Clinical Reviews in Allergy & Immunology

, Volume 55, Issue 3, pp 254–270 | Cite as

Unmet Needs in the Pathogenesis and Treatment of Cardiovascular Comorbidities in Chronic Inflammatory Diseases

  • Cristina PanicoEmail author
  • Gianluigi Condorelli


The developments that have taken place in recent decades in the diagnosis and therapy of a number of diseases have led to improvements in prognosis and life expectancy. As a consequence, there has been an increase in the number of patients affected by chronic diseases and who can face new pathologies during their lifetime. The prevalence of chronic heart failure, for example, is approximately 1–2% of the adult population in developed countries, rising to ≥10% among people >70 years of age; in 2015, more than 85 million people in Europe were living with some sort of cardiovascular disease (CVD) (Lubrano and Balzan World J Exp Med 5:21–32, 5; Takahashi et al. Circ J 72:867–72, 8; Kaptoge et al. Lancet 375:132–40, 9). Chronic disease can become, in turn, a major risk factor for other diseases. Furthermore, several new drugs have entered clinical practice whose adverse effects on multiple organs are still to be evaluated. All this necessarily involves a multidisciplinary vision of medicine, where the physician must view the patient as a whole and where collaboration between the various specialists plays a key role. An example of what has been said so far is the relationship between CVD and chronic inflammatory diseases (CIDs). Patients with chronic CVD may develop a CID within their lifetime, and, vice versa, a CID can be a risk factor for the development of CVD. Moreover, drugs used for the treatment of CIDs may have side effects involving the cardiovascular system and thus may be contraindicated. The purpose of this paper is to investigate the close relationship between these two groups of diseases and to provide recommendations on the diagnostic approach and treatments in light of the most recent scientific data available.


Cardiovascular diseases Chronic inflammatory diseases Chronic autoimmune diseases Inflammatory bowel diseases Coronary artery disease Coronary microvascular dysfunction Heart failure 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


There is no funding source.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Yusuf S et al (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364(9438):937–952PubMedGoogle Scholar
  2. 2.
    Ikonomidis I et al (1999) Increased proinflammatory cytokines in patients with chronic stable angina and their reduction by aspirin. Circulation 100(8):793–798PubMedGoogle Scholar
  3. 3.
    Ridker PM et al (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359(21):2195–2207PubMedGoogle Scholar
  4. 4.
    Deten A et al (2002) Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc Res 55(2):329–340PubMedGoogle Scholar
  5. 5.
    Lubrano V, Balzan S (2015) Consolidated and emerging inflammatory markers in coronary artery disease. World J Exp Med 5(1):21–32PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ridker PM et al (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101(15):1767–1772PubMedGoogle Scholar
  7. 7.
    Kaptoge S et al (2014) Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J 35(9):578–589PubMedGoogle Scholar
  8. 8.
    Takahashi T et al (2008) Relationship of admission neutrophil count to microvascular injury, left ventricular dilation, and long-term outcome in patients treated with primary angioplasty for acute myocardial infarction. Circ J 72(6):867–872PubMedGoogle Scholar
  9. 9.
    Kaptoge S et al (2010) C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375(9709):132–140PubMedGoogle Scholar
  10. 10.
    Vasan RS et al (2003) Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 107(11):1486–1491PubMedGoogle Scholar
  11. 11.
    Musial J et al (2001) Anti-inflammatory effects of simvastatin in subjects with hypercholesterolemia. Int J Cardiol 77(2–3):247–253PubMedGoogle Scholar
  12. 12.
    Roubille F, Lacampagne A (2014) New drug avenues for cardioprotection in patients with acute myocardial infarction. Am J Cardiovasc Drugs 14(1):73–77PubMedGoogle Scholar
  13. 13.
    Nidorf SM et al (2013) Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol 61(4):404–410PubMedGoogle Scholar
  14. 14.
    Ridker PM et al (2011) Interleukin-1 beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J 162(4):597–605PubMedGoogle Scholar
  15. 15.
    Moreira DM et al (2013) Rationale and design of the TETHYS trial: the effects of methotrexate therapy on myocardial infarction with ST-segment elevation. Cardiology 126(3):167–170PubMedGoogle Scholar
  16. 16.
    Roifman I et al (2011) Chronic inflammatory diseases and cardiovascular risk: a systematic review. Can J Cardiol 27(2):174–182PubMedGoogle Scholar
  17. 17.
    Sherer Y, Shoenfeld Y (2006) Mechanisms of disease: atherosclerosis in autoimmune diseases. Nat Clin Pract Rheumatol 2(2):99–106PubMedGoogle Scholar
  18. 18.
    Van Doornum S et al. (2015) Increased 30-day and 1-year mortality rates and lower coronary revascularisation rates following acute myocardial infarction in patients with autoimmune rheumatic disease. Arthritis Res Ther 17Google Scholar
  19. 19.
    Kitas G, Banks MJ, Bacon PA (2001) Cardiac involvement in rheumatoid disease. Clin Med 1(1):18–21Google Scholar
  20. 20.
    Agca R et al (2016) Atherosclerotic cardiovascular disease in patients with chronic inflammatory joint disorders. Heart 102(10):790–795PubMedGoogle Scholar
  21. 21.
    Han CL et al (2006) Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. J Rheumatol 33(11):2167–2172PubMedGoogle Scholar
  22. 22.
    Maradit-Kremers H et al (2005) Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis—a population-based cohort study. Arthritis Rheum 52(2):402–411PubMedGoogle Scholar
  23. 23.
    del Rincon I et al (2001) High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum 44(12):2737–2745PubMedGoogle Scholar
  24. 24.
    Prasad M et al (2015) Cardiorheumatology: cardiac involvement in systemic rheumatic disease. Nat Rev Cardiol 12(3):168–176PubMedGoogle Scholar
  25. 25.
    Warrington KJ et al (2005) Rheumatoid arthritis is an independent risk factor for multi-vessel coronary artery disease: a case control study. Arthritis Res Ther 7(5):R984–R991PubMedPubMedCentralGoogle Scholar
  26. 26.
    Crowson CS et al (2012) Usefulness of risk scores to estimate the risk of cardiovascular disease in patients with rheumatoid arthritis. Am J Cardiol 110(3):420–424PubMedPubMedCentralGoogle Scholar
  27. 27.
    Raychaudhuri SP, Farber EM (2001) The prevalence of psoriasis in the world. J Eur Acad Dermatol Venereol 15(1):16–17PubMedGoogle Scholar
  28. 28.
    Horreau C et al (2013) Cardiovascular morbidity and mortality in psoriasis and psoriatic arthritis: a systematic literature review. J Eur Acad Dermatol Venereol 27:12–29PubMedGoogle Scholar
  29. 29.
    Bissonnette R et al (2017) Increase in coronary atherosclerosis severity and the prevalence of coronary artery mixed plaques in patients with psoriasis. Br J Dermatol 176(3):800–802PubMedGoogle Scholar
  30. 30.
    Ward MM (1999) Premature morbidity from cardiovascular and cerebrovascular diseases in women with systemic lupus erythematosus. Arthritis Rheum 42(2):338–346PubMedGoogle Scholar
  31. 31.
    Esdaile JM et al (2001) Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum 44(10):2331–2337PubMedGoogle Scholar
  32. 32.
    Roman MJ, Salmon JE (2007) Cardiovascular manifestations of rheumatologic diseases. Circulation 116(20):2346–2355PubMedGoogle Scholar
  33. 33.
    Khurma V et al (2008) A pilot study of subclinical coronary atherosclerosis in systemic sclerosis: coronary artery calcification in cases and controls. Arthritis Rheum Arthritis Care Res 59(4):591–597Google Scholar
  34. 34.
    Conrad K, Roggenbuck D, Laass MW (2014) Diagnosis and classification of ulcerative colitis. Autoimmun Rev 13(4–5):463–466PubMedGoogle Scholar
  35. 35.
    Laass MW, Roggenbuck D, Conrad K (2014) Diagnosis and classification of Crohn’s disease. Autoimmun Rev 13(4–5):467–471PubMedGoogle Scholar
  36. 36.
    Bernstein CN, Wajda A, Blanchard JF (2008) The incidence of arterial thromboembolic diseases in inflammatory bowel disease: a population-based study. Clin Gastroenterol Hepatol 6(1):41–45PubMedGoogle Scholar
  37. 37.
    Osterman MT et al (2011) No increased risk of myocardial infarction among patients with ulcerative colitis or Crohn’s disease. Clin Gastroenterol Hepatol 9(10):875–880PubMedPubMedCentralGoogle Scholar
  38. 38.
    Singh S et al (2014) Risk of cerebrovascular accidents and ischemic heart disease in patients with inflammatory bowel disease: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 12(3):382PubMedGoogle Scholar
  39. 39.
    Kristensen SL et al (2013) Disease activity in inflammatory bowel disease is associated with increased risk of myocardial infarction, stroke and cardiovascular death—a Danish nationwide cohort study. PLoS One 8(2):e56944PubMedPubMedCentralGoogle Scholar
  40. 40.
    Hajjar DP, Gotto AM Jr (2013) Biological relevance of inflammation and oxidative stress in the pathogenesis of arterial diseases. Am J Pathol 182(5):1474–81PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ku IA et al (2009) Rheumatoid arthritis—a model of systemic inflammation driving atherosclerosis. Circ J 73(6):977–985PubMedGoogle Scholar
  42. 42.
    Full LE, Ruisanchez C, Monaco C (2009) The inextricable link between atherosclerosis and prototypical inflammatory diseases rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther 11(2):217PubMedPubMedCentralGoogle Scholar
  43. 43.
    Bartoloni E, Shoenfeld Y, Gerli R (2011) Inflammatory and autoimmune mechanisms in the induction of atherosclerotic damage in systemic rheumatic diseases: two faces of the same coin. Arthritis Care Res 63(2):178–183Google Scholar
  44. 44.
    Montecucco F, Mach F (2009) Common inflammatory mediators orchestrate pathophysiological processes in rheumatoid arthritis and atherosclerosis. Rheumatology 48(1):11–22PubMedGoogle Scholar
  45. 45.
    Libby P et al (2010) Inflammation in atherosclerosis: transition from theory to practice. Circ J 74(2):213–220PubMedGoogle Scholar
  46. 46.
    Barnes EV et al (2005) High sensitivity C-reactive protein in systemic lupus erythematosus: relation to disease activity, clinical presentation and implications for cardiovascular risk. Lupus 14(8):576–582PubMedGoogle Scholar
  47. 47.
    Aringer M, Smolen J (2004) Tumour necrosis factor and other proinflammatory cytokines in systemic lupus erythematosus: a rationale for therapeutic intervention. Lupus 13(5):344–347PubMedGoogle Scholar
  48. 48.
    Danesh J et al (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350(14):1387–1397PubMedGoogle Scholar
  49. 49.
    Jensen LJN et al (2010) Plasma calprotectin predicts mortality in patients with ST segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J Interv Cardiol 23(2):123–129PubMedGoogle Scholar
  50. 50.
    Hahn BH (2003) Systemic lupus erythematosus and accelerated atherosclerosis. N Engl J Med 349(25):2379–2380PubMedGoogle Scholar
  51. 51.
    Gustafsson J et al (2009) Predictors of the first cardiovascular event in patients with systemic lupus erythematosus—a prospective cohort study. Arthritis Res Ther 11(6):R186PubMedPubMedCentralGoogle Scholar
  52. 52.
    Kahaleh MB, LeRoy EC (1999) Autoimmunity and vascular involvement in systemic sclerosis (SSc). Autoimmunity 31(3):195–214PubMedGoogle Scholar
  53. 53.
    Boyer JF et al (2011) Traditional cardiovascular risk factors in rheumatoid arthritis: a meta-analysis. Joint Bone Spine 78(2):179–183PubMedGoogle Scholar
  54. 54.
    Asanuma Y et al (2003) Premature coronary-artery atherosclerosis in systemic lupus erythematosus. N Engl J Med 349(25):2407–2415PubMedGoogle Scholar
  55. 55.
    Petri M et al (1992) Risk factors for coronary artery disease in patients with systemic lupus erythematosus. Am J Med 93(5):513–519PubMedGoogle Scholar
  56. 56.
    Neimann AL et al (2006) Prevalence of cardiovascular risk factors in patients with psoriasis. J Am Acad Dermatol 55(5):829–835PubMedGoogle Scholar
  57. 57.
    Shapiro J et al (2007) The association between psoriasis, diabetes mellitus, and atherosclerosis in Israel: a case-control study. J Am Acad Dermatol 56(4):629–634PubMedGoogle Scholar
  58. 58.
    Semb AG et al (2010) Lipids, myocardial infarction and ischaemic stroke in patients with rheumatoid arthritis in the Apolipoprotein-related Mortality RISk (AMORIS) Study. Ann Rheum Dis 69(11):1996–2001PubMedGoogle Scholar
  59. 59.
    Hahn BH et al (2007) The pathogenesis of atherosclerosis in autoimmune rheumatic diseases: roles of inflammation and dyslipidemia. J Autoimmun 28(2–3):69–75PubMedGoogle Scholar
  60. 60.
    Kitas GD, Gabriel SE (2011) Cardiovascular disease in rheumatoid arthritis: state of the art and future perspectives. Ann Rheum Dis 70(1):8–14PubMedGoogle Scholar
  61. 61.
    Kremers HM et al (2004) Prognostic importance of low body mass index in relation to cardiovascular mortality in rheumatoid arthritis. Arthritis Rheum 50(11):3450–3457PubMedGoogle Scholar
  62. 62.
    Klareskog L et al (2011) Smoking, citrullination and genetic variability in the immunopathogenesis of rheumatoid arthritis. Semin Immunol 23(2):92–98PubMedGoogle Scholar
  63. 63.
    Lindhardsen J et al (2014) Non-steroidal anti-inflammatory drugs and risk of cardiovascular disease in patients with rheumatoid arthritis: a nationwide cohort study. Ann Rheum Dis 73(8):1515–1521PubMedGoogle Scholar
  64. 64.
    Ravindran V, Rachapalli S, Choy EH (2009) Safety of medium- to long-term glucocorticoid therapy in rheumatoid arthritis: a meta-analysis. Rheumatology 48(7):807–811PubMedGoogle Scholar
  65. 65.
    Sidiropoulos PI et al (2009) Sustained improvement of vascular endothelial function during anti-TNF treatment in rheumatoid arthritis patients. Scand J Rheumatol 38(1):6–10PubMedGoogle Scholar
  66. 66.
    Kiortsis DN et al (2005) Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis 64(5):765–766PubMedGoogle Scholar
  67. 67.
    Ryan C et al (2011) Association between biologic therapies for chronic plaque psoriasis and cardiovascular events: a meta-analysis of randomized controlled trials. JAMA J Am Med Assoc 306(8):864–871Google Scholar
  68. 68.
    Johnson BD et al (2004) Prognosis in women with myocardial ischemia in the absence of obstructive coronary disease: results from the National Institutes of Health-National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109(24):2993–2999PubMedGoogle Scholar
  69. 69.
    Jespersen L et al (2012) Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J 33(6):734–744PubMedGoogle Scholar
  70. 70.
    Recio-Mayoral A et al (2009) Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. Eur Heart J 30(15):1837–1843PubMedGoogle Scholar
  71. 71.
    Ishimori ML et al (2011) Myocardial ischemia in the absence of obstructive coronary artery disease in systemic lupus erythematosus. JACC Cardiovasc Imaging 4(1):27–33PubMedGoogle Scholar
  72. 72.
    Turiel M et al (2013) Silent cardiovascular involvement in patients with diffuse systemic sclerosis: a controlled cross-sectional study. Arthritis Care Res 65(2):274–280Google Scholar
  73. 73.
    Sandoo A et al (2011) Vascular function and morphology in rheumatoid arthritis: a systematic review. Rheumatology 50(11):2125–2139PubMedGoogle Scholar
  74. 74.
    Cannarile F et al (2015) Cardiovascular disease in systemic sclerosis. Ann Transl Med 3(1):8PubMedPubMedCentralGoogle Scholar
  75. 75.
    Piepoli MF et al (2016) 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 252:207–274PubMedGoogle Scholar
  76. 76.
    Peters MJ et al (2010) EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann Rheum Dis 69(2):325–331PubMedGoogle Scholar
  77. 77.
    Kerekes G et al (2012) Validated methods for assessment of subclinical atherosclerosis in rheumatology. Nat Rev Rheumatol 8(4):224–234PubMedGoogle Scholar
  78. 78.
    Gonzalez-Gay MA, Gonzalez-Juanatey C (2016) Cardiovascular risk factor assessment: still an unmet need in chronic inflammatory diseases. Heart 102(24):1937–1939PubMedGoogle Scholar
  79. 79.
    Perrone-Filardi P et al (2005) Relation of brachial artery flow-mediated vasodilation to significant coronary artery disease in patients with peripheral arterial disease. Am J Cardiol 96(9):1337–1341PubMedGoogle Scholar
  80. 80.
    Gargiulo P et al (2014) Ischemic heart disease in systemic inflammatory diseases. An appraisal. Int J Cardiol 170(3):286–290PubMedGoogle Scholar
  81. 81.
    Vaudo G et al (2004) Endothelial dysfunction in young patients with rheumatoid arthritis and low disease activity. Ann Rheum Dis 63(1):31–35PubMedPubMedCentralGoogle Scholar
  82. 82.
    Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115(10):1285–1295PubMedGoogle Scholar
  83. 83.
    Corretti MC et al (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39(2):257–265PubMedGoogle Scholar
  84. 84.
    del Sol AI et al (2002) Carotid intima-media thickness at different sites: relation to incident myocardial infarction—the Rotterdam Study. Eur Heart J 23(12):934–940Google Scholar
  85. 85.
    Gerli R et al (2008) Association of anti-cyclic citrullinated peptide antibodies with subclinical atherosclerosis in patients with rheumatoid arthritis. Ann Rheum Dis 67(5):724PubMedGoogle Scholar
  86. 86.
    van Sijl AM et al (2011) Carotid intima media thickness in rheumatoid arthritis as compared to control subjects: a meta-analysis. Semin Arthritis Rheum 40(5):389–397PubMedGoogle Scholar
  87. 87.
    Gonzalez-Juanatey C, Llorca J, Gonzalez-Gay MA (2011) Correlation between endothelial function and carotid atherosclerosis in rheumatoid arthritis patients with long-standing disease. Arthritis Res Ther 13(3):R101PubMedPubMedCentralGoogle Scholar
  88. 88.
    Gonzalez-Juanatey C et al (2007) High prevalence of subclinical atherosclerosis in psoriatic arthritis patients without clinically evident cardiovascular disease or classic atherosclerosis risk factors. Arthritis Rheum Arthritis Care Res 57(6):1074–1080Google Scholar
  89. 89.
    Recio-Mayoral A et al (2013) Inflammation and microvascular dysfunction in cardiac syndrome X patients without conventional risk factors for coronary artery disease. JACC Cardiovasc Imaging 6(6):660–667PubMedGoogle Scholar
  90. 90.
    Tondi P et al (2011) Endothelial dysfunction as assessed by flow-mediated dilation in patients with cardiac syndrome X: role of inflammation. Eur Rev Med Pharmacol Sci 15(9):1074–1077PubMedGoogle Scholar
  91. 91.
    Wallberg-Jonsson S et al (1999) Extent of inflammation predicts cardiovascular disease and overall mortality in seropositive rheumatoid arthritis. A retrospective cohort study from disease onset. J Rheumatol 26(12):2562–2571PubMedGoogle Scholar
  92. 92.
    Kahlenberg JM, Kaplan MJ (2013) Mechanisms of premature atherosclerosis in rheumatoid arthritis and lupus. Ann Rev Med 64:249–263PubMedGoogle Scholar
  93. 93.
    Buzas EI et al (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10(6):356–364PubMedGoogle Scholar
  94. 94.
    Koga H et al (2005) Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 45(10):1622–1630PubMedGoogle Scholar
  95. 95.
    Leroyer AS et al (2008) CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis. J Am Coll Cardiol 52(16):1302–1311PubMedGoogle Scholar
  96. 96.
    Latronico MVG, Condorelli G (2009) MicroRNAs and cardiac pathology. Nat Rev Cardiol 6(6):418–429Google Scholar
  97. 97.
    Zhu JH et al (2012) Regulation of MicroRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10. PLoS One 7(11):e46551PubMedPubMedCentralGoogle Scholar
  98. 98.
    Aroesty JM et al (1985) Simultaneous assessment of left ventricular systolic and diastolic dysfunction during pacing-induced ischemia. Circulation 71(5):889–900PubMedGoogle Scholar
  99. 99.
    Mavrogeni S et al (2014) Rheumatoid arthritis: an autoimmune disease with female preponderance and cardiovascular risk equivalent to diabetes mellitus: role of cardiovascular magnetic resonance. Inflamm Allergy Drug Targets 13(2):81–93PubMedGoogle Scholar
  100. 100.
    Faccini A, Kaski JC, Camici PG (2016) Coronary microvascular dysfunction in chronic inflammatory rheumatoid diseases. Eur Heart J 37(23):1799–1806CPubMedGoogle Scholar
  101. 101.
    Lanza GA, Crea F (2010) Primary coronary microvascular dysfunction clinical presentation, pathophysiology, and management. Circulation 121(21):2317–2325PubMedGoogle Scholar
  102. 102.
    Cannon RO 3rd et al (1985) Efficacy of calcium channel blocker therapy for angina pectoris resulting from small-vessel coronary artery disease and abnormal vasodilator reserve. Am J Cardiol 56(4):242–246PubMedGoogle Scholar
  103. 103.
    Patel A et al (2007) Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 370(9590):829–840PubMedGoogle Scholar
  104. 104.
    Skalidis EI et al (2011) Ivabradine improves coronary flow reserve in patients with stable coronary artery disease. Atherosclerosis 215(1):160–165PubMedGoogle Scholar
  105. 105.
    Mehta PK et al (2011) Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. JACC Cardiovasc Imaging 4(5):514–522PubMedGoogle Scholar
  106. 106.
    Villano A et al (2013) Effects of ivabradine and ranolazine in patients with microvascular angina pectoris. Am J Cardiol 112(1):8–13PubMedGoogle Scholar
  107. 107.
    Myasoedova E et al (2016) The role of rheumatoid arthritis (RA) flare and cumulative burden of RA severity in the risk of cardiovascular disease. Ann Rheum Dis 75(3):560–565PubMedGoogle Scholar
  108. 108.
    Roubille C et al (2015) The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis 74(3):480–489PubMedPubMedCentralGoogle Scholar
  109. 109.
    Barnabe C, Martin BJ, Ghali WA (2011) Systematic review and meta-analysis: anti-tumor necrosis factor alpha therapy and cardiovascular events in rheumatoid arthritis. Arthritis Care Res 63(4):522–529Google Scholar
  110. 110.
    Kerekes G et al (2009) Effects of rituximab treatment on endothelial dysfunction, carotid atherosclerosis, and lipid profile in rheumatoid arthritis. Clin Rheumatol 28(6):705–710PubMedGoogle Scholar
  111. 111.
    Kume K et al (2011) Tocilizumab monotherapy reduces arterial stiffness as effectively as etanercept or adalimumab monotherapy in rheumatoid arthritis: an open-label randomized controlled trial. J Rheumatol 38(10):2169–2171PubMedGoogle Scholar
  112. 112.
    Danninger K, Hoppe UC, Pieringer H (2014) Do statins reduce the cardiovascular risk in patients with rheumatoid arthritis? Int J Rheum Dis 17(6):606–611PubMedGoogle Scholar
  113. 113.
    Ardoin SP et al (2014) Secondary analysis of APPLE study suggests atorvastatin may reduce atherosclerosis progression in pubertal lupus patients with higher C reactive protein. Ann Rheum Dis 73(3):557–566PubMedGoogle Scholar
  114. 114.
    Timar O et al (2012) Rosuvastatin improves impaired endothelial function and lowers high sensitivity Crp in patients with systemic sclerosis—a prospective case-series study. Ann Rheum Dis 71:236–236Google Scholar
  115. 115.
    Agca R et al (2017) EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis 76(1):17–28PubMedGoogle Scholar
  116. 116.
    Ho KKL et al (1993) The epidemiology of heart failure—the Framingham Study. J Am Coll Cardiol 22(4):A6–A13Google Scholar
  117. 117.
    Stewart S et al (2003) Heart failure and the aging population: an increasing burden in the 21st century? Heart 89(1):49–53PubMedPubMedCentralGoogle Scholar
  118. 118.
    Ho KK et al (1993) Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation 88(1):107–115PubMedGoogle Scholar
  119. 119.
    Braunschweig F, Cowie MR, Auricchio A (2011) What are the costs of heart failure? Europace 13:Ii13–Ii17PubMedGoogle Scholar
  120. 120.
    Yancy CW et al (2016) 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America (vol 68, pg 1476, 2016). J Am Coll Cardiol 68(13):1495–1495Google Scholar
  121. 121.
    Owan TE et al (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355(3):251–259PubMedGoogle Scholar
  122. 122.
    Mann DL (2015) Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res 116(7):1254–1268PubMedPubMedCentralGoogle Scholar
  123. 123.
    Pan JP et al (2004) The value of plasma levels of tumor necrosis factor-alpha and interleukin-6 in predicting the severity and prognosis in patients with congestive heart failure. J Chin Med Assoc 67(5):222–228PubMedGoogle Scholar
  124. 124.
    van der Velde AR et al (2013) Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail 6(2):219–226PubMedGoogle Scholar
  125. 125.
    Edelmann F et al (2015) Galectin-3 in patients with heart failure with preserved ejection fraction: results from the Aldo-DHF trial. Eur J Heart Fail 17(2):214–223PubMedGoogle Scholar
  126. 126.
    Dieplinger B, Mueller T (2015) Soluble ST2 in heart failure. Clin Chim Acta 443:57–70PubMedGoogle Scholar
  127. 127.
    Skudicky D et al (2001) Beneficial effects of pentoxifylline in patients with idiopathic dilated cardiomyopathy treated with angiotensin-converting enzyme inhibitors and carvedilol: results of a randomized study. Circulation 103(8):1083–1088PubMedGoogle Scholar
  128. 128.
    Gullestad L et al (2005) Effect of thalidomide on cardiac remodeling in chronic heart failure: results of a double-blind, placebo-controlled study. Circulation 112(22):3408–3414PubMedGoogle Scholar
  129. 129.
    Mann DL et al (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109(13):1594–1602PubMedGoogle Scholar
  130. 130.
    Kallikourdis M et al (2017) T cell costimulation blockade blunts pressure overload-induced heart failure. Nat Commun 8:14680PubMedPubMedCentralGoogle Scholar
  131. 131.
    Nicola PJ et al (2005) The risk of congestive heart failure in rheumatoid arthritis: a population-based study over 46 years. Arthritis Rheum 52(2):412–420PubMedGoogle Scholar
  132. 132.
    Corrao S et al (1996) Echo-Doppler left ventricular filling abnormalities in patients with rheumatoid arthritis without clinically evident cardiovascular disease. Eur J Clin Investig 26(4):293–297Google Scholar
  133. 133.
    Bhatia GS et al (2006) Left ventricular systolic dysfunction in rheumatoid disease: an unrecognized burden? J Am Coll Cardiol 47(6):1169–1174PubMedGoogle Scholar
  134. 134.
    Rexhepaj N et al (2006) Left and right ventricular diastolic functions in patients with rheumatoid arthritis without clinically evident cardiovascular disease. Int J Clin Pract 60(6):683–688PubMedGoogle Scholar
  135. 135.
    Shang Q et al (2011) High prevalence of subclinical left ventricular dysfunction in patients with psoriatic arthritis. J Rheumatol 38(7):1363–1370PubMedGoogle Scholar
  136. 136.
    Armstrong AW et al (2012) Coronary artery disease in patients with psoriasis referred for coronary angiography. Am J Cardiol 109(7):976–980PubMedGoogle Scholar
  137. 137.
    Khalid U et al (2014) Psoriasis and risk of heart failure: a nationwide cohort study. Eur J Heart Fail 16(7):743–748PubMedGoogle Scholar
  138. 138.
    Yiu KH et al (2011) Relationship between cardiac valvular and arterial calcification in patients with rheumatoid arthritis and systemic lupus erythematosus. J Rheumatol 38(4):621–627PubMedGoogle Scholar
  139. 139.
    Garcia-Hernandez FJ et al (2014) Echocardiographic alterations in a series of patients with systemic systemic sclerosis. Clin Exp Rheumatol 32(2):S90–S90Google Scholar
  140. 140.
    Champion HC (2008) The heart in scleroderma. Rheum Dis Clin N Am 34(1):181Google Scholar
  141. 141.
    Singh S et al (2014) Risk of cerebrovascular accidents and ischemic heart disease in patients with inflammatory bowel disease: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 12(3):382–393 e1: quiz e22PubMedGoogle Scholar
  142. 142.
    Kristensen SL et al (2014) Inflammatory bowel disease is associated with an increased risk of hospitalization for heart failure: a Danish nationwide cohort study. Circ Heart Fail 7(5):717–U55PubMedGoogle Scholar
  143. 143.
    Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91(11):988–998Google Scholar
  144. 144.
    Khanna D, McMahon M, Furst DE (2004) Anti-tumor necrosis factor alpha therapy and heart failure: what have we learned and where do we go from here? Arthritis Rheum 50(4):1040–1050PubMedGoogle Scholar
  145. 145.
    Chao W (2009) Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. Am J Phys Heart Circ Phys 296(1):H1–H12Google Scholar
  146. 146.
    Dorn GW, Brown JH (1999) Gq signaling in cardiac adaptation and maladaptation. Trends Cardiovasc Med 9(1–2):26–34PubMedGoogle Scholar
  147. 147.
    Liang QR, Molkentin JD (2003) Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol 35(12):1385–1394PubMedGoogle Scholar
  148. 148.
    Anker SD, von Haehling S (2004) Inflammatory mediators in chronic heart failure: an overview. Heart 90(4):464–470PubMedPubMedCentralGoogle Scholar
  149. 149.
    Hofmann U, Frantz S (2013) How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol 108(4):356PubMedPubMedCentralGoogle Scholar
  150. 150.
    Gullestad L et al (2012) Inflammatory cytokines in heart failure: mediators and markers. Cardiology 122(1):23–35PubMedGoogle Scholar
  151. 151.
    Valgimigli M et al (2005) Tumor necrosis factor-alpha receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: the Cytokine-Activation and Long-Term Prognosis in Myocardial Infarction (C-ALPHA) study. Circulation 111(7):863–870PubMedGoogle Scholar
  152. 152.
    Kehmeier ES et al (2012) TNF-alpha, myocardial perfusion and function in patients with ST-segment elevation myocardial infarction and primary percutaneous coronary intervention. Clin Res Cardiol 101(10):815–827PubMedGoogle Scholar
  153. 153.
    Gulick T et al (1989) Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci U S A 86(17):6753–6757PubMedPubMedCentralGoogle Scholar
  154. 154.
    Moe GW et al (2004) In vivo TNF-alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol 287(4):H1813–H1820PubMedGoogle Scholar
  155. 155.
    Kumar A et al (1996) Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183(3):949–958PubMedGoogle Scholar
  156. 156.
    Patten M et al (2001) Endotoxin and cytokines alter contractile protein expression in cardiac myocytes in vivo. Pflugers Arch 442(6):920–927PubMedGoogle Scholar
  157. 157.
    Westermann D et al (2011) Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail 4(1):44–52PubMedGoogle Scholar
  158. 158.
    Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62(4):263–271PubMedGoogle Scholar
  159. 159.
    Amiri F et al (2002) Fibrosis, matrix metalloproteinases and inflammation in the heart of DOCA-salt hypertensive rats: role of ETA receptors. J Hypertens 20:S174–S174Google Scholar
  160. 160.
    Gomez-Garre D et al (2010) Rosuvastatin added to standard heart failure therapy improves cardiac remodelling in heart failure rats with preserved ejection fraction. Eur J Heart Fail 12(9):903–912PubMedGoogle Scholar
  161. 161.
    Palazzuoli A et al (2012) Clinical impact of BNP and other emerging biomarkers in heart failure evaluation and management. Minerva Cardioangiol 60(2):183–194PubMedGoogle Scholar
  162. 162.
    Torre-Amione G (2005) Immune activation in chronic heart failure. Am J Cardiol 95(11A):3C–8CPubMedGoogle Scholar
  163. 163.
    Phelan D et al (2012) Modest elevation in BNP in asymptomatic hypertensive patients reflects sub-clinical cardiac remodeling, inflammation and extracellular matrix changes. PLoS One 7(11):e49259PubMedPubMedCentralGoogle Scholar
  164. 164.
    van Riet EES et al (2014) Prevalence of unrecognized heart failure in older persons with shortness of breath on exertion. Eur J Heart Fail 16(7):772–777PubMedGoogle Scholar
  165. 165.
    Ponikowski P et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975PubMedGoogle Scholar
  166. 166.
    Thakkar V et al (2013) The inclusion of N-terminal pro-brain natriuretic peptide in a sensitive screening strategy for systemic sclerosis-related pulmonary arterial hypertension: a cohort study. Arthritis Res Ther 15(6):R193PubMedPubMedCentralGoogle Scholar
  167. 167.
    Mavrogeni S et al (2017) Complementary role of cardiovascular imaging and laboratory indices in early detection of cardiovascular disease in systemic lupus erythematosus. Lupus 26(3):227–236PubMedGoogle Scholar
  168. 168.
    Ferrari L, Sada S, Metodologi GGA (2015) Efficacy of angiotensin-neprilysin inhibition versus enalapril in patient with heart failure with a reduced ejection fraction. Intern Emerg Med 10(3):369–371PubMedGoogle Scholar
  169. 169.
    Hjalmarson A et al (2000) Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure—the metoprolol CR/XL randomized intervention trial in congestive heart failure (MERIT-HF). JAMA J Am Med Assoc 283(10):1295–1302Google Scholar
  170. 170.
    Pitt B et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 341(10):709–717PubMedGoogle Scholar
  171. 171.
    Swedberg K et al (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376(9744):875–885PubMedGoogle Scholar
  172. 172.
    Abbate A et al (2010) Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot Study). Am J Cardiol 105(10):1371–1377PubMedGoogle Scholar
  173. 173.
    Heymans S et al (2005) Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 166(1):15–25PubMedPubMedCentralGoogle Scholar
  174. 174.
    Patrucco E et al (2004) PI3K gamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118(3):375–387PubMedGoogle Scholar
  175. 175.
    Sfikakis PP (2010) The first decade of biologic TNF antagonists in clinical practice: lessons learned, unresolved issues and future directions. Curr Dir Autoimmun 11:180–210PubMedGoogle Scholar
  176. 176.
    Sarzi-Puttini P et al (2005) TNF-alpha, rheumatoid arthritis, and heart failure: a rheumatological dilemma. Autoimmun Rev 4(3):153–161PubMedGoogle Scholar
  177. 177.
    Diamantopoulos AP, Larsen AI, Omdal R (2013) Is it safe to use TNF-alpha blockers for systemic inflammatory disease in patients with heart failure? Importance of dosage and receptor specificity. Int J Cardiol 167(5):1719–1723PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Cardiovascular MedicineHumanitas Research HospitalMilanItaly
  2. 2.Humanitas UniversityMilanItaly

Personalised recommendations