Advertisement

Clinical Reviews in Allergy & Immunology

, Volume 57, Issue 1, pp 55–73 | Cite as

Immunotherapy of Food Allergy: a Comprehensive Review

  • Christine Y. Y. Wai
  • Nicki Y. H. Leung
  • Patrick S. C. LeungEmail author
  • Ka Hou ChuEmail author
Article

Abstract

Food allergy imposes a severe global health burden, and thus, there is a dire need for safe and effective treatments. Allergen-specific immunotherapy (AIT) is currently the only approach to restore immune tolerance through administrating increasing doses of allergen extracts. Unfortunately, the development of AIT for food allergies has been impeded by the frequent anaphylactic side effects during the course of treatment. The emergence of component-resolved diagnosis has greatly improved our ability to identify causative allergens and revolutionized the design of AIT. Molecular features such as IgE-binding epitopes and T cell epitopes have been elucidated in most major food allergens, inspiring the use of multiple strategies to manipulate the allergens and design safer alternatives to AIT. Although these allergen-modifying approaches are currently restricted to preclinical characterization and animal studies, the employment of these strategies has certainly paved the way for improving the safety of existing AIT. A safe and effective AIT for food allergy is not far beyond reach.

Keywords

Hypoallergen T cell epitope Mimotope Conjugated allergens Omalizumab 

Abbreviations

AIT

Allergen-specific immunotherapy

APCs

Antigen-presenting cells

BSA

Bovine serum albumin

DCs

Dendritic cells

EPIT

Epicutaneous immunotherapy

FAST

Food Allergy Specific Immunotherapy

iTreg

Inducible Treg

LAP

Latency-associated protein

MHC

Major histocompatibility complex

nTreg

Naturally occurring Treg

OBOC

One-bead-one-compound

OIT

Oral immunotherapy

OVA

Ovalbumin

Ovm

Ovumucoid

PLGA

Poly(lactic-co-glycolic-acid)

rMet e 1

Recombinant Met e 1

SLIT

Sublingual immunotherapy

SPT

Skin prick test

TCLs

T cell lines

Th2

Type II T helper

WAS

Wiskott-Aldrich syndrome

Notes

Acknowledgements

The authors would like to thank Mr. Yaoyu Gong for his contribution to this review. The work on shellfish allergy of the authors is supported by a grant from the Health and Medical Research Fund (02130206), HKSAR, China. CYY Wai is currently funded by an AXA Postdoctoral Fellowship (AXA Research Fund).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sicherer SH, Sampson HA (2014) Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol 133:291–307.  https://doi.org/10.1016/j.jaci.2013.11.020 Google Scholar
  2. 2.
    Wawrzyniak P, Akdis CA, Finkelman FD, Rothenberg ME (2016) Advances and highlights in mechanisms of allergic disease in 2015. J Allergy Clin Immunol 137:1681–1696.  https://doi.org/10.1016/j.jaci.2016.02.010 Google Scholar
  3. 3.
    Ho MH, Wong WH, Chang C (2014) Clinical spectrum of food allergies: a comprehensive review. Clin Rev Allergy Immunol 46:225–240.  https://doi.org/10.1007/s12016-012-8339-6 Google Scholar
  4. 4.
    Uppal V, Kreiger P, Kutsch E (2016) Eosinophilic gastroenteritis and colitis: a comprehensive review. Clin Rev Allergy Immunol 50:175–188.  https://doi.org/10.1007/s12016-015-8489-4 Google Scholar
  5. 5.
    Kumar A, Teuber SS, Naguwa S, Prindiville T, Gershwin ME (2006) Eosinophilic gastroenteritis and citrus-induced urticaria. Clin Rev Allergy Immunol 30:61–70.  https://doi.org/10.1385/CRIAI:30:1:061 Google Scholar
  6. 6.
    Bock SA, Atkins FM (1989) The natural history of peanut allergy. J Allergy Clin Immunol 83:900–904Google Scholar
  7. 7.
    Longo G, Barbi E, Berti I, Meneghetti R, Pittalis A, Ronfani L, Ventura A (2008) Specific oral tolerance induction in children with very severe cow’s milk-induced reactions. J Allergy Clin Immunol 121:343–347.  https://doi.org/10.1016/j.jaci.2007.10.029 Google Scholar
  8. 8.
    Nelson HS, Lahr J, Rule R, Bock A, Leung D (1997) Treatment of anaphylactic sensitivity to peanuts by immunotherapy with injections of aqueous peanut extract. J Allergy Clin Immunol 99:744–751Google Scholar
  9. 9.
    Pajno GB, Caminiti L, Ruggeri P, De Luca R, Vita D, La Rosa M, Passalacqua G (2010) Oral immunotherapy for cow’s milk allergy with a weekly up-dosing regimen: a randomized single-blind controlled study. Ann Allergy Asthma Immunol 105:376–381.  https://doi.org/10.1016/j.anai.2010.03.015 Google Scholar
  10. 10.
    Patriarca G, Nucera E, Roncallo C et al (2003) Oral desensitizing treatment in food allergy: clinical and immunological results. Aliment Pharmacol Ther 17:459–465Google Scholar
  11. 11.
    Salmivesi S, Korppi M, Makela MJ, Paassilta M (2013) Milk oral immunotherapy is effective in school-aged children. Acta Paediatr 102:172–176.  https://doi.org/10.1111/j.1651-2227.2012.02815.x Google Scholar
  12. 12.
    Skripak JM, Nash SD, Rowley H, Brereton NH, Oh S, Hamilton RG, Matsui EC, Burks AW, Wood RA (2008) A randomized, double-blind, placebo-controlled study of milk oral immunotherapy for cow’s milk allergy. J Allergy Clin Immunol 122:1154–1160.  https://doi.org/10.1016/j.jaci.2008.09.030 Google Scholar
  13. 13.
    Burks AW, Shin D, Cockrell G, Stanley JS, Helm RM, Bannon GA (1997) Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity. Eur J Biochem 245:334–339Google Scholar
  14. 14.
    Al-Muhsen S, Clarke AE, Kagan RS (2003) Peanut allergy: an overview. CMAJ 168:1279–1285Google Scholar
  15. 15.
    Burks AW, Cockrell G, Stanley JS, Helm RM, Bannon GA (1995) Recombinant peanut allergen Ara h I expression and IgE binding in patients with peanut hypersensitivity. J Clin Invest 96:1715–1721.  https://doi.org/10.1172/JCI118216 Google Scholar
  16. 16.
    Shin DS, Compadre CM, Maleki SJ, Kopper RA, Sampson H, Huang SK, Burks AW, Bannon GA (1998) Biochemical and structural analysis of the IgE binding sites on ara h1, an abundant and highly allergenic peanut protein. J Biol Chem 273:13753–13759Google Scholar
  17. 17.
    Palmer GW, Dibbern DA Jr, Burks AW, Bannon GA, Bock SA, Porterfield HS, McDermott RA, Dreskin SC (2005) Comparative potency of Ara h 1 and Ara h 2 in immunochemical and functional assays of allergenicity. Clin Immunol 115:302–312.  https://doi.org/10.1016/j.clim.2005.02.011 Google Scholar
  18. 18.
    Stanley JS, King N, Burks AW, Huang SK, Sampson H, Cockrell G, Helm RM, West CM, Bannon GA (1997) Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys 342:244–253.  https://doi.org/10.1006/abbi.1997.9998 Google Scholar
  19. 19.
    Koppelman SJ, Knol EF, Vlooswijk RA, Wensing M, Knulst AC, Hefle SL, Gruppen H, Piersma S (2003) Peanut allergen Ara h 3: isolation from peanuts and biochemical characterization. Allergy 58:1144–1151Google Scholar
  20. 20.
    Breiteneder H, Radauer C (2004) A classification of plant food allergens. J Allergy Clin Immunol 113:821–830.  https://doi.org/10.1016/j.jaci.2004.01.779 Google Scholar
  21. 21.
    Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M, Becker WM (1999) Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Immunol 119:265-274. doi:24203Google Scholar
  22. 22.
    Mittag D, Akkerdaas J, Ballmer-Weber BK et al (2004) Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. J Allergy Clin Immunol 114:1410–1417.  https://doi.org/10.1016/j.jaci.2004.09.014 Google Scholar
  23. 23.
    Krause S, Reese G, Randow S et al (2009) Lipid transfer protein (Ara h 9) as a new peanut allergen relevant for a Mediterranean allergic population. J Allergy Clin Immunol 124:771–778.  https://doi.org/10.1016/j.jaci.2009.06.008 Google Scholar
  24. 24.
    Lauer I, Dueringer N, Pokoj S et al (2009) The non-specific lipid transfer protein, Ara h 9, is an important allergen in peanut. Clin Exp Allergy 39:1427–1437.  https://doi.org/10.1111/j.1365-2222.2009.03312.x Google Scholar
  25. 25.
    Pons L, Chery C, Romano A, Namour F, Artesani MC, Gueant JL (2002) The 18 kDa peanut oleosin is a candidate allergen for IgE-mediated reactions to peanuts. Allergy 57(Suppl 72):88–93Google Scholar
  26. 26.
    Petersen A, Kull S, Rennert S et al (2015) Peanut defensins: novel allergens isolated from lipophilic peanut extract. J Allergy Clin Immunol 136:1295–1301.  https://doi.org/10.1016/j.jaci.2015.04.010 Google Scholar
  27. 27.
    Willison LN, Sathe SK, Roux KH (2014) Production and analysis of recombinant tree nut allergens. Methods 66:34–43.  https://doi.org/10.1016/j.ymeth.2013.07.033 Google Scholar
  28. 28.
    Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956.  https://doi.org/10.1105/tpc.7.7.945 Google Scholar
  29. 29.
    Diaz-Perales A, Collada C, Blanco C, Sanchez-Monge R, Carrillo T, Aragoncillo C, Salcedo G (1998) Class I chitinases with hevein-like domain, but not class II enzymes, are relevant chestnut and avocado allergens. J Allergy Clin Immunol 102:127–133Google Scholar
  30. 30.
    Kos T, Hoffmann-Sommergruber K, Ferreira F et al (1993) Purification, characterization and N-terminal amino acid sequence of a new major allergen from European chestnut pollen—Cas s 1. Biochem Biophys Res Commun 196:1086–1092Google Scholar
  31. 31.
    Pastorello EA, Robino AM (2004) Clinical role of lipid transfer proteins in food allergy. Mol Nutr Food Res 48:356–362.  https://doi.org/10.1002/mnfr.200400047 Google Scholar
  32. 32.
    Schocker F, Luttkopf D, Scheurer S et al (2004) Recombinant lipid transfer protein Cor a 8 from hazelnut: a new tool for in vitro diagnosis of potentially severe hazelnut allergy. J Allergy Clin Immunol 113:141–147.  https://doi.org/10.1016/j.jaci.2003.09.013 Google Scholar
  33. 33.
    Diaz-Perales A, Lombardero M, Sanchez-Monge R, Garcia-Selles FJ, Pernas M, Fernandez-Rivas M, Barber D, Salcedo G (2000) Lipid-transfer proteins as potential plant panallergens: cross-reactivity among proteins of Artemisia pollen, Castanea nut and Rosaceae fruits, with different IgE-binding capacities. Clin Exp Allergy 30:1403–1410Google Scholar
  34. 34.
    Lauer I, Alessandri S, Pokoj S, Reuter A, Conti A, Vieths S, Scheurer S (2008) Expression and characterization of three important panallergens from hazelnut. Mol Nutr Food Res 52(Suppl 2):S262–S271.  https://doi.org/10.1002/mnfr.200700426 Google Scholar
  35. 35.
    Tawde P, Venkatesh YP, Wang F, Teuber SS, Sathe SK, Roux KH (2006) Cloning and characterization of profilin (Pru du 4), a cross-reactive almond (Prunus dulcis) allergen. J Allergy Clin Immunol 118:915–922.  https://doi.org/10.1016/j.jaci.2006.05.028 Google Scholar
  36. 36.
    Akkerdaas JH, Schocker F, Vieths S et al (2006) Cloning of oleosin, a putative new hazelnut allergen, using a hazelnut cDNA library. Mol Nutr Food Res 50:18–23.  https://doi.org/10.1002/mnfr.200500147 Google Scholar
  37. 37.
    Jost R (1988) Physicochemical treatment of food allergens: application to cow’s milk proteins. Nestle Nutr Workshop Ser 17:187–197Google Scholar
  38. 38.
    Wal JM (1998) Cow’s milk allergens. Allergy 53:1013–1022Google Scholar
  39. 39.
    Host A, Husby S, Gjesing B, Larsen JN, Lowenstein H (1992) Prospective estimation of IgG, IgG subclass and IgE antibodies to dietary proteins in infants with cow milk allergy. Levels of antibodies to whole milk protein, BLG and ovalbumin in relation to repeated milk challenge and clinical course of cow milk allergy. Allergy 47:218–229Google Scholar
  40. 40.
    Fiocchi A, Brozek J, Schunemann H et al (2010) World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) guidelines. World Allergy Organ J 3:57–161.  https://doi.org/10.1097/WOX.0b013e3181defeb9 Google Scholar
  41. 41.
    Hochwallner H, Schulmeister U, Swoboda I, Spitzauer S, Valenta R (2014) Cow’s milk allergy: from allergens to new forms of diagnosis, therapy and prevention. Methods 66:22–33.  https://doi.org/10.1016/j.ymeth.2013.08.005 Google Scholar
  42. 42.
    Chokshi NY, Sicherer SH (2015) Molecular diagnosis of egg allergy: an update. Expert Rev Mol Diagn 15:895–906.  https://doi.org/10.1586/14737159.2015.1041927 Google Scholar
  43. 43.
    De Silva C, Dhanapala P, Doran T, Tang ML, Suphioglu C (2016) Molecular and immunological analysis of hen’s egg yolk allergens with a focus on YGP42 (Gal d 6). Mol Immunol 71:152–160.  https://doi.org/10.1016/j.molimm.2016.02.005 Google Scholar
  44. 44.
    Suzuki M, Fujii H, Fujigaki H et al (2010) Lipocalin-type prostaglandin D synthase and egg white cystatin react with IgE antibodies from children with egg allergy. Allergol Int 59:175–183.  https://doi.org/10.2332/allergolint.09-OA-0121 Google Scholar
  45. 45.
    Bernhisel-Broadbent J, Dintzis HM, Dintzis RZ, Sampson HA (1994) Allergenicity and antigenicity of chicken egg ovomucoid (Gal d III) compared with ovalbumin (Gal d I) in children with egg allergy and in mice. J Allergy Clin Immunol 93:1047–1059Google Scholar
  46. 46.
    Aas K (1969) Antigens and allergens of fish. Int Arch Allergy Appl Immunol 36:152–155Google Scholar
  47. 47.
    Aas K, Lundkvist U (1973) The radioallergosorbent test with a purified allergen from codfish. Clin Allergy 3:255–261Google Scholar
  48. 48.
    Elsayed SM, Aas K (1970) Characterization of a major allergen (cod.) chemical composition and immunological properties. Int Arch Allergy Appl Immunol 38:536–548Google Scholar
  49. 49.
    Swoboda I, Bugajska-Schretter A, Verdino P, Keller W, Sperr WR, Valent P, Valenta R, Spitzauer S (2002) Recombinant carp parvalbumin, the major cross-reactive fish allergen: a tool for diagnosis and therapy of fish allergy. J Immunol 168:4576–4584Google Scholar
  50. 50.
    Bugajska-Schretter A, Elfman L, Fuchs T, Kapiotis S, Rumpold H, Valenta R, Spitzauer S (1998) Parvalbumin, a cross-reactive fish allergen, contains IgE-binding epitopes sensitive to periodate treatment and Ca2+ depletion. J Allergy Clin Immunol 101:67–74.  https://doi.org/10.1016/S0091-6749(98)70195-2 Google Scholar
  51. 51.
    Lim DL, Neo KH, Yi FC, Chua KY, Goh DL, Shek LP, Giam YC, Van Bever HP, Lee BW (2008) Parvalbumin—the major tropical fish allergen. Pediatr Allergy Immunol 19:399–407.  https://doi.org/10.1111/j.1399-3038.2007.00674.x Google Scholar
  52. 52.
    Perez-Gordo M, Sanchez-Garcia S, Cases B, Pastor C, Vivanco F, Cuesta-Herranz J (2008) Identification of vitellogenin as an allergen in Beluga caviar allergy. Allergy 63:479–480.  https://doi.org/10.1111/j.1398-9995.2007.01614.x Google Scholar
  53. 53.
    Hamada Y, Nagashima Y, Shiomi K (2001) Identification of collagen as a new fish allergen. Biosci Biotechnol Biochem 65:285–291.  https://doi.org/10.1271/bbb.65.285 Google Scholar
  54. 54.
    Sakaguchi M, Toda M, Ebihara T et al (2000) IgE antibody to fish gelatin (type I collagen) in patients with fish allergy. J Allergy Clin Immunol 106:579–584.  https://doi.org/10.1067/mai.2000.108499 Google Scholar
  55. 55.
    Das Dores S, Chopin C, Romano A, Galland-Irmouli AV, Quaratino D, Pascual C, Fleurence J, Gueant JL (2002) IgE-binding and cross-reactivity of a new 41 kDa allergen of codfish. Allergy 57(Suppl 72):84–87Google Scholar
  56. 56.
    Wang B, Li Z, Zheng L, Liu X, Lin H (2011) Identification and characterization of a new IgE-binding protein in mackerel (Scomber japonicus) by MALDI-TOF-MS. J Ocean Univ China 10:93–98Google Scholar
  57. 57.
    Liu R, Krishnan HB, Xue W, Liu C (2011) Characterization of allergens isolated from the freshwater fish blunt snout bream (Megalobrama amblycephala). J Agric Food Chem 59:458–463.  https://doi.org/10.1021/jf103942p Google Scholar
  58. 58.
    Kuehn A, Hilger C, Lehners-Weber C et al (2013) Identification of enolases and aldolases as important fish allergens in cod, salmon and tuna: component resolved diagnosis using parvalbumin and the new allergens. Clin Exp Allergy 43:811–822.  https://doi.org/10.1111/cea.12117 Google Scholar
  59. 59.
    Shanti KN, Martin BM, Nagpal S, Metcalfe DD, Rao PVS (1993) Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J Immunol 151:5354–5363Google Scholar
  60. 60.
    Daul CB, Slattery M, Reese G, Lehrer SB (1994) Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. Int Arch Allergy Immunol 105:49–55Google Scholar
  61. 61.
    Leung PS, Chu KH, Chow WK, Ansari A, Bandea CI, Kwan HS, Nagy SM, Gershwin ME (1994) Cloning, expression, and primary structure of Metapenaeus ensis tropomyosin, the major heat-stable shrimp allergen. J Allergy Clin Immunol 94:882–890Google Scholar
  62. 62.
    Reese G, Ayuso R, Lehrer SB (1999) Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol 119:247-258. doi:24201 [pii] 24201Google Scholar
  63. 63.
    Leung PS, Chow WK, Duffey S, Kwan HS, Gershwin ME, Chu KH (1996) IgE reactivity against a cross-reactive allergen in crustacea and mollusca: evidence for tropomyosin as the common allergen. J Allergy Clin Immunol 98:954–961Google Scholar
  64. 64.
    Leung NY, Wai CY, Shu S, Wang J, Kenny TP, Chu KH, Leung PS (2014) Current immunological and molecular biological perspectives on seafood allergy: a comprehensive review. Clin Rev Allergy Immunol 46:180–197.  https://doi.org/10.1007/s12016-012-8336-9 Google Scholar
  65. 65.
    Garcia-Orozco KD, Aispuro-Hernandez E, Yepiz-Plascencia G, Calderon-de-la-Barca AM, Sotelo-Mundo RR (2007) Molecular characterization of arginine kinase, an allergen from the shrimp Litopenaeus vannamei. Int Arch Allergy Immunol 144:23–28.  https://doi.org/10.1159/000102610 Google Scholar
  66. 66.
    Yu CJ, Lin YF, Chiang BL, Chow LP (2003) Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol 170:445–453Google Scholar
  67. 67.
    Bauermeister K, Wangorsch A, Garoffo LP et al (2011) Generation of a comprehensive panel of crustacean allergens from the North Sea Shrimp Crangon crangon. Mol Immunol 48:1983–1992.  https://doi.org/10.1016/j.molimm.2011.06.216 Google Scholar
  68. 68.
    Ayuso R, Grishina G, Ibanez MD, Blanco C, Carrillo T, Bencharitiwong R, Sanchez S, Nowak-Wegrzyn A, Sampson HA (2009) Sarcoplasmic calcium-binding protein is an EF-hand-type protein identified as a new shrimp allergen. J Allergy Clin Immunol 124:114–120.  https://doi.org/10.1016/j.jaci.2009.04.016 Google Scholar
  69. 69.
    Shiomi K, Sato Y, Hamamoto S, Mita H, Shimakura K (2008) Sarcoplasmic calcium-binding protein: identification as a new allergen of the black tiger shrimp Penaeus monodon. Int Arch Allergy Immunol 146:91–98.  https://doi.org/10.1159/000113512 Google Scholar
  70. 70.
    Ayuso R, Grishina G, Bardina L, Carrillo T, Blanco C, Ibanez MD, Sampson HA, Beyer K (2008) Myosin light chain is a novel shrimp allergen, Lit v 3. J Allergy Clin Immunol 122:795–802.  https://doi.org/10.1016/j.jaci.2008.07.023 Google Scholar
  71. 71.
    Pedrosa M, Boyano-Martinez T, Garcia-Ara C, Quirce S (2015) Shellfish allergy: a comprehensive review. Clin Rev Allergy Immunol 49:203–216.  https://doi.org/10.1007/s12016-014-8429-8 Google Scholar
  72. 72.
    Leung NYH, Wai CYY, Shu S, Wang J, Kenny TP, Chu KH, Leung PSC (2014) Current immunological and molecular biological perspectives on seafood allergy: a comprehensive review. Clin Rev Allergy Immunol 46:180–197.  https://doi.org/10.1007/s12016-012-8336-9 Google Scholar
  73. 73.
    Wai CYY, Leung NYH, Chu KH, Leung PSC (2012) From molecule studies of allergens to development of immunotherapy of allergies. J Aller Ther 3:124.  https://doi.org/10.4172/2155-6121.1000124 Google Scholar
  74. 74.
    Valenta R, Hochwallner H, Linhart B, Pahr S (2015) Food allergies: the basics. Gastroenterology 148:1120–1123.  https://doi.org/10.1053/j.gastro.2015.02.006 Google Scholar
  75. 75.
    Yong PF, Freeman AF, Engelhardt KR, Holland S, Puck JM, Grimbacher B (2012) An update on the hyper-IgE syndromes. Arthritis Res Ther 14:228.  https://doi.org/10.1186/ar4069 Google Scholar
  76. 76.
    Lexmond WS, Goettel JA, Lyons JJ et al (2016) FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest 126:4030–4044.  https://doi.org/10.1172/JCI85129 Google Scholar
  77. 77.
    Kulis M, Wright BL, Jones SM, Burks AW (2015) Diagnosis, management, and investigational therapies for food allergies. Gastroenterology 148:1132–1142.  https://doi.org/10.1053/j.gastro.2015.01.034 Google Scholar
  78. 78.
    Akdis CA, Akdis M (2011) Mechanisms of allergen-specific immunotherapy. J Allergy Clin Immunol 127:18–27.  https://doi.org/10.1016/j.jaci.2010.11.030 Google Scholar
  79. 79.
    Strait RT, Morris SC, Finkelman FD (2006) IgG-blocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and Fc gamma RIIb cross-linking. J Clin Invest 116:833–841.  https://doi.org/10.1172/JCI25575 Google Scholar
  80. 80.
    Uermösi C, Zabel F, Manolova V, Bauer M, Beerli RR, Senti G, Kündig TM, Saudan P, Bachmann MF (2014) IgG-mediated down-regulation of IgE bound to mast cells: a potential novel mechanism of allergen-specific desensitization. Allergy 69:338–347.  https://doi.org/10.1111/all.12327 Google Scholar
  81. 81.
    Chen Y, Inobe J, Marks R, Gonnella P, Kuchroo VK, Weiner HL (1995) Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376:177–180.  https://doi.org/10.1038/376177a0 Google Scholar
  82. 82.
    Akdis CA, Akdis M (2009) Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J Allergy Clin Immunol 123:735–746.  https://doi.org/10.1016/j.jaci.2009.02.030 Google Scholar
  83. 83.
    Berin MC, Mayer L (2013) Can we produce true tolerance in patients with food allergy? J Allergy Clin Immunol 131:14–22.  https://doi.org/10.1016/j.jaci.2012.10.058 Google Scholar
  84. 84.
    Gorelik L, Fields PE, Flavell RA (2000) Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression. J Immunol 165:4773–4777Google Scholar
  85. 85.
    Gorelik L, Constant S, Flavell RA (2002) Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 195:1499–1505Google Scholar
  86. 86.
    Jutel M, Akdis M, Budak F, Aebischer-Casaulta C, Wrzyszcz M, Blaser K, Akdis CA (2003) IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol 33:1205–1214.  https://doi.org/10.1002/eji.200322919 Google Scholar
  87. 87.
    Weiner HL (2001) Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 182:207–214Google Scholar
  88. 88.
    Taylor A, Akdis M, Joss A et al (2007) IL-10 inhibits CD28 and ICOS costimulations of T cells via src homology 2 domain-containing protein tyrosine phosphatase 1. J Allergy Clin Immunol 120:76–83.  https://doi.org/10.1016/j.jaci.2007.04.004 Google Scholar
  89. 89.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764.  https://doi.org/10.1084/jem.20070590 Google Scholar
  90. 90.
    Mora JR, Iwata M, Eksteen B et al (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314:1157–1160.  https://doi.org/10.1126/science.1132742 Google Scholar
  91. 91.
    Noon L (1911) Prophylactic inoculation against hay fever. Lancet 177:1572-1573. doi: https://doi.org/10.1016/S0140-6736(00)78276-6
  92. 92.
    Oppenheimer JJ, Nelson HS, Bock SA, Christensen F, Leung DY (1992) Treatment of peanut allergy with rush immunotherapy. J Allergy Clin Immunol 90:256–262Google Scholar
  93. 93.
    Meglio P, Bartone E, Plantamura M, Arabito E, Giampietro PG (2004) A protocol for oral desensitization in children with IgE-mediated cow’s milk allergy. Allergy 59:980–987.  https://doi.org/10.1111/j.1398-9995.2004.00542.x Google Scholar
  94. 94.
    Narisety SD, Skripak JM, Steele P, Hamilton RG, Matsui EC, Burks AW, Wood RA (2009) Open-label maintenance after milk oral immunotherapy for IgE-mediated cow’s milk allergy. J Allergy Clin Immunol 124:610–612.  https://doi.org/10.1016/j.jaci.2009.06.025 Google Scholar
  95. 95.
    Keet CA, Seopaul S, Knorr S, Narisety S, Skripak J, Wood RA (2013) Long-term follow-up of oral immunotherapy for cow’s milk allergy. J Allergy Clin Immunol 132:737–739.  https://doi.org/10.1016/j.jaci.2013.05.006 Google Scholar
  96. 96.
    Buchanan AD, Green TD, Jones SM et al (2007) Egg oral immunotherapy in nonanaphylactic children with egg allergy. J Allergy Clin Immunol 119:199–205.  https://doi.org/10.1016/j.jaci.2006.09.016 Google Scholar
  97. 97.
    Burks AW, Jones SM, Wood RA et al (2012) Oral immunotherapy for treatment of egg allergy in children. N Engl J Med 367:233–243.  https://doi.org/10.1056/NEJMoa1200435 Google Scholar
  98. 98.
    Caminiti L, Pajno GB, Crisafulli G, Chiera F, Collura M, Panasci G, Ruggeri P, Guglielmo F, Passalacqua G (2015) Oral immunotherapy for egg allergy: a double-blind placebo-controlled study, with postdesensitization follow-up. J Allergy Clin Immunol Pract 3:532–539.  https://doi.org/10.1016/j.jaip.2015.01.017 Google Scholar
  99. 99.
    Anagnostou K, Islam S, King Y et al (2014) Assessing the efficacy of oral immunotherapy for the desensitisation of peanut allergy in children (STOP II): a phase 2 randomised controlled trial. Lancet 383:1297–1304.  https://doi.org/10.1016/S0140-6736(13)62301-6 Google Scholar
  100. 100.
    Jones SM, Pons L, Roberts JL et al (2009) Clinical efficacy and immune regulation with peanut oral immunotherapy. J Allergy Clin Immunol 124:292–300.  https://doi.org/10.1016/j.jaci.2009.05.022 Google Scholar
  101. 101.
    Varshney P, Jones SM, Scurlock AM et al (2011) A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response. J Allergy Clin Immunol 127:654–660.  https://doi.org/10.1016/j.jaci.2010.12.1111 Google Scholar
  102. 102.
    Moran TP, Vickery BP, Burks AW (2013) Oral and sublingual immunotherapy for food allergy: current progress and future directions. Curr Opin Immunol 25:781–787.  https://doi.org/10.1016/j.coi.2013.07.011 Google Scholar
  103. 103.
    Moingeon P, Mascarell L (2012) Induction of tolerance via the sublingual route: mechanisms and applications. Clin Dev Immunol 2012:623474.  https://doi.org/10.1155/2012/623474 Google Scholar
  104. 104.
    Allam JP, Novak N, Fuchs C, Asen S, Berge S, Appel T, Geiger E, Kochan JP, Bieber T (2003) Characterization of dendritic cells from human oral mucosa: a new Langerhans’ cell type with high constitutive FcepsilonRI expression. J Allergy Clin Immunol 112:141–148Google Scholar
  105. 105.
    Allam JP, Peng WM, Appel T, Wenghoefer M, Niederhagen B, Bieber T, Berge S, Novak N (2008) Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells. J Allergy Clin Immunol 121(368-374):e361.  https://doi.org/10.1016/j.jaci.2007.09.045 Google Scholar
  106. 106.
    Mempel M, Rakoski J, Ring J, Ollert M (2003) Severe anaphylaxis to kiwi fruit: Immunologic changes related to successful sublingual allergen immunotherapy. J Allergy Clin Immunol 111:1406–1409Google Scholar
  107. 107.
    Kerzl R, Simonowa A, Ring J, Ollert M, Mempel M (2007) Life-threatening anaphylaxis to kiwi fruit: protective sublingual allergen immunotherapy effect persists even after discontinuation. J Allergy Clin Immunol 119:507–508.  https://doi.org/10.1016/j.jaci.2006.09.041 Google Scholar
  108. 108.
    Enrique E, Pineda F, Malek T et al (2005) Sublingual immunotherapy for hazelnut food allergy: a randomized, double-blind, placebo-controlled study with a standardized hazelnut extract. J Allergy Clin Immunol 116:1073–1079.  https://doi.org/10.1016/j.jaci.2005.08.027 Google Scholar
  109. 109.
    Enrique E, Malek T, Pineda F, Palacios R, Bartra J, Tella R, Basagana M, Alonso R, Cistero-Bahima A (2008) Sublingual immunotherapy for hazelnut food allergy: a follow-up study. Ann Allergy Asthma Immunol 100:283–284.  https://doi.org/10.1016/S1081-1206(10)60456-5 Google Scholar
  110. 110.
    de Boissieu D, Dupont C (2006) Sublingual immunotherapy for cow’s milk protein allergy: a preliminary report. Allergy 61:1238–1239.  https://doi.org/10.1111/j.1398-9995.2006.01196.x Google Scholar
  111. 111.
    Keet CA, Frischmeyer-Guerrerio PA, Thyagarajan A et al (2012) The safety and efficacy of sublingual and oral immunotherapy for milk allergy. J Allergy Clin Immunol 129:448–455.  https://doi.org/10.1016/j.jaci.2011.10.023 Google Scholar
  112. 112.
    Fernandez-Rivas M, Garrido Fernandez S, Nadal JA et al (2009) Randomized double-blind, placebo-controlled trial of sublingual immunotherapy with a Pru p 3 quantified peach extract. Allergy 64:876–883.  https://doi.org/10.1111/j.1398-9995.2008.01921.x Google Scholar
  113. 113.
    Garcia BE, Gonzalez-Mancebo E, Barber D et al (2010) Sublingual immunotherapy in peach allergy: monitoring molecular sensitizations and reactivity to apple fruit and Platanus pollen. J Investig Allergol Clin Immunol 20:514–520Google Scholar
  114. 114.
    Kim EH, Bird JA, Kulis M et al (2011) Sublingual immunotherapy for peanut allergy: clinical and immunologic evidence of desensitization. J Allergy Clin Immunol 127:640–646.  https://doi.org/10.1016/j.jaci.2010.12.1083 Google Scholar
  115. 115.
    Fleischer DM, Burks AW, Vickery BP et al (2013) Sublingual immunotherapy for peanut allergy: a randomized, double-blind, placebo-controlled multicenter trial. J Allergy Clin Immunol 131:119–127.  https://doi.org/10.1016/j.jaci.2012.11.011 Google Scholar
  116. 116.
    Mondoulet L, Dioszeghy V, Puteaux E, Ligouis M, Dhelft V, Letourneur F, Dupont C, Benhamou PH (2012) Intact skin and not stripped skin is crucial for the safety and efficacy of peanut epicutaneous immunotherapy (EPIT) in mice. Clin Transl Allergy 2:22.  https://doi.org/10.1186/2045-7022-2-22 Google Scholar
  117. 117.
    Senti G, Graf N, Haug S, Ruedi N, von Moos S, Sonderegger T, Johansen P, Kundig TM (2009) Epicutaneous allergen administration as a novel method of allergen-specific immunotherapy. J Allergy Clin Immunol 124:997–1002.  https://doi.org/10.1016/j.jaci.2009.07.019 Google Scholar
  118. 118.
    Stoitzner P, Tripp CH, Eberhart A, Price KM, Jung JY, Bursch L, Ronchese F, Romani N (2006) Langerhans cells cross-present antigen derived from skin. Proc Natl Acad Sci U S A 103:7783–7788.  https://doi.org/10.1073/pnas.0509307103 Google Scholar
  119. 119.
    Shklovskaya E, O’Sullivan BJ, Ng LG, Roediger B, Thomas R, Weninger W, Fazekas de St Groth B (2011) Langerhans cells are precommitted to immune tolerance induction. Proc Natl Acad Sci U S A 108:18049–18054.  https://doi.org/10.1073/pnas.1110076108 Google Scholar
  120. 120.
    Gomez de Aguero M, Vocanson M, Hacini-Rachinel F, Taillardet M, Sparwasser T, Kissenpfennig A, Malissen B, Kaiserlian D, Dubois B (2012) Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells. J Clin Invest 122:1700–1711.  https://doi.org/10.1172/JCI59725 Google Scholar
  121. 121.
    Dioszeghy V, Mondoulet L, Dhelft V, Ligouis M, Puteaux E, Benhamou PH, Dupont C (2011) Epicutaneous immunotherapy results in rapid allergen uptake by dendritic cells through intact skin and downregulates the allergen-specific response in sensitized mice. J Immunol 186:5629–5637.  https://doi.org/10.4049/jimmunol.1003134 Google Scholar
  122. 122.
    Dioszeghy V, Mondoulet L, Dhelft V, Ligouis M, Puteaux E, Dupont C, Benhamou PH (2014) The regulatory T cells induction by epicutaneous immunotherapy is sustained and mediates long-term protection from eosinophilic disorders in peanut-sensitized mice. Clin Exp Allergy 44:867–881.  https://doi.org/10.1111/cea.12312 Google Scholar
  123. 123.
    Tordesillas L, Mondoulet L, Blazquez AB, Benhamou PH, Sampson HA, Berin MC (2017) Epicutaneous immunotherapy induces gastrointestinal LAP+ regulatory T cells and prevents food-induced anaphylaxis. J Allergy Clin Immunol 139:189–201.  https://doi.org/10.1016/j.jaci.2016.03.057 Google Scholar
  124. 124.
    Dupont C, Kalach N, Soulaines P, Legoue-Morillon S, Piloquet H, Benhamou PH (2010) Cow’s milk epicutaneous immunotherapy in children: a pilot trial of safety, acceptability, and impact on allergic reactivity. J Allergy Clin Immunol 125:1165–1167.  https://doi.org/10.1016/j.jaci.2010.02.029 Google Scholar
  125. 125.
    Leung NYH, Wai CYY, Shu SA, Chang CC, Chu KH, Leung PSC (2017) Low dose allergen-specific immunotherapy induces tolerance in a murine model of shrimp allergy. Int Arch Allergy Immunol:(in press)Google Scholar
  126. 126.
    El-Qutob D (2016) Off-label uses of omalizumab. Clin Rev Allergy Immunol 50:84–96.  https://doi.org/10.1007/s12016-015-8490-y Google Scholar
  127. 127.
    Wood RA, Kim JS, Lindblad R, Nadeau K, Henning AK, Dawson P, Plaut M, Sampson HA (2016) A randomized, double-blind, placebo-controlled study of omalizumab combined with oral immunotherapy for the treatment of cow’s milk allergy. J Allergy Clin Immunol 137:1103–1110.  https://doi.org/10.1016/j.jaci.2015.10.005 Google Scholar
  128. 128.
    MacGinnitie AJ, Rachid R, Gragg H et al (2017) Omalizumab facilitates rapid oral desensitization for peanut allergy. J Allergy Clin Immunol 139:873–881.  https://doi.org/10.1016/j.jaci.2016.08.010 Google Scholar
  129. 129.
    Macglashan DW Jr, Saini SS (2013) Omalizumab increases the intrinsic sensitivity of human basophils to IgE-mediated stimulation. J Allergy Clin Immunol 132(906-911):e901–e904.  https://doi.org/10.1016/j.jaci.2013.04.056 Google Scholar
  130. 130.
    Frischmeyer-Guerrerio PA, Masilamani M, Gu W et al (2017) Mechanistic correlates of clinical responses to omalizumab in the setting of oral immunotherapy for milk allergy. J Allergy Clin Immunol.  https://doi.org/10.1016/j.jaci.2017.03.028
  131. 131.
    Rupa P, Nakamura S, Katayama S, Mine Y (2014) Effects of ovalbumin glycoconjugates on alleviation of orally induced egg allergy in mice via dendritic-cell maturation and T-cell activation. Mol Nutr Food Res 58:405–417.  https://doi.org/10.1002/mnfr.201300067 Google Scholar
  132. 132.
    Yang Z, Li Y, Li C, Wang Z (2012) Synthesis of hypoallergenic derivatives of the major allergen Fag t 1 from tartary buckwheat via sequence restructuring. Food Chem Toxicol 50:2675–2680.  https://doi.org/10.1016/j.fct.2012.03.039 Google Scholar
  133. 133.
    Reese G, Ballmer-Weber BK, Wangorsch A, Randow S, Vieths S (2007) Allergenicity and antigenicity of wild-type and mutant, monomeric, and dimeric carrot major allergen Dau c 1: destruction of conformation, not oligomerization, is the roadmap to save allergen vaccines. J Allergy Clin Immunol 119:944–951.  https://doi.org/10.1016/j.jaci.2006.11.699 Google Scholar
  134. 134.
    Bannon GA, Cockrell G, Connaughton C et al (2001) Engineering, characterization and in vitro efficacy of the major peanut allergens for use in immunotherapy. Int Arch Allergy Immunol 124:70–72.  https://doi.org/10.1159/000053672 Google Scholar
  135. 135.
    Starkl P, Felix F, Krishnamurthy D et al (2012) An unfolded variant of the major peanut allergen Ara h 2 with decreased anaphylactic potential. Clin Exp Allergy 42:1801–1812.  https://doi.org/10.1111/cea.12031 Google Scholar
  136. 136.
    Lemon-Mule H, Sampson HA, Sicherer SH, Shreffler WG, Noone S, Nowak-Wegrzyn A (2008) Immunologic changes in children with egg allergy ingesting extensively heated egg. J Allergy Clin Immunol 122:977–983.  https://doi.org/10.1016/j.jaci.2008.09.007 Google Scholar
  137. 137.
    Martos G, Lopez-Exposito I, Bencharitiwong R, Berin MC, Nowak-Wegrzyn A (2011) Mechanisms underlying differential food allergy response to heated egg. J Allergy Clin Immunol 127:990–997.  https://doi.org/10.1016/j.jaci.2011.01.057 Google Scholar
  138. 138.
    Watanabe H, Toda M, Sekido H, Wellner A, Fujii T, Henle T, Hachimura S, Nakajima-Adachi H (2014) Heat treatment of egg white controls allergic symptoms and induces oral tolerance to ovalbumin in a murine model of food allergy. Mol Nutr Food Res 58:394–404.  https://doi.org/10.1002/mnfr.201300205 Google Scholar
  139. 139.
    Golias J, Schwarzer M, Wallner M et al (2012) Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy. PLoS One 7:e37156.  https://doi.org/10.1371/journal.pone.0037156 Google Scholar
  140. 140.
    Jimenez-Saiz R, Rupa P, Mine Y (2011) Immunomodulatory effects of heated ovomucoid-depleted egg white in a BALB/c mouse model of egg allergy. J Agric Food Chem 59:13195–13202.  https://doi.org/10.1021/jf202963r Google Scholar
  141. 141.
    Turner PJ, Mehr S, Joshi P, Tan J, Wong M, Kakakios A, Campbell DE (2013) Safety of food challenges to extensively heated egg in egg-allergic children: a prospective cohort study. Pediatr Allergy Immunol 24:450–455.  https://doi.org/10.1111/pai.12093 Google Scholar
  142. 142.
    Goldberg MR, Nachshon L, Appel MY, Elizur A, Levy MB, Eisenberg E, Sampson HA, Katz Y (2015) Efficacy of baked milk oral immunotherapy in baked milk-reactive allergic patients. J Allergy Clin Immunol.  https://doi.org/10.1016/j.jaci.2015.05.040
  143. 143.
    Toda M, Reese G, Gadermaier G et al (2011) Protein unfolding strongly modulates the allergenicity and immunogenicity of Pru p 3, the major peach allergen. J Allergy Clin Immunol 128:1022–1030.  https://doi.org/10.1016/j.jaci.2011.04.020 Google Scholar
  144. 144.
    Bencharitiwong R, van der Kleij HP, Koppelman SJ, Nowak-Wegrzyn A (2015) Effect of chemical modifications on allergenic potency of peanut proteins. Allergy Asthma Proc 36:185–191.  https://doi.org/10.2500/aap.2015.36.3840 Google Scholar
  145. 145.
    Pree I, Reisinger J, Focke M et al (2007) Analysis of epitope-specific immune responses induced by vaccination with structurally folded and unfolded recombinant Bet v 1 allergen derivatives in man. J Immunol 179:5309–5316Google Scholar
  146. 146.
    Hochwallner H, Schulmeister U, Swoboda I et al (2010) Visualization of clustered IgE epitopes on alpha-lactalbumin. J Allergy Clin Immunol 125:1279–1285.  https://doi.org/10.1016/j.jaci.2010.03.007 Google Scholar
  147. 147.
    Mine Y, Rupa P (2003) Fine mapping and structural analysis of immunodominant IgE allergenic epitopes in chicken egg ovalbumin. Protein Eng 16:747–752Google Scholar
  148. 148.
    Shreffler WG, Lencer DA, Bardina L, Sampson HA (2005) IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2. J Allergy Clin Immunol 116:893–899.  https://doi.org/10.1016/j.jaci.2005.06.033 Google Scholar
  149. 149.
    Wai CYY, Leung NYH, Ho MH, Gershwin LJ, Shu SA, Leung PSC, Chu KH (2014) Immunization with hypoallergens of shrimp allergen tropomyosin inhibits shrimp tropomyosin specific IgE reactivity. PLoS One 9:e111649.  https://doi.org/10.1371/journal.pone.0111649 Google Scholar
  150. 150.
    Ayuso R, Lehrer SB, Reese G (2002) Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin). Int Arch Allergy Immunol 127:27-37. doi:48166 [pii] 48166Google Scholar
  151. 151.
    Garcia-Casado G, Pacios LF, Diaz-Perales A, Sanchez-Monge R, Lombardero M, Garcia-Selles FJ, Polo F, Barber D, Salcedo G (2003) Identification of IgE-binding epitopes of the major peach allergen Pru p 3. J Allergy Clin Immunol 112:599–605Google Scholar
  152. 152.
    King N, Helm R, Stanley JS et al (2005) Allergenic characteristics of a modified peanut allergen. Mol Nutr Food Res 49:963–971.  https://doi.org/10.1002/mnfr.200500073 Google Scholar
  153. 153.
    Lam YF, Tong KK, Kwan KM, Tsuneyama K, Shu SA, Leung PS, Chu KH (2015) Gastrointestinal immune response to the shrimp allergen tropomyosin: histological and immunological analysis in an animal model of shrimp tropomyosin hypersensitivity. Int Arch Allergy Immunol 167:29–40.  https://doi.org/10.1159/000431228 Google Scholar
  154. 154.
    Leung PSC, Lee YS, Tang CY, Kung WY, Chuang YH, Chiang BL, Fung MC, Chu KH (2008) Induction of shrimp tropomyosin-specific hypersensitivity in mice. Int Arch Allergy Immunol 147:305–314.  https://doi.org/10.1159/000144038 Google Scholar
  155. 155.
    Singh A, Holvoet S, Mercenier A (2011) Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 41:1346–1359.  https://doi.org/10.1111/j.1365-2222.2011.03773.x Google Scholar
  156. 156.
    Plundrich NJ, Kulis M, White BL, Grace MH, Guo R, Burks AW, Davis JP, Lila MA (2014) Novel strategy to create hypoallergenic peanut protein-polyphenol edible matrices for oral immunotherapy. J Agric Food Chem 62:7010–7021.  https://doi.org/10.1021/jf405773b Google Scholar
  157. 157.
    Zuidmeer-Jongejan L, Fernandez-Rivas M, Poulsen LK et al (2012) FAST: towards safe and effective subcutaneous immunotherapy of persistent life-threatening food allergies. Clin Transl Allergy 2:5.  https://doi.org/10.1186/2045-7022-2-5 Google Scholar
  158. 158.
    Swoboda I, Bugajska-Schretter A, Linhart B et al. (2007) A recombinant hypoallergenic parvalbumin mutant for immunotherapy of IgE-mediated fish allergy. J Immunol 178:6290-6296. doi:178/10/6290 [pii]Google Scholar
  159. 159.
    Zuidmeer-Jongejan L, Huber H, Swoboda I et al (2015) Development of a hypoallergenic recombinant parvalbumin for first-in-man subcutaneous immunotherapy of fish allergy. Int Arch Allergy Immunol 166:41–51.  https://doi.org/10.1159/000371657 Google Scholar
  160. 160.
    Freidl R, Gstoettner A, Baranyi U et al (2017) Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy. J Allergy Clin Immunol 139(1897-1905):e1891.  https://doi.org/10.1016/j.jaci.2016.10.018 Google Scholar
  161. 161.
    Larche M (2011) T cell epitope-based allergy vaccines. Curr Top Microbiol Immunol 352:107–119.  https://doi.org/10.1007/82_2011_131 Google Scholar
  162. 162.
    Prickett SR, Rolland JM, O’Hehir RE (2015) Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clin Exp Allergy 45:1015–1026.  https://doi.org/10.1111/cea.12554 Google Scholar
  163. 163.
    Meulenbroek LA, van Esch BC, Hofman GA et al (2013) Oral treatment with beta-lactoglobulin peptides prevents clinical symptoms in a mouse model for cow’s milk allergy. Pediatr Allergy Immunol 24:656–664.  https://doi.org/10.1111/pai.12120 Google Scholar
  164. 164.
    Thang CL, Zhao X (2015) Effects of orally administered immunodominant T-cell epitope peptides on cow’s milk protein allergy in a mouse model. Food Res Int 71:126–131Google Scholar
  165. 165.
    Yang M, Mine Y (2009) Novel T-cell epitopes of ovalbumin in BALB/c mouse: potential for peptide-immunotherapy. Biochem Biophys Res Commun 378:203–208.  https://doi.org/10.1016/j.bbrc.2008.11.037 Google Scholar
  166. 166.
    Mizumachi K, Kurisaki J (2003) Localization of T cell epitope regions of chicken ovomucoid recognized by mice. Biosci Biotechnol Biochem 67:712–719Google Scholar
  167. 167.
    Yang M, Yang C, Mine Y (2010) Multiple T cell epitope peptides suppress allergic responses in an egg allergy mouse model by the elicitation of forkhead box transcription factor 3- and transforming growth factor-beta-associated mechanisms. Clin Exp Allergy 40:668–678.  https://doi.org/10.1111/j.1365-2222.2009.03442.x Google Scholar
  168. 168.
    Rupa P, Mine Y (2012) Oral immunotherapy with immunodominant T-cell epitope peptides alleviates allergic reactions in a Balb/c mouse model of egg allergy. Allergy 67:74–82.  https://doi.org/10.1111/j.1398-9995.2011.02724.x Google Scholar
  169. 169.
    Wai CYY, Leung NYH, Leung PSC, Chu KH (2016) T cell epitope immunotherapy ameliorates allergic responses in a murine model of shrimp allergy. Clin Exp Allergy 46:491–503.  https://doi.org/10.1111/cea.12684 Google Scholar
  170. 170.
    Ravkov EV, Pavlov IY, Martins TB, Gleich GJ, Wagner LA, Hill HR, Delgado JC (2013) Identification and validation of shrimp-tropomyosin specific CD4 T cell epitopes. Hum Immunol 74:1542–1549.  https://doi.org/10.1016/j.humimm.2013.08.276 Google Scholar
  171. 171.
    Clark AT, Islam S, King Y, Deighton J, Anagnostou K, Ewan PW (2009) Successful oral tolerance induction in severe peanut allergy. Allergy 64:1218–1220.  https://doi.org/10.1111/j.1398-9995.2009.01982.x Google Scholar
  172. 172.
    Patil SU, Ogunniyi AO, Calatroni A, Tadigotla VR, Ruiter B, Ma A, Moon J, Love JC, Shreffler WG (2015) Peanut oral immunotherapy transiently expands circulating Ara h 2-specific B cells with a homologous repertoire in unrelated subjects. J Allergy Clin Immunol 136:125–134.  https://doi.org/10.1016/j.jaci.2015.03.026 Google Scholar
  173. 173.
    Syed A, Garcia MA, Lyu SC et al (2014) Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol 133:500–510.  https://doi.org/10.1016/j.jaci.2013.12.1037 Google Scholar
  174. 174.
    Nowak-Wegrzyn A, Albin S (2015) Oral immunotherapy for food allergy: mechanisms and role in management. Clin Exp Allergy 45:368–383.  https://doi.org/10.1111/cea.12382 Google Scholar
  175. 175.
    Pascal M, Konstantinou GN, Masilamani M, Lieberman J, Sampson HA (2013) In silico prediction of Ara h 2 T cell epitopes in peanut-allergic children. Clin Exp Allergy 43:116–127.  https://doi.org/10.1111/cea.12014 Google Scholar
  176. 176.
    Prickett SR, Voskamp AL, Dacumos-Hill A, Symons K, Rolland JM, O’Hehir RE (2011) Ara h 2 peptides containing dominant CD4+ T-cell epitopes: candidates for a peanut allergy therapeutic. J Allergy Clin Immunol 127:608–615.  https://doi.org/10.1016/j.jaci.2010.09.027 Google Scholar
  177. 177.
    Prickett SR, Voskamp AL, Phan T, Dacumos-Hill A, Mannering SI, Rolland JM, O’Hehir RE (2013) Ara h 1 CD4+ T cell epitope-based peptides: candidates for a peanut allergy therapeutic. Clin Exp Allergy 43:684–697.  https://doi.org/10.1111/cea.12113 Google Scholar
  178. 178.
    Meulenbroek LA, den Hartog Jager CF, Lebens AF, Knulst AC, Bruijnzeel-Koomen CA, Garssen J, Knippels LM, van Hoffen E (2014) Characterization of T cell epitopes in bovine alpha-lactalbumin. Int Arch Allergy Immunol 163:292–296.  https://doi.org/10.1159/000360733 Google Scholar
  179. 179.
    Ruiter B, Tregoat V, M’Rabet L, Garssen J, Bruijnzeel-Koomen CA, Knol EF, Hoffen E (2006) Characterization of T cell epitopes in alphas1-casein in cow’s milk allergic, atopic and non-atopic children. Clin Exp Allergy 36:303–310.  https://doi.org/10.1111/j.1365-2222.2006.02436.x Google Scholar
  180. 180.
    Pastorello EA, Monza M, Pravettoni V, Longhi R, Bonara P, Scibilia J, Primavesi L, Scorza R (2010) Characterization of the T-cell epitopes of the major peach allergen Pru p 3. Int Arch Allergy Immunol 153:1–12.  https://doi.org/10.1159/000301573 Google Scholar
  181. 181.
    Tordesillas L, Cuesta-Herranz J, Gonzalez-Munoz M, Pacios LF, Compes E, Garcia-Carrasco B, Sanchez-Monge R, Salcedo G, Diaz-Perales A (2009) T-cell epitopes of the major peach allergen, Pru p 3: identification and differential T-cell response of peach-allergic and non-allergic subjects. Mol Immunol 46:722–728.  https://doi.org/10.1016/j.molimm.2008.10.018 Google Scholar
  182. 182.
    Schulten V, Radakovics A, Hartz C et al (2009) Characterization of the allergic T-cell response to Pru p 3, the nonspecific lipid transfer protein in peach. J Allergy Clin Immunol 124:100–107.  https://doi.org/10.1016/j.jaci.2009.02.010 Google Scholar
  183. 183.
    Nielsen M, Lund O, Buus S, Lundegaard C (2010) MHC class II epitope predictive algorithms. Immunology 130:319–328.  https://doi.org/10.1111/j.1365-2567.2010.03268.x Google Scholar
  184. 184.
    Yang M, Yang C, Nau F, Pasco M, Juneja LR, Okubo T, Mine Y (2009) Immunomodulatory effects of egg white enzymatic hydrolysates containing immunodominant epitopes in a BALB/c mouse model of egg allergy. J Agric Food Chem 57:2241–2248.  https://doi.org/10.1021/jf803372b Google Scholar
  185. 185.
    Kulis M, Macqueen I, Li Y, Guo R, Zhong XP, Burks AW (2012) Pepsinized cashew proteins are hypoallergenic and immunogenic and provide effective immunotherapy in mice with cashew allergy. J Allergy Clin Immunol 130:716–723.  https://doi.org/10.1016/j.jaci.2012.05.044 Google Scholar
  186. 186.
    Suphioglu C, Schappi G, Kenrick J, Levy D, Davies JM, O’Hehir RE (2001) A novel grass pollen allergen mimotope identified by phage display peptide library inhibits allergen-human IgE antibody interaction. FEBS Lett 502:46–52Google Scholar
  187. 187.
    Ganglberger E, Grunberger K, Wiedermann U, Vermes M, Sponer B, Breiteneder H, Scheiner O, Boltz G, Jensen-Jarolim E (2001) IgE mimotopes of birch pollen allergen Bet v 1 induce blocking IgG in mice. Int Arch Allergy Immunol 124:395-397. doi:53768 [pii] 53768Google Scholar
  188. 188.
    Ganglberger E, Grunberger K, Sponer B, Radauer C, Breiteneder H, Boltz-Nitulescu G, Scheiner O, Jensen-Jarolim E (2000) Allergen mimotopes for 3-dimensional epitope search and induction of antibodies inhibiting human IgE. FASEB J 14:2177–2184.  https://doi.org/10.1096/fj.99-1000com Google Scholar
  189. 189.
    Jensen-jarolim E, Leitner A, Kalchhauser H, Zurcher A, Ganglberger E, Bohle B, Scheiner O, Boltz-nitulescu G, Breiteneder H (1998) Peptide mimotopes displayed by phage inhibit antibody binding to bet v 1, the major birch pollen allergen, and induce specific IgG response in mice. FASEB J 12:1635–1642Google Scholar
  190. 190.
    Hantusch B, Krieger S, Untersmayr E et al (2004) Mapping of conformational IgE epitopes on Phl p 5a by using mimotopes from a phage display library. J Allergy Clin Immunol 114:1294–1300.  https://doi.org/10.1016/j.jaci.2004.06.048 Google Scholar
  191. 191.
    Pacios LF, Tordesillas L, Cuesta-Herranz J, Compes E, Sanchez-Monge R, Palacin A, Salcedo G, Diaz-Perales A (2008) Mimotope mapping as a complementary strategy to define allergen IgE-epitopes: peach Pru p 3 allergen as a model. Mol Immunol 45:2269–2276.  https://doi.org/10.1016/j.molimm.2007.11.022 Google Scholar
  192. 192.
    Untersmayr E, Szalai K, Riemer AB et al (2006) Mimotopes identify conformational epitopes on parvalbumin, the major fish allergen. Mol Immunol 43:1454–1461.  https://doi.org/10.1016/j.molimm.2005.07.038 Google Scholar
  193. 193.
    Szalai K, Jensen-Jarolim E, Pali-Scholl I (2008) Vaccination strategies based on the mimotope concept. G Ital Dermatol Venereol 143:95–104Google Scholar
  194. 194.
    Tiwari R, Negi SS, Braun B, Braun W, Pomes A, Chapman MD, Goldblum RM, Midoro-Horiuti T (2012) Validation of a phage display and computational algorithm by mapping a conformational epitope of Bla g 2. Int Arch Allergy Immunol 157:323–330.  https://doi.org/10.1159/000330108 Google Scholar
  195. 195.
    Wallmann J, Epstein MM, Singh P, Brunner R, Szalai K, El-Housseiny L, Pali-Scholl I, Jensen-Jarolim E (2010) Mimotope vaccination for therapy of allergic asthma: anti-inflammatory effects in a mouse model. Clin Exp Allergy 40:650–658.  https://doi.org/10.1111/j.1365-2222.2009.03392.x Google Scholar
  196. 196.
    Leung NYH, Wai CYY, Ho MH, Liu R, Lam KS, Wang JJ, Shu SA, Chu KH, Leung PSC (2017) Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries. Cell Mol Immunol 14:308–318.  https://doi.org/10.1038/cmi.2015.83 Google Scholar
  197. 197.
    Zhou Y, Kawasaki H, Hsu SC et al (2010) Oral tolerance to food-induced systemic anaphylaxis mediated by the C-type lectin SIGNR1. Nat Med 16:1128–1133.  https://doi.org/10.1038/nm.2201 Google Scholar
  198. 198.
    Schulke S, Burggraf M, Waibler Z, Wangorsch A, Wolfheimer S, Kalinke U, Vieths S, Toda M, Scheurer S (2011) A fusion protein of flagellin and ovalbumin suppresses the TH2 response and prevents murine intestinal allergy. J Allergy Clin Immunol 128:1340–1348.  https://doi.org/10.1016/j.jaci.2011.07.036 Google Scholar
  199. 199.
    Liu Y, Sun Y, Chang LJ et al (2013) Blockade of peanut allergy with a novel Ara h 2-Fcgamma fusion protein in mice. J Allergy Clin Immunol 131:213–221.  https://doi.org/10.1016/j.jaci.2012.10.018 Google Scholar
  200. 200.
    Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD, Miller SD (2014) A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano 8:2148–2160.  https://doi.org/10.1021/nn405033r Google Scholar
  201. 201.
    Srivastava KD, Siefert A, Fahmy TM, Caplan MJ, Li XM, Sampson HA (2016) Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine model of peanut allergy. J Allergy Clin Immunol 138:536–543.  https://doi.org/10.1016/j.jaci.2016.01.047 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Simon F.S. Li Marine Science Laboratory, School of Life SciencesThe Chinese University of Hong KongHong KongChina
  2. 2.Department of PaediatricsThe Chinese University of Hong KongHong KongChina
  3. 3.Division of Rheumatology/Allergy, School of MedicineUniversity of CaliforniaDavisUSA
  4. 4.Genome and Biomedical Sciences FacilityDavisUSA

Personalised recommendations