Clinical Reviews in Allergy & Immunology

, Volume 54, Issue 2, pp 344–351 | Cite as

The Immunologic Paradoxes of IgG4-Related Disease

Article

Abstract

IgG4-related disease (IgG4-RD), which usually occurs in middle-aged and elderly men, is a newly recognized fibroinflammatory condition characterized by swelling and sclerosis of involved organs, increased IgG4-positive plasma cell infiltration in lesions, and elevated IgG4 concentration in serum. Despite growing interest in the research, the pathophysiological mechanism remains elusive. Most IgG4-RD patients respond well to steroid therapy initially, but recurrent and refractory cases are common, especially in advanced fibrotic stage. Recent studies have documented the heterogeneity of the B cell lineages, which suggests their multiple functions in IgG4-RD beyond IgG4 production, such as cytokine secretion, antigen presentation, autoantibody production, and modulation of T and B cell interactions. Thus, a critical balance exists between pathogenic and regulatory B subsets to prevent immunopathology. A prompt response to B cell depletion therapy reported in recent cases strongly suggests the imbalance within B cell lineages in IgG4-RD. A more precise understanding of the pathogenesis of IgG4-RD will open up new perspectives for therapeutic strategy. With a particular emphasis on the novel B cell-targeted therapeutic strategies, this review highlights the immunologic features of IgG4-RD and the possible roles of B cell lineages in the pathogenesis of IgG4-RD.

Keywords

IgG4 IgG4-related disease B cells Plasmablasts Rituximab 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Stone JH, Zen Y, Deshpande V (2012) IgG4-related disease. N Engl J Med 366(6):539–551.  https://doi.org/10.1056/NEJMra1104650 CrossRefPubMedGoogle Scholar
  2. 2.
    Martinez-Valle F, Fernandez-Codina A, Pinal-Fernandez I, Orozco-Galvez O, Vilardell-Tarres M (2017) IgG4-related disease: evidence from six recent cohorts. Autoimmun Rev 16(2):168–172.  https://doi.org/10.1016/j.autrev.2016.12.008 CrossRefPubMedGoogle Scholar
  3. 3.
    Hubers LM, Maillette de Buy Wenniger LJ, Doorenspleet ME, Klarenbeek PL, Verheij J, Rauws EA, van Gulik TM, Oude Elferink RP, van de Graaf SF, de Vries N, Beuers U (2015) IgG4-associated cholangitis: a comprehensive review. Clin Rev Allergy Immunol 48(2–3):198–206.  https://doi.org/10.1007/s12016-014-8430-2 CrossRefPubMedGoogle Scholar
  4. 4.
    Salinas GF, Braza F, Brouard S, Tak PP, Baeten D (2013) The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin Immunol (Orlando, Fla) 146(1):34–45.  https://doi.org/10.1016/j.clim.2012.10.005 CrossRefGoogle Scholar
  5. 5.
    Yanaba K, Bouaziz JD, Matsushita T, Magro CM, St Clair EW, Tedder TF (2008) B-lymphocyte contributions to human autoimmune disease. Immunol Rev 223:284–299.  https://doi.org/10.1111/j.1600-065X.2008.00646.x CrossRefPubMedGoogle Scholar
  6. 6.
    Mauri C (2010) Regulation of immunity and autoimmunity by B cells. Curr Opin Immunol 22(6):761–767.  https://doi.org/10.1016/j.coi.2010.10.009 CrossRefPubMedGoogle Scholar
  7. 7.
    Yang M, Rui K, Wang S, Lu L (2013) Regulatory B cells in autoimmune diseases. Cell Mol Immunol 10(2):122–132.  https://doi.org/10.1038/cmi.2012.60 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Luu VP, Vazquez MI, Zlotnik A (2014) B cells participate in tolerance and autoimmunity through cytokine production. Autoimmunity 47(1):1–12.  https://doi.org/10.3109/08916934.2013.856006 CrossRefPubMedGoogle Scholar
  9. 9.
    Carruthers MN, Topazian MD, Khosroshahi A, Witzig TE, Wallace ZS, Hart PA, Deshpande V, Smyrk TC, Chari S, Stone JH (2015) Rituximab for IgG4-related disease: a prospective, open-label trial. Ann Rheum Dis 74(6):1171–1177.  https://doi.org/10.1136/annrheumdis-2014-206605 CrossRefPubMedGoogle Scholar
  10. 10.
    Uchida K, Okazaki K, Nishi T, Uose S, Nakase H, Ohana M, Matsushima Y, Omori K, Chiba T (2002) Experimental immune-mediated pancreatitis in neonatally thymectomized mice immunized with carbonic anhydrase II and lactoferrin. Lab Investig 82(4):411–424CrossRefPubMedGoogle Scholar
  11. 11.
    Lin W, Jin L, Chen H, Wu Q, Fei Y, Zheng W, Wang Q, Li P, Li Y, Zhang W, Zhao Y, Zeng X, Zhang F (2014) B cell subsets and dysfunction of regulatory B cells in IgG4-related diseases and primary Sjogren’s syndrome: the similarities and differences. Arthritis Res Ther 16(3):R118.  https://doi.org/10.1186/ar4571 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mattoo H, Mahajan VS, Della-Torre E, Sekigami Y, Carruthers M, Wallace ZS, Deshpande V, Stone JH, Pillai S (2014) De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J Allergy Clin Immunol 134(3):679–687.  https://doi.org/10.1016/j.jaci.2014.03.034 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sumimoto K, Uchida K, Kusuda T, Mitsuyama T, Sakaguchi Y, Fukui T, Matsushita M, Takaoka M, Nishio A, Okazaki K (2014) The role of CD19+ CD24high CD38high and CD19+ CD24high CD27+ regulatory B cells in patients with type 1 autoimmune pancreatitis. Pancreatology 14(3):193–200.  https://doi.org/10.1016/j.pan.2014.02.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Wallace ZS, Mattoo H, Carruthers M, Mahajan VS, Della Torre E, Lee H, Kulikova M, Deshpande V, Pillai S, Stone JH (2015) Plasmablasts as a biomarker for IgG4-related disease, independent of serum IgG4 concentrations. Ann Rheum Dis 74(1):190–195.  https://doi.org/10.1136/annrheumdis-2014-205233 CrossRefPubMedGoogle Scholar
  15. 15.
    Lin W, Zhang P, Chen H, Chen Y, Yang H, Zheng W, Zhang X, Zhang F, Zhang W, Lipsky PE (2017) Circulating plasmablasts/plasma cells: a potential biomarker for IgG4-related disease. Arthritis Res Ther 19(1):25.  https://doi.org/10.1186/s13075-017-1231-2 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM (2015) The generation of antibody-secreting plasma cells. Nat Rev Immunol 15(3):160–171.  https://doi.org/10.1038/nri3795 CrossRefPubMedGoogle Scholar
  17. 17.
    Bayles I, Milcarek C (2014) Plasma cell formation, secretion, and persistence: the short and the long of it. Crit Rev Immunol 34(6):481–499CrossRefPubMedGoogle Scholar
  18. 18.
    Kawa S (2016) The Immunobiology of immunoglobulin G4 and complement activation pathways in IgG4-related disease. Curr Top Microbiol Immunol.  https://doi.org/10.1007/82_2016_39
  19. 19.
    van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martinez-Martinez P, Vermeulen E, den Bleker TH, Wiegman L, Vink T, Aarden LA, De Baets MH, van de Winkel JG, Aalberse RC, Parren PW (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317(5844):1554–1557.  https://doi.org/10.1126/science.1144603 CrossRefPubMedGoogle Scholar
  20. 20.
    Kawa S, Kitahara K, Hamano H, Ozaki Y, Arakura N, Yoshizawa K, Umemura T, Ota M, Mizoguchi S, Shimozuru Y, Bahram S (2008) A novel immunoglobulin-immunoglobulin interaction in autoimmunity. PLoS One 3(2):e1637.  https://doi.org/10.1371/journal.pone.0001637 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rispens T, Ooijevaar-de Heer P, Bende O, Aalberse RC (2011) Mechanism of immunoglobulin G4 Fab-arm exchange. J Am Chem Soc 133(26):10302–10311.  https://doi.org/10.1021/ja203638y CrossRefPubMedGoogle Scholar
  22. 22.
    Aalberse R (2011) The role of IgG antibodies in allergy and immunotherapy. Allergy 66(Suppl 95):28–30.  https://doi.org/10.1111/j.1398-9995.2011.02628.x CrossRefPubMedGoogle Scholar
  23. 23.
    Aoki S, Nakazawa T, Ohara H, Sano H, Nakao H, Joh T, Murase T, Eimoto T, Itoh M (2005) Immunohistochemical study of autoimmune pancreatitis using anti-IgG4 antibody and patients’ sera. Histopathology 47(2):147–158.  https://doi.org/10.1111/j.1365-2559.2005.02204.x CrossRefPubMedGoogle Scholar
  24. 24.
    Asada M, Nishio A, Uchida K, Kido M, Ueno S, Uza N, Kiriya K, Inoue S, Kitamura H, Ohashi S, Tamaki H, Fukui T, Matsuura M, Kawasaki K, Nishi T, Watanabe N, Nakase H, Chiba T, Okazaki K (2006) Identification of a novel autoantibody against pancreatic secretory trypsin inhibitor in patients with autoimmune pancreatitis. Pancreas 33(1):20–26.  https://doi.org/10.1097/01.mpa.0000226881.48204.fd CrossRefPubMedGoogle Scholar
  25. 25.
    Frulloni L, Lunardi C, Simone R, Dolcino M, Scattolini C, Falconi M, Benini L, Vantini I, Corrocher R, Puccetti A (2009) Identification of a novel antibody associated with autoimmune pancreatitis. N Engl J Med 361(22):2135–2142.  https://doi.org/10.1056/NEJMoa0903068 CrossRefPubMedGoogle Scholar
  26. 26.
    Endo T, Takizawa S, Tanaka S, Takahashi M, Fujii H, Kamisawa T, Kobayashi T (2009) Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes. Diabetes 58(3):732–737.  https://doi.org/10.2337/db08-0493 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lohr JM, Faissner R, Koczan D, Bewerunge P, Bassi C, Brors B, Eils R, Frulloni L, Funk A, Halangk W, Jesenofsky R, Kaderali L, Kleeff J, Kruger B, Lerch MM, Losel R, Magnani M, Neumaier M, Nittka S, Sahin-Toth M, Sanger J, Serafini S, Schnolzer M, Thierse HJ, Wandschneider S, Zamboni G, Kloppel G (2010) Autoantibodies against the exocrine pancreas in autoimmune pancreatitis: gene and protein expression profiling and immunoassays identify pancreatic enzymes as a major target of the inflammatory process. Am J Gastroenterol 105(9):2060–2071.  https://doi.org/10.1038/ajg.2010.141 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Aparisi L, Farre A, Gomez-Cambronero L, Martinez J, De Las Heras G, Corts J, Navarro S, Mora J, Lopez-Hoyos M, Sabater L, Ferrandez A, Bautista D, Perez-Mateo M, Mery S, Sastre J (2005) Antibodies to carbonic anhydrase and IgG4 levels in idiopathic chronic pancreatitis: relevance for diagnosis of autoimmune pancreatitis. Gut 54(5):703–709.  https://doi.org/10.1136/gut.2004.047142 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nishimori I, Miyaji E, Morimoto K, Nagao K, Kamada M, Onishi S (2005) Serum antibodies to carbonic anhydrase IV in patients with autoimmune pancreatitis. Gut 54(2):274–281.  https://doi.org/10.1136/gut.2004.049064 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Guarneri F, Guarneri C, Benvenga S (2005) Helicobacter pylori and autoimmune pancreatitis: role of carbonic anhydrase via molecular mimicry? J Cell Mol Med 9(3):741–744CrossRefPubMedGoogle Scholar
  31. 31.
    Kountouras J, Zavos C, Chatzopoulos D (2005) Autoimmune pancreatitis, helicobacter pylori infection, and apoptosis: a proposed relationship. Pancreas 30(2):192–193CrossRefPubMedGoogle Scholar
  32. 32.
    Okazaki K, Uchida K, Ohana M, Nakase H, Uose S, Inai M, Matsushima Y, Katamura K, Ohmori K, Chiba T (2000) Autoimmune-related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology 118(3):573–581CrossRefPubMedGoogle Scholar
  33. 33.
    Albert LJ, Inman RD (1999) Molecular mimicry and autoimmunity. N Engl J Med 341(27):2068–2074.  https://doi.org/10.1056/nejm199912303412707 CrossRefPubMedGoogle Scholar
  34. 34.
    Fox RI, Fox CM (2015) IgG4 levels and plasmablasts as a marker for IgG4-related disease (IgG4-RD). Ann Rheum Dis 74(1):1–3.  https://doi.org/10.1136/annrheumdis-2014-205476 CrossRefPubMedGoogle Scholar
  35. 35.
    Carruthers MN, Stone JH, Deshpande V, Khosroshahi A (2012) Development of an IgG4-RD responder index. Int J Rheumatol 2012:259408–259407.  https://doi.org/10.1155/2012/259408 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16(2):219–230CrossRefPubMedGoogle Scholar
  37. 37.
    Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, Szabolcs PM, Bernstein SH, Magro CM, Williams AD, Hall RP, St Clair EW, Tedder TF (2011) Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117(2):530–541.  https://doi.org/10.1182/blood-2010-07-294249 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri C (2010) CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32(1):129–140.  https://doi.org/10.1016/j.immuni.2009.11.009 CrossRefPubMedGoogle Scholar
  39. 39.
    Ummarino D (2017) Rheumatoid arthritis: defective IL-10-producing Breg cells. Nat Rev Rheumatol 13:132.  https://doi.org/10.1038/nrrheum.2017.10 CrossRefPubMedGoogle Scholar
  40. 40.
    Knippenberg S, Peelen E, Smolders J, Thewissen M, Menheere P, Cohen Tervaert JW, Hupperts R, Damoiseaux J (2011) Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naive/memory Breg ratio during a relapse but not in remission. J Neuroimmunol 239(1–2):80–86.  https://doi.org/10.1016/j.jneuroim.2011.08.019 CrossRefPubMedGoogle Scholar
  41. 41.
    Moriyama M, Nakamura S (2016) Th1/Th2 immune balance and other T helper subsets in IgG4-related disease. Curr Top Microbiol Immunol.  https://doi.org/10.1007/82_2016_40
  42. 42.
    Zen Y, Fujii T, Harada K, Kawano M, Yamada K, Takahira M, Nakanuma Y (2007) Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis. Hepatology 45(6):1538–1546.  https://doi.org/10.1002/hep.21697 CrossRefPubMedGoogle Scholar
  43. 43.
    Tanaka A, Moriyama M, Nakashima H, Miyake K, Hayashida JN, Maehara T, Shinozaki S, Kubo Y, Nakamura S (2012) Th2 and regulatory immune reactions contribute to IgG4 production and the initiation of Mikulicz disease. Arthritis Rheum 64(1):254–263.  https://doi.org/10.1002/art.33320 CrossRefPubMedGoogle Scholar
  44. 44.
    Maizels RM, Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3(9):733–744.  https://doi.org/10.1038/nri1183 CrossRefPubMedGoogle Scholar
  45. 45.
    Akiyama M, Suzuki K, Yamaoka K, Yasuoka H, Takeshita M, Kaneko Y, Kondo H, Kassai Y, Miyazaki T, Morita R, Yoshimura A, Takeuchi T (2015) Number of circulating follicular helper 2 T cells correlates with IgG4 and interleukin-4 levels and plasmablast numbers in IgG4-related disease. Arthritis Rheumatol 67(9):2476–2481.  https://doi.org/10.1002/art.39209 CrossRefPubMedGoogle Scholar
  46. 46.
    Mattoo H, Mahajan VS, Maehara T, Deshpande V, Della-Torre E, Wallace ZS, Kulikova M, Drijvers JM, Daccache J, Carruthers MN, Castelino FV, Stone JR, Stone JH, Pillai S (2016) Clonal expansion of CD4(+) cytotoxic T lymphocytes in patients with IgG4-related disease. J Allergy Clin Immunol 138(3):825–838.  https://doi.org/10.1016/j.jaci.2015.12.1330 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mattoo H, Stone JH, Pillai S (2017) Clonally expanded cytotoxic CD4+ T cells and the pathogenesis of IgG4-related disease. Autoimmunity 50(1):19–24.  https://doi.org/10.1080/08916934.2017.1280029 CrossRefPubMedGoogle Scholar
  48. 48.
    Maehara T, Mattoo H, Ohta M, Mahajan VS, Moriyama M, Yamauchi M, Drijvers J, Nakamura S, Stone JH, Pillai SS (2017) Lesional CD4+ IFN-gamma+ cytotoxic T lymphocytes in IgG4-related dacryoadenitis and sialoadenitis. Ann Rheum Dis 76(2):377–385.  https://doi.org/10.1136/annrheumdis-2016-209139 CrossRefPubMedGoogle Scholar
  49. 49.
    Yamamoto M, Takahashi H, Takano K, Shimizu Y, Sakurai N, Suzuki C, Naishiro Y, Yajima H, Awakawa T, Himi T, Nakase H (2016) Efficacy of abatacept for IgG4-related disease over 8 months. Ann Rheum Dis 75(8):1576–1578.  https://doi.org/10.1136/annrheumdis-2016-209368 CrossRefPubMedGoogle Scholar
  50. 50.
    Hart PA, Topazian MD, Witzig TE, Clain JE, Gleeson FC, Klebig RR, Levy MJ, Pearson RK, Petersen BT, Smyrk TC, Sugumar A, Takahashi N, Vege SS, Chari ST (2013) Treatment of relapsing autoimmune pancreatitis with immunomodulators and rituximab: the Mayo Clinic experience. Gut 62(11):1607–1615.  https://doi.org/10.1136/gutjnl-2012-302886 CrossRefPubMedGoogle Scholar
  51. 51.
    Smith MR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22(47):7359–7368.  https://doi.org/10.1038/sj.onc.1206939 CrossRefPubMedGoogle Scholar
  52. 52.
    Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, Kallenberg CG, St Clair EW, Turkiewicz A, Tchao NK, Webber L, Ding L, Sejismundo LP, Mieras K, Weitzenkamp D, Ikle D, Seyfert-Margolis V, Mueller M, Brunetta P, Allen NB, Fervenza FC, Geetha D, Keogh KA, Kissin EY, Monach PA, Peikert T, Stegeman C, Ytterberg SR, Specks U (2010) Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med 363(3):221–232.  https://doi.org/10.1056/NEJMoa0909905 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jones RB, Furuta S, Tervaert JW, Hauser T, Luqmani R, Morgan MD, Peh CA, Savage CO, Segelmark M, Tesar V, van Paassen P, Walsh M, Westman K, Jayne DR (2015) Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis: 2-year results of a randomised trial. Ann Rheum Dis 74(6):1178–1182.  https://doi.org/10.1136/annrheumdis-2014-206404 CrossRefPubMedGoogle Scholar
  54. 54.
    Plosker GL, Figgitt DP (2003) Rituximab: a review of its use in non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs 63(8):803–843CrossRefPubMedGoogle Scholar
  55. 55.
    Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350(25):2572–2581.  https://doi.org/10.1056/NEJMoa032534 CrossRefPubMedGoogle Scholar
  56. 56.
    Gurcan HM, Keskin DB, Stern JN, Nitzberg MA, Shekhani H, Ahmed AR (2009) A review of the current use of rituximab in autoimmune diseases. Int Immunopharmacol 9(1):10–25.  https://doi.org/10.1016/j.intimp.2008.10.004 CrossRefPubMedGoogle Scholar
  57. 57.
    Edwards JC, Cambridge G (2006) B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 6(5):394–403.  https://doi.org/10.1038/nri1838 CrossRefPubMedGoogle Scholar
  58. 58.
    Knobl P (2016) New treatment options for thrombotic thrombocytopenic purpura. Hamostaseologie 37:211–215.  https://doi.org/10.5482/hamo-16-07-0026 CrossRefPubMedGoogle Scholar
  59. 59.
    Ran NA, Payne AS (2017) Rituximab therapy in pemphigus and other autoantibody-mediated diseases. F1000Res 6:83.  https://doi.org/10.12688/f1000research.9476.1 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Khosroshahi A, Carruthers MN, Deshpande V, Unizony S, Bloch DB, Stone JH (2012) Rituximab for the treatment of IgG4-related disease: lessons from 10 consecutive patients. Medicine (Baltimore) 91(1):57–66.  https://doi.org/10.1097/MD.0b013e3182431ef6 CrossRefGoogle Scholar
  61. 61.
    Maritati F, Corradi D, Versari A, Casali M, Urban ML, Buzio C, Vaglio A (2012) Rituximab therapy for chronic periaortitis. Ann Rheum Dis 71(7):1262–1264.  https://doi.org/10.1136/annrheumdis-2011-201166 CrossRefPubMedGoogle Scholar
  62. 62.
    Topazian M, Witzig TE, Smyrk TC, Pulido JS, Levy MJ, Kamath PS, Chari ST (2008) Rituximab therapy for refractory biliary strictures in immunoglobulin G4-associated cholangitis. Clin Gastroenterol Hepatol 6(3):364–366.  https://doi.org/10.1016/j.cgh.2007.12.020 CrossRefPubMedGoogle Scholar
  63. 63.
    Khosroshahi A, Bloch DB, Deshpande V, Stone JH (2010) Rituximab therapy leads to rapid decline of serum IgG4 levels and prompt clinical improvement in IgG4-related systemic disease. Arthritis Rheum 62(6):1755–1762.  https://doi.org/10.1002/art.27435 CrossRefPubMedGoogle Scholar
  64. 64.
    Yamamoto M, Awakawa T, Takahashi H (2015) Is rituximab effective for IgG4-related disease in the long term? Experience of cases treated with rituximab for 4 years. Ann Rheum Dis 74(8):e46.  https://doi.org/10.1136/annrheumdis-2015-207625 CrossRefPubMedGoogle Scholar
  65. 65.
    Della-Torre E, Feeney E, Deshpande V, Mattoo H, Mahajan V, Kulikova M, Wallace ZS, Carruthers M, Chung RT, Pillai S, Stone JH (2014) B-cell depletion attenuates serological biomarkers of fibrosis and myofibroblast activation in IgG4-related disease. Ann Rheum Dis 74:2236–2243.  https://doi.org/10.1136/annrheumdis-2014-205799 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, Cerutti A (2002) DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3(9):822–829.  https://doi.org/10.1038/ni829 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yamada T, Zhang K, Yamada A, Zhu D, Saxon A (2005) B lymphocyte stimulator activates p38 mitogen-activated protein kinase in human Ig class switch recombination. Am J Respir Cell Mol Biol 32(5):388–394.  https://doi.org/10.1165/rcmb.2004-0317OC CrossRefPubMedGoogle Scholar
  68. 68.
    Avery DT, Kalled SL, Ellyard JI, Ambrose C, Bixler SA, Thien M, Brink R, Mackay F, Hodgkin PD, Tangye SG (2003) BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest 112(2):286–297.  https://doi.org/10.1172/jci18025 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Moon SH, Kim MH (2012) The role of endoscopy in the diagnosis of autoimmune pancreatitis. Gastrointest Endosc 76(3):645–656.  https://doi.org/10.1016/j.gie.2012.04.458 CrossRefPubMedGoogle Scholar
  70. 70.
    Manzi S, Sanchez-Guerrero J, Merrill JT, Furie R, Gladman D, Navarra SV, Ginzler EM, D'Cruz DP, Doria A, Cooper S, Zhong ZJ, Hough D, Freimuth W, Petri MA (2012) Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann Rheum Dis 71(11):1833–1838.  https://doi.org/10.1136/annrheumdis-2011-200831 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hahn BH (2013) Belimumab for systemic lupus erythematosus. N Engl J Med 368(16):1528–1535.  https://doi.org/10.1056/NEJMct1207259 CrossRefPubMedGoogle Scholar
  72. 72.
    Vincent FB, Morand EF, Schneider P, Mackay F (2014) The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol 10(6):365–373.  https://doi.org/10.1038/nrrheum.2014.33 CrossRefPubMedGoogle Scholar
  73. 73.
    De Vita S, Quartuccio L, Seror R, Salvin S, Ravaud P, Fabris M, Nocturne G, Gandolfo S, Isola M, Mariette X (2015) Efficacy and safety of belimumab given for 12 months in primary Sjogren’s syndrome: the BELISS open-label phase II study. Rheumatology (Oxford):kev257.  https://doi.org/10.1093/rheumatology/kev257
  74. 74.
    Kiyama K, Kawabata D, Hosono Y, Kitagori K, Yukawa N, Yoshifuji H, Omura K, Fujii T, Mimori T (2012) Serum BAFF and APRIL levels in patients with IgG4-related disease and their clinical significance. Arthritis Res Ther 14(2):R86.  https://doi.org/10.1186/ar3810 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yamanishi H, Kumagi T, Yokota T, Azemoto N, Koizumi M, Kobayashi Y, Abe M, Murakami H, Hiasa Y, Matsuura B, Kawamoto H, Yamamoto K, Onji M (2011) Clinical significance of B cell-activating factor in autoimmune pancreatitis. Pancreas 40(6):840–845.  https://doi.org/10.1097/MPA.0b013e3182143b10 CrossRefPubMedGoogle Scholar
  76. 76.
    Koneczny I, Stevens JA, De Rosa A, Huda S, Huijbers MG, Saxena A, Maestri M, Lazaridis K, Zisimopoulou P, Tzartos S, Verschuuren J, van der Maarel SM, van Damme P, De Baets MH, Molenaar PC, Vincent A, Ricciardi R, Martinez-Martinez P, Losen M (2017) IgG4 autoantibodies against muscle-specific kinase undergo fab-arm exchange in myasthenia gravis patients. J Autoimmun 77:104–115.  https://doi.org/10.1016/j.jaut.2016.11.005 CrossRefPubMedGoogle Scholar
  77. 77.
    Iwata N, Iwama S, Sugimura Y, Yasuda Y, Nakashima K, Takeuchi S, Hagiwara D, Ito Y, Suga H, Goto M, Banno R, Caturegli P, Koike T, Oshida Y, Arima H (2016) Anti-pituitary antibodies against corticotrophs in IgG4-related hypophysitis. Pituitary 20:301–310.  https://doi.org/10.1007/s11102-016-0780-8 CrossRefGoogle Scholar
  78. 78.
    Barranco C (2016) Autoimmunity: CD4(+) CTLs drive IgG4-related disease. Nat Rev Rheumatol 12(9):500.  https://doi.org/10.1038/nrrheum.2016.124 CrossRefPubMedGoogle Scholar
  79. 79.
    Karim F, Loeffen J, Bramer W, Westenberg L, Verdijk R, van Hagen M, van Laar J (2016) IgG4-related disease: a systematic review of this unrecognized disease in pediatrics. Pediatr Rheumatol Online J 14(1):18.  https://doi.org/10.1186/s12969-016-0079-3 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Bianchi D (2016) IgG4-related disease: what urologists should know. Int Urol Nephrol 48(3):301–312.  https://doi.org/10.1007/s11255-015-1189-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Gastroenterology and HepatologyShanghai JiaoTong University, Shanghai Institute of Digestive DiseaseShanghaiChina
  2. 2.Key Laboratory of Gastroenterology and Hepatology, Ministry of HealthShanghai JiaoTong University; Shanghai JiaoTong University, Shanghai Institute of Digestive DiseaseShanghaiChina
  3. 3.State Key Laboratory for Oncogenes and Related GenesShanghai JiaoTong University; Shanghai JiaoTong University, Shanghai Institute of Digestive DiseaseShanghaiChina
  4. 4.Renji Hospital, School of MedicineShanghai JiaoTong University, Shanghai Institute of Digestive DiseaseShanghaiChina
  5. 5.Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California at Davis School of MedicineDavisUSA

Personalised recommendations