk of childhood wheeze/asthma: a meta-analysis. Pediatr Allergy Immunol 26:756–764.  https://doi.org/10.1111/pai.12436 CrossRefPubMedGoogle Scholar
  157. 157.
    Cox LM, Yamanishi S, Sohn J et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:705–721.  https://doi.org/10.1016/j.cell.2014.05.052 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Cho I, Yamanishi S, Cox L et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626.  https://doi.org/10.1038/nature11400 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Nobel YR, Cox LM, Kirigin FF et al (2015) Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 6(7486).  https://doi.org/10.1038/ncomms8486
  160. 160.
    Russell SL, Gold MJ, Hartmann M et al (2012) Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 13:440–447.  https://doi.org/10.1038/embor.2012.32 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Russell SL, Gold MJ, Willing BP, Thorson L, McNagny KM, Finlay BB (2013) Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4:158–164.  https://doi.org/10.4161/gmic.23567 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Miyoshi J, Bobe AM, Miyoshi S, Huang Y, Hubert N, Delmont TO, Eren AM, Leone V, Chang EB (2017) Peripartum antibiotics promote gut Dysbiosis, loss of immune tolerance, and inflammatory bowel disease in genetically prone offspring. Cell Rep 20:491–504.  https://doi.org/10.1016/j.celrep.2017.06.060 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M (2017) Antibiotic treatment at delivery shapes the initial oral microbiome in neonates. Sci Rep 7(43481).  https://doi.org/10.1038/srep43481
  164. 164.
    Nogacka A, Salazar N, Suárez M et al (2017) Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. In: 1–10.  https://doi.org/10.1186/s40168-017-0313-3 CrossRefGoogle Scholar
  165. 165.
    Allen SJ, Martinez EG, Gregorio GV, and Dans LF (2010) Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst RevCD003048.  https://doi.org/10.1002/14651858.CD003048.pub3
  166. 166.
    Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet (London, England) 357:1076–1079.  https://doi.org/10.1016/S0140-6736(00)04259-8 CrossRefGoogle Scholar
  167. 167.
    Kalliomäki M, Salminen S, Poussa T, Arvilommi H, Isolauri E (2003) Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet (London, England) 361:1869–1871.  https://doi.org/10.1016/S0140-6736(03)13490-3 CrossRefGoogle Scholar
  168. 168.
    Osborn DA, and Sinn JK (2007) Probiotics in infants for prevention of allergic disease and food hypersensitivity. Cochrane Database Syst RevCD006475.  https://doi.org/10.1002/14651858.CD006475.pub2
  169. 169.
    Elazab N, Mendy A, Gasana J, Vieira ER, Quizon A, Forno E (2013) Probiotic administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics 132:e666–e676.  https://doi.org/10.1542/peds.2013-0246 CrossRefPubMedGoogle Scholar
  170. 170.
    Cabana MD (2014) No consistent evidence to date that prenatal or postnatal probiotic supplementation prevents childhood asthma and wheeze. Evid Based Med 19:144.  https://doi.org/10.1136/eb-2014-101721 CrossRefPubMedGoogle Scholar
  171. 171.
    Davies G, Jordan S, Brooks CJ et al (2018) Long term extension of a randomised controlled trial of probiotics using electronic health records. Sci Rep 8:7668.  https://doi.org/10.1038/s41598-018-25954-z CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Fiocchi A, Pawankar R, Cuello-Garcia C et al (2015) World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): probiotics. World Allergy Organ J 8:4.  https://doi.org/10.1186/s40413-015-0055-2 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    West CE, Dzidic M, Prescott SL, Jenmalm MC (2017) Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergol Int 66:529–538.  https://doi.org/10.1016/j.alit.2017.08.001 CrossRefPubMedGoogle Scholar
  174. 174.
    Krzych-Falta E, Furmanczyk K, Tomaszewska A, Olejniczak D, Samolinski B, Samolinska-Zawisza U (2018) Probiotics: myths or facts about their role in allergy prevention. Adv Clin Exp Med 27:119–124.  https://doi.org/10.17219/acem/65476 CrossRefPubMedGoogle Scholar
  175. 175.
    van de Pol MA, Lutter R, Smids BS, Weersink EJ, van der Zee JS (2011) Synbiotics reduce allergen-induced T-helper 2 response and improve peak expiratory flow in allergic asthmatics. Allergy 66:39–47.  https://doi.org/10.1111/j.1398-9995.2010.02454.x CrossRefPubMedGoogle Scholar
  176. 176.
    Williams NC, Johnson MA, Shaw DE, Spendlove I, Vulevic J, Sharpe GR, Hunter KA (2016) A prebiotic galactooligosaccharide mixture reduces severity of hyperpnoea-induced bronchoconstriction and markers of airway inflammation. Br J Nutr 116:798–804.  https://doi.org/10.1017/S0007114516002762 CrossRefPubMedGoogle Scholar
  177. 177.
    Osborn DA, and Sinn JK (2013) Prebiotics in infants for prevention of allergy. Cochrane Database Syst RevCD006474.  https://doi.org/10.1002/14651858.CD006474.pub3
  178. 178.
    Cuello-Garcia C, Fiocchi A, Pawankar R et al (2017) Prebiotics for the prevention of allergies: a systematic review and meta-analysis of randomized controlled trials. Clin Exp Allergy 47:1468–1477.  https://doi.org/10.1111/cea.13042 CrossRefPubMedGoogle Scholar
  179. 179.
    Plovier H, Everard A, Druart C et al (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113.  https://doi.org/10.1038/nm.4236 CrossRefPubMedGoogle Scholar
  180. 180.
    Casale TB, Kessler J, Romero FA (2006) Safety of the intranasal toll-like receptor 4 agonist CRX-675 in allergic rhinitis. Ann Allergy Asthma Immunol 97:454–456.  https://doi.org/10.1016/S1081-1206(10)60934-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Allergy and Immunology, Department of MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Department of MedicineMassachusetts General HospitalBostonUSA
  3. 3.Center for Women’s Infectious Disease ResearchWashington University School of MedicineSt. LouisUSA

Personalised recommendations