Advertisement

Clinical Reviews in Allergy & Immunology

, Volume 57, Issue 1, pp 1–22 | Cite as

Cashew Nut Allergy: Clinical Relevance and Allergen Characterisation

  • Cíntia Mendes
  • Joana CostaEmail author
  • António A. Vicente
  • Maria Beatriz P. P. Oliveira
  • Isabel MafraEmail author
Article

Abstract

Cashew plant (Anacardium occidentale L.) is the most relevant species of the Anacardium genus. It presents high economic value since it is widely used in human nutrition and in several industrial applications. Cashew nut is a well-appreciated food (belongs to the tree nut group), being widely consumed as snacks and in processed foods by the majority of world’s population. However, cashew nut is also classified as a potent allergenic food known to be responsible for triggering severe and systemic immune reactions (e.g. anaphylaxis) in sensitised/allergic individuals that often demand epinephrine treatment and hospitalisation. So far, three groups of allergenic proteins have been identified and characterised in cashew nut: Ana o 1 and Ana o 2 (cupin superfamily) and Ana o 3 (prolamin superfamily), which are all classified as major allergens. The prevalence of cashew nut allergy seems to be rising in industrialised countries with the increasing consumption of this nut. There is still no cure for cashew nut allergy, as well as for other food allergies; thus, the allergic patients are advised to eliminate it from their diets. Accordingly, when carefully choosing processed foods that are commercially available, the allergic consumers have to rely on proper food labelling. In this sense, the control of labelling compliance is much needed, which has prompted the development of proficient analytical methods for allergen analysis. In the recent years, significant research advances in cashew nut allergy have been accomplished, which are highlighted and discussed in this review.

Keywords

Anacardium occidentale L. Food allergy Allergens Prevalence Threshold levels Immunotherapy Clinical relevance Cashew detection 

Notes

Acknowledgments

This work was supported by FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020 with grant no. UID/QUI/50006/2013–POCI/01/0145/FEDER/007265. Joana Costa is grateful to FCT post-doctoral grant (SFRH/BPD/102404/2014) financed by POPH-QREN (subsidised by FSE and MCTES).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    GRIN-USDA, Germplasm Resources Information Network—United States Department of Agriculture, Beltsville, MD, USA. http://www.ars-grin.gov/. Accessed 12 Jan 2016.
  2. 2.
    Blazdell P (2000) The mighty cashew. Interdiscip Sci Rev 25:220–226Google Scholar
  3. 3.
    Shahidi F, Tan Z (2008) Bioactive compounds from cashew nut and its coproducts. In Alasalvar C and Shahidi F (eds) Tree nuts: composition, phytochemicals, and health effects: an overview. Taylor & Francis Group, Boca Raton, chapter 10.Google Scholar
  4. 4.
    Nair KPP (2010) Cashew nut (Anacardium occidentale L.). In Nair KPP (ed) Tree crops of the developing world. Elsevier, Amsterdam, chapter 2.Google Scholar
  5. 5.
    Nussinovitch A (2010) Major plant exudates of the world. In Nussinovitch A (ed) Plant gum exudates of the world: sources, distribution, properties, and applications. Taylor & Francis Group, Boca Raton, chapter 3.Google Scholar
  6. 6.
    FAOSTAT, Food and Agriculture Organization of the United Nations, Statistics Division, Economic and Social Development Department, Rome, Italy. http://faostat3.fao.org/home/E. Accessed 12 Jan 2016.
  7. 7.
    Ros E (2010) Health benefits of nut consumption. Nutrients 2:652–682. doi: 10.3390/nu2070652 Google Scholar
  8. 8.
    FDA (2003), Administration Qualified Health Claims, letter of enforcement discretion—nuts and coronary heart disease (Docket No 02P-0505), Ingredients, Packaging & Labeling, Food and Drug Administration, Washington, DC, USA. http://www.fda.gov/Food/IngredientsPackagingLabeling/LabelingNutrition/ucm072926.htm. Accessed 3 February 2016.
  9. 9.
    CODEX STAN 1 (1985) Amended in 1991, 1999, 2001, 2003, 2005, 2008 and 2010 regarding the general standard for the labelling of pre-packaged foods. FAO/WHO standards. Off Codex Stand. http://www.codexalimentarius.org/standards/list-of-standards/ Accessed 3 Feb 2016.
  10. 10.
    Directive 2003/89/EC of 10 November 2003 amending Directive 2000/13/EC regarding indication of the ingredients present in foodstuffs. Off J Eur Union L308:15–18.Google Scholar
  11. 11.
    Directive 2007/68/EC of 27 November 2007 amending Annex IIIa to Directive 2000/13/EC regarding certain food ingredients. Off J Eur Union L310:11–14.Google Scholar
  12. 12.
    Regulation (EU) No 1169/2011 of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Off J Eur Union L304:18–63.Google Scholar
  13. 13.
    Gendel SM (2012) Comparison of international food allergen labeling regulations. Regul Toxicol Pharmacol 63:279–285. doi: 10.1016/j.yrtph.2012.04.007 Google Scholar
  14. 14.
    Taylor SL, Baumert JL (2015) Worldwide food allergy labeling and detection of allergens in processed foods. Chem Immunol Allergy 101:227–234. doi: 10.1159/000373910 Google Scholar
  15. 15.
    Zuidmeer L, Goldhahn K, Rona RJ et al (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol 121:1210–1218. doi: 10.1016/j.jaci.2008.02.019 Google Scholar
  16. 16.
    McWilliam V, Koplin J, Lodge C, Tang M, Dharmage S, Allen K (2015) The prevalence of tree nut allergy: a systematic review. Curr Allergy Asthma Rep 15:1–13. doi: 10.1007/s11882-015-0555-8 Google Scholar
  17. 17.
    Sicherer SH, Furlong TJ, Munoz-Furlong A, Burks AW, Sampson HA (2001) A voluntary registry for peanut and tree nut allergy: characteristics of the first 5149 registrants. J Allergy Clin Immunol 108:128–132. doi: 10.1016/j.jaci.2014.12.1906 Google Scholar
  18. 18.
    Fleischer DM, Conover-Walker MK, Matsui EC, Wood RA (2005) The natural history of tree nut allergy. J Allergy Clin Immunol 116:1087–1093. doi: 10.1016/j.jaci.2005.09.002 Google Scholar
  19. 19.
    Johnson J, Malinovschi A, Alving K, Lidholm J, Borres MP, Nordvall L (2014) Ten-year review reveals changing trends and severity of allergic reactions to nuts and other foods. Acta Paediatr 103:862–867. doi: 10.1111/apa.12687 Google Scholar
  20. 20.
    Vetander M, Helander D, Flodström C et al (2012) Anaphylaxis and reactions to foods in children—a population-based case study of emergency department visits. Clin Exp Allergy 42:568–577. doi: 10.1111/j.1365-2222.2011.03954.x Google Scholar
  21. 21.
    Le TM, Lindner TM, Pasmans SG et al (2008) Reported food allergy to peanut, tree nuts and fruit: comparison of clinical manifestations, prescription of medication and impact on daily life. Allergy 63:910–916. doi: 10.1111/j.1398-9995.2008.01688.x Google Scholar
  22. 22.
    Moneret-Vautrin DA (2008) Épidémiologie de l’allergie alimentaire. Rev Fr Allergol 48:171–178. doi: 10.1016/j.allerg.2008.01.018 CrossRefGoogle Scholar
  23. 23.
    De Silva IL, Mehr SS, Tey D, Tang MLK (2008) Paediatric anaphylaxis: a 5-year retrospective review. Allergy 63:1071–1076. doi: 10.1111/j.1398-9995.2008.01719.x Google Scholar
  24. 24.
    Davoren M, Peake J (2005) Cashew nut allergy is associated with a high risk of anaphylaxis. Arch Dis Child 90:1084–1085. doi: 10.1136/adc.2005.073817 Google Scholar
  25. 25.
    Rancé F, Bidat E, Bourrier T, Sabouraud D (2003) Cashew allergy: observations of 42 children without associated peanut allergy. Allergy 58:1311–1314. doi: 10.1046/j.1398-9995.2003.00342.x Google Scholar
  26. 26.
    Sicherer SH, Leung DYM (2015) Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2014. J Allergy Clin Immunol 135:357–367. doi: 10.1016/j.jaci.2014.12.1906 Google Scholar
  27. 27.
    Boyce JA, Assa’ad A, Burks AW et al (2010) Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol 126:S1–S58. doi: 10.1016/j.jaci.2010.10.007 Google Scholar
  28. 28.
    Valenta R, Hochwallner H, Linhart B, Pahr S (2015) Food allergies: the basics. Gastroenterology 148:1120–1131.e1124. doi:  10.1053/j.gastro.2015.02.006
  29. 29.
    Gómez E, Mayorga C, Gómez F et al (2013) Food allergy: management, diagnosis and treatment strategies. Immunotherapy 5:755–768. doi: 10.2217/imt.13.63 Google Scholar
  30. 30.
    Lupinek C, Wollmann E, Baar A et al (2014) Advances in allergen-microarray technology for diagnosis and monitoring of allergy: the MeDALL allergen-chip. Methods 66:106–119. doi: 10.1016/j.ymeth.2013.10.008 Google Scholar
  31. 31.
    Clark AT, Anagnostou K, Ewan PW (2007) Cashew nut causes more severe reactions than peanut: case-matched comparison in 141 children. Allergy 62:913–916. doi: 10.1111/j.1398-9995.2007.01447.x Google Scholar
  32. 32.
    van der Valk JPM, Gerth van Wijk R, Dubois AEJ et al (2016) Multicentre double-blind placebo-controlled food challenge study in children sensitised to cashew nut. PLoS One 11:1–12. doi: 10.1371/journal.pone.0151055 CrossRefGoogle Scholar
  33. 33.
    Maloney JM, Rudengren M, Ahlstedt S, Bock SA, Sampson HA (2008) The use of serum-specific IgE measurements for the diagnosis of peanut, tree nut, and seed allergy. J Allergy Clin Immunol 122:145–151. doi: 10.1016/j.jaci.2008.04.014 Google Scholar
  34. 34.
    van der Valk JPM, Gerth van Wijk R, Hoorn E, Groenendijk L, Groenendijk IM, de Jong NW (2016) Measurement and interpretation of skin prick test results. Clin Transl Allergy 6:8. doi: 10.1186/s13601-016-0092-0 Google Scholar
  35. 35.
    Savvatianos S, Konstantinopoulos AP, Borga A et al (2015) Sensitization to cashew nut 2S albumin, Ana o 3, is highly predictive of cashew and pistachio allergy in Greek children. J Allergy Clin Immunol 136:192–194. doi: 10.1016/j.jaci.2015.03.037 Google Scholar
  36. 36.
    Muraro A, Roberts G, Worm M et al (2014) Anaphylaxis: guidelines from the European Academy of Allergy and Clinical Immunology. Allergy 69:1026–1045. doi: 10.1111/all.12437 Google Scholar
  37. 37.
    Chowdhury BA, Meyer RJ (2002) Intramuscular versus subcutaneous injection of epinephrine in the treatment of anaphylaxis. J Allergy Clin Immunol 109:720. doi: 10.1067/mai.2002.123252 Google Scholar
  38. 38.
    Bégin P, Chinthrajah RS, Nadeau KC (2014) Oral immunotherapy for the treatment of food allergy. Hum Vaccines Immunother 10:2295–2302. doi: 10.4161/hv.29233 Google Scholar
  39. 39.
    Mousallem T, Burks AW (2012) Immunology in the clinic review series; focus on allergies: immunotherapy for food allergy. Clin Exp Immunol 167:26–31. doi: 10.1111/j.1365-2249.2011.04499.x Google Scholar
  40. 40.
    Sato S, Yanagida N, Ogura K et al (2014) Clinical studies in oral allergen-specific immunotherapy: differences among allergens. Int Arch Allergy Immunol 164:1–9. doi: 10.1159/000361025 Google Scholar
  41. 41.
    Sindher S, Fleischer DM, Spergel JM (2016) Advances in the treatment of food allergy: sublingual and epicutaneous immunotherapy. Immunol Allergy Clin North Am 36:39–54. doi: 10.1016/j.iac.2015.08.008 Google Scholar
  42. 42.
    Kulis M, Li Y, Lane H, Pons L, Burks W (2011) Single-tree nut immunotherapy attenuates allergic reactions in mice with hypersensitivity to multiple tree nuts. J Allergy Clin Immunol 127:81–88. doi: 10.1016/j.jaci.2010.09.014 Google Scholar
  43. 43.
    Kulis M, MacQueen I, Li YF, Guo RS, Zhong XP, Burks AW (2012) Pepsinized cashew proteins are hypoallergenic and immunogenic and provide effective immunotherapy in mice with cashew allergy. J Allergy Clin Immunol 130:716–723. doi: 10.1016/j.jaci.2012.05.044 Google Scholar
  44. 44.
    Okada Y, Yanagida N, Sato S et al (2015) Oral immunotherapy initiation for multi-nut allergy: a case report. Allergol Int 64:192–193. doi: 10.1016/j.alit.2014.09.004 Google Scholar
  45. 45.
    Bégin P, Dominguez T, Wilson SP et al (2014) Phase 1 results of safety and tolerability in a rush oral immunotherapy protocol to multiple foods using omalizumab. Allergy Asthma Clin Immunol 10:1–10. doi: 10.1186/1710-1492-10-7 Google Scholar
  46. 46.
    El-Qutob D (2015) Off-label uses of omalizumab. Clin Rev Allergy Immunol 50:84–96. doi: 10.1007/s12016-015-8490-y Google Scholar
  47. 47.
    Entink RHK, Remington BC, Blom WM et al (2014) Food allergy population thresholds: an evaluation of the number of oral food challenges and dosing schemes on the accuracy of threshold dose distribution modeling. Food Chem Toxicol 70:134–143. doi: 10.1016/j.fct.2014.05.001 Google Scholar
  48. 48.
    Crevel RWR, Baumert JL, Baka A et al (2014) Development and evolution of risk assessment for food allergens. Food Chem Toxicol 67:262–276. doi: 10.1016/j.fct.2014.01.032 Google Scholar
  49. 49.
    Taylor SL, Baumert JL, Kruizinga AG et al (2014) Establishment of reference doses for residues of allergenic foods: report of the VITAL expert panel. Food Chem Toxicol 63:9–17. doi: 10.1016/j.fct.2013.10.032 Google Scholar
  50. 50.
    Blom WM, Vlieg-Boerstra BJ, Kruizinga AG, van der Heide S, Houben GF, Dubois AEJ (2013) Threshold dose distributions for 5 major allergenic foods in children. J Allergy Clin Immunol 131:172–179. doi: 10.1016/j.jaci.2012.10.034 Google Scholar
  51. 51.
    Allen KJ, Remington BC, Baumert JL et al (2014) Allergen reference doses for precautionary labeling (VITAL 2.0): clinical implications. J Allergy Clin Immunol 133:156–164. doi: 10.1016/j.jaci.2013.06.042 Google Scholar
  52. 52.
    Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H (2008) Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol 121:847–852.e847. doi:  10.1016/j.jaci.2008.01.025
  53. 53.
    Jenkins JA, Griffiths-Jones S, Shewry PR, Breiteneder H, Mills ENC (2005) Structural relatedness of plant food allergens with specific reference to cross-reactive allergens: an in silico analysis. J Allergy Clin Immunol 115:163–170. doi: 10.1016/j.jaci.2004.10.026 Google Scholar
  54. 54.
    Harrer A, Egger M, Gadermaier G et al (2010) Characterization of plant food allergens: an overview on physicochemical and immunological techniques. Mol Nutr Food Res 54:93–112. doi: 10.1002/mnfr.200900096 Google Scholar
  55. 55.
    Moreno FJ (2007) Gastrointestinal digestion of food allergens: effect on their allergenicity. Biomed Pharmacother 61:50–60. doi: 10.1016/j.biopha.2006.10.005 Google Scholar
  56. 56.
    Moreno FJ, Clemente A (2008) 2S albumin storage proteins: what makes them food allergens? Open Biochem J 2:16–28. doi: 10.2174/1874091X00802010016 Google Scholar
  57. 57.
    van der Valk JPM, Dubois AEJ, Gerth van Wijk R, Wichers HJ, de Jong NW (2014) Systematic review on cashew nut allergy. Allergy 69:692–698. doi: 10.1111/all.12401 Google Scholar
  58. 58.
    Grigg A, Hanson C, Davis CM (2009) Cashew allergy compared to peanut allergy in a US tertiary care center. Pediatr Asthma Allergy Immunol 22:101–104. doi: 10.1089/pai.2009.0017 Google Scholar
  59. 59.
    ALLERGEN, World Health Organization and International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-committee official site for the systematic allergen nomenclature. http://www.allergen.org/. Accessed 18 Feb 2016.
  60. 60.
    Radauer C, Breiteneder H (2007) Evolutionary biology of plant food allergens. J Allergy Clin Immunol 120:518–525. doi: 10.1016/j.jaci.2007.07.024 Google Scholar
  61. 61.
    Breiteneder H, Mills ENC (2005) Plant food allergens—structural and functional aspects of allergenicity. Biotechnol Adv 23:395–399. doi: 10.1016/j.biotechadv.2005.05.004 Google Scholar
  62. 62.
    Breiteneder H, Radauer C (2004) A classification of plant food allergens. J Allergy Clin Immunol 113:821–830. doi: 10.1016/j.jaci.2004.01.779 Google Scholar
  63. 63.
    ALLERGOME, allergome database, the platform for allergen knowledge, Latina, Italy. http://www.allergome.org/. Accessed 18 Feb 2016.
  64. 64.
    Chapman MD, Pomés A, Breiteneder H, Ferreira F (2007) Nomenclature and structural biology of allergens. J Allergy Clin Immunol 119:414–420. doi: 10.1016/j.jaci.2006.11.001 Google Scholar
  65. 65.
    Wang F, Robotham JM, Teuber SS, Tawde P, Sathe SK, Roux KH (2002) Ana o 1, a cashew (Anacardium occidental) allergen of the vicilin seed storage protein family. J Allergy Clin Immunol 110:160–166. doi: 10.1067/mai.2002.125208 Google Scholar
  66. 66.
    Guan XY, Noble KA, Tao YQ et al (2015) Epitope mapping of 7S cashew antigen in complex with antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. J Mass Spectrom 50:812–819. doi: 10.1002/jms.3589 Google Scholar
  67. 67.
    Reitsma M, Bastiaan-Net S, Sforza S et al (2016) Purification and characterization of Anacardium occidentale (cashew) allergens Ana o 1, Ana o 2, and Ana o 3. J Agric Food Chem 64:1191–1201. doi: 10.1021/acs.jafc.5b04401 Google Scholar
  68. 68.
    Barre A, Sordet C, Culerrier R, Rance F, Didier A, Rouge P (2008) Vicilin allergens of peanut and tree nuts (walnut, hazelnut and cashew nut) share structurally related IgE-binding epitopes. Mol Immunol 45:1231–1240. doi: 10.1016/j.molimm.2007.09.014 Google Scholar
  69. 69.
    Kulis M, Pons L, Burks AW (2009) In vivo and T cell cross-reactivity between walnut, cashew and peanut. Int Arch Allergy Immunol 148:109–117. doi: 10.1159/000155741 Google Scholar
  70. 70.
    de Leon MP, Glaspole IN, Drew AC, Rolland JM, O’Hehir RE, Suphioglu C (2003) Immunological analysis of allergenic cross-reactivity between peanut and tree nuts. Clin Exp Allergy 33:1273–1280. doi: 10.1046/j.1365-2222.2003.01761.x Google Scholar
  71. 71.
    Fernandez C, Fiandor A, Martinez-Garate A, Quesada JM (1995) Allergy to pistachio: cross-reactivity between pistachio nut and other Anacardiaceae. Clin Exp Allergy 25:1254–1259. doi: 10.1111/j.1365-2222.1995.tb03050.x Google Scholar
  72. 72.
    Garcia F, Moneo I, Fernandez B et al (2000) Allergy to Anacardiaceae: description of cashew and pistachio nut allergens. J Invest Allergol Clin Immunol 10:173–177Google Scholar
  73. 73.
    Hasegawa M, Inomata N, Yamazaki H, Morita A, Kirino M, Ikezawa Z (2009) Clinical features of four cases with cashew nut allergy and cross-reactivity between cashew nut and pistachio. Allergol Int 58:209–215. doi: 10.2332/allergolint.08-OA-0010 Google Scholar
  74. 74.
    Rougé P, Thibau F, Bourrier T, Saggio B, Culerrier R, Rancé F, Barre A (2011) Clinical relevance of IgE-binding cross-reactivity of allergens from cashew nut (Anacardium occidentale). Rev Fr Allergol 51:31–35. doi: 10.1016/j.reval.2010.10.005 Google Scholar
  75. 75.
    Willison LN, Tawde P, Robotham JM et al (2008) Pistachio vicilin, Pis v 3, is immunoglobulin E-reactive and cross-reacts with the homologous cashew allergen, Ana o 1. Clin Exp Allergy 38:1229–1238. doi: 10.1111/j.1365-2222.2008.02998.x Google Scholar
  76. 76.
    Mills EN, Jenkins J, Marigheto N, Belton PS, Gunning AP, Morris VJ (2002) Allergens of the cupin superfamily. Biochem Soc Trans 30:925–929. doi: 10.1042/bst0300925 Google Scholar
  77. 77.
    Teuber SS, Sathe SK, Peterson WR, Roux KH (2002) Characterization of the soluble allergenic proteins of cashew nut (Anacardium occidentale L.). J Agric Food Chem 50:6543–6549. doi: 10.1021/jf025757j Google Scholar
  78. 78.
    Wang F, Robotham JM, Teuber SS, Sathe SK, Roux KH (2003) Ana o 2, a major cashew (Anacardium occidentale L.) nut allergen of the legumin family. Int Arch Allergy Immunol 132:27–39. doi: 10.1159/000073262 Google Scholar
  79. 79.
    Robotham JM, Hoffman GG, Teuber SS et al (2009) Linear IgE-epitope mapping and comparative structural homology modeling of hazelnut and English walnut 11S globulins. Mol Immunol 46:2975–2984. doi: 10.1016/j.molimm.2009.06.020 Google Scholar
  80. 80.
    Barre A, Jacquet G, Sordet C, Culerrier R, Rougé P (2007) Homology modelling and conformational analysis of IgE-binding epitopes of Ara h 3 and other legumin allergens with a cupin fold from tree nuts. Mol Immunol 44:3243–3255. doi: 10.1016/j.molimm.2007.01.023 Google Scholar
  81. 81.
    Robotham JM, Xia LX, Willison LN, Teuber SS, Sathe SK, Roux KH (2010) Characterization of a cashew allergen, 11S globulin (Ana o 2), conformational epitope. Mol Immunol 47:1830–1838. doi: 10.1016/j.molimm.2009.12.009 Google Scholar
  82. 82.
    Xia LX, Willison LN, Porter L et al (2010) Mapping of a conformational epitope on the cashew allergen Ana o 2: a discontinuous large subunit epitope dependent upon homologous or heterologous small subunit association. Mol Immunol 47:1808–1816. doi: 10.1016/j.molimm.2010.01.018 Google Scholar
  83. 83.
    Kshirsagar HH, Fajer P, Sharma GM, Roux KH, Sathe SK (2011) Biochemical and spectroscopic characterization of almond and cashew nut seed 11S legumins, amandin and anacardein. J Agric Food Chem 59:386–393. doi: 10.1021/jf1030899 Google Scholar
  84. 84.
    Chung SY, Mattison CP, Reed S, Wasserman RL, Desormeaux WA (2015) Treatment with oleic acid reduces IgE binding to peanut and cashew allergens. Food Chem 180:295–300. doi: 10.1016/j.foodchem.2015.02.056 Google Scholar
  85. 85.
    Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958. doi: 10.1093/jexbot/53.370.947 Google Scholar
  86. 86.
    Breiteneder H, Ebner C (2000) Molecular and biochemical classification of plant-derived food allergens. J Allergy Clin Immunol 106:27–36. doi: 10.1067/mai.2000.106929 Google Scholar
  87. 87.
    Pantoja-Uceda D, Bruix M, Santoro J, Rico M, Monsalve R, Villaba M (2002) Solution structure of allergenic 2S albumins. Biochem Soc Trans 30:919–924. doi: 10.1042/bst0300919 Google Scholar
  88. 88.
    Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins—structures and biosynthesis. Plant Cell 7:945–956. doi: 10.1105/tpc.7.7.945 Google Scholar
  89. 89.
    Terras FRG, Torrekens S, Van Leuven F et al (1993) A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett 316:233–240. doi: 10.1016/0014-5793(93)81299-F Google Scholar
  90. 90.
    Polya GM, Chandra S, Condron R (1993) Purification and sequencing of radish seed calmodulin antagonists phosphorylated by calcium-dependent protein kinase. Plant Physiol 101:545–551. doi: 10.1104/pp.101.2.545 Google Scholar
  91. 91.
    Sampson HA, Aceves S, Bock SA et al. (2014) Food allergy: a practice parameter update—2014. J Allergy Clin Immunol 134:1016–1025.e43. doi:  10.1016/j.jaci.2014.05.013
  92. 92.
    Robotham JM, Wang F, Seamon V et al (2005) Ana o 3, an important cashew nut (Anacardium occidentale L.) allergen of the 2S albumin family. J Allergy Clin Immunol 115:1284–1290. doi: 10.1016/j.jaci.2005.02.028 Google Scholar
  93. 93.
    Ahn K, Bardina L, Grishina G, Beyer K, Sampson HA (2009) Identification of two pistachio allergens, Pis v 1 and Pis v 2, belonging to the 2S albumin and 11S globulin family. Clin Exp Allergy 39:926–934. doi: 10.1111/j.1365-2222.2009.03259.x Google Scholar
  94. 94.
    Moreno FJ, Jenkins JA, Mellon FA et al (2004) Mass spectrometry and structural characterization of 2S albumin isoforms from Brazil nuts (Bertholletia excelsa). Biochim Biophys Acta 1698:175–186. doi: 10.1016/j.bbapap.2003.11.007 Google Scholar
  95. 95.
    Moreno FJ, Maldonado BM, Wellner N, Mills ENC (2005) Thermostability and in vitro digestibility of a purified major allergen 2S albumin (Ses i 1) from white sesame seeds (Sesamum indicum L.). Biochim Biophys Acta 1752:142–153. doi: 10.1016/j.bbapap.2005.07.022 Google Scholar
  96. 96.
    Vanga SK, Singh A, Raghavan V (in press) Review of conventional and novel food processing methods on food allergens. Crit Rev Food Sci Nutr. doi:  10.1080/10408398.2015.1045965.
  97. 97.
    Mills ENC, Mackie AR (2008) The impact of processing on allergenicity of food. Curr Opin Allergy Clin Immunol 8:249–253. doi: 10.1097/ACI.0b013e3282ffb123 Google Scholar
  98. 98.
    Mills ENC, Sancho AI, Rigby NM, Jenkins JA, Mackie AR (2009) Impact of food processing on the structural and allergenic properties of food allergens. Mol Nutr Food Res 53:963–969. doi: 10.1002/mnfr.200800236 Google Scholar
  99. 99.
    Su M, Venkatachalam M, Teuber SS, Roux KH, Sathe SK (2004) Impact of gamma-irradiation and thermal processing on the antigenicity of almond, cashew nut and walnut proteins. J Sci Food Agric 84:1119–1125. doi: 10.1002/jsfa.1748 Google Scholar
  100. 100.
    Venkatachalam M, Monaghan EK, Kshirsagar HH et al (2008) Effects of processing on immunoreactivity of cashew nut (Anacardium occidentale L.) seed flour proteins. J Agric Food Chem 56:8998–9005. doi: 10.1021/jf801199q Google Scholar
  101. 101.
    Mattison CP, Desormeaux WA, Wasserman RL, Yoshioka-Tarver M, Condon B, Grimm CC (2014) Decreased immunoglobulin E (IgE) binding to cashew allergens following sodium sulfite treatment and heating. J Agric Food Chem 62:6746–6755. doi: 10.1021/jf501117p Google Scholar
  102. 102.
    Untersmayr E, Jensen-Jarolim E (2008) The role of protein digestibility and antacids on food allergy outcomes. J Allergy Clin Immunol 121:1301–1308. doi: 10.1016/j.jaci.2008.04.025 Google Scholar
  103. 103.
    Mattison CP, Grimm CC, Wasserman RL (2014) In vitro digestion of soluble cashew proteins and characterization of surviving IgE-reactive peptides. Mol Nutr Food Res 58:884–893. doi: 10.1002/mnfr.201300299 Google Scholar
  104. 104.
    Crevel RWR, Baumert JL, Luccioli S (2014) Translating reference doses into allergen management practice: challenges for stakeholders. Food Chem Toxicol 67:277–287. doi: 10.1016/j.fct.2014.01.033 Google Scholar
  105. 105.
    Crevel RWR, Ballmer-Weber BK, Holzhauser T (2008) Thresholds for food allergens and their value to different stakeholders. Allergy 63:597–609. doi: 10.1111/j.1398-9995.2008.01636.x Google Scholar
  106. 106.
    Luccioli S (2012) Food allergy guidelines and assessing allergic reaction risks: a regulatory perspective. Curr Opin Allergy Clin Immunol 12:323–330. doi:Google Scholar
  107. 107.
    Costa J, Carrapatoso I, Oliveira MBPP, Mafra I (2014) Walnut allergens: molecular characterization, detection and clinical relevance. Clin Exp Allergy 44:319–341. doi: 10.1111/cea.12267 Google Scholar
  108. 108.
    Costa J, Mafra I, Carrapatoso I, Oliveira M (in press) Hazelnut allergens: molecular characterisation, detection and clinical relevance. Crit Rev Food Sci Nutr. doi:  10.1080/10408398.2013.826173.
  109. 109.
    Johnson PE, Sancho AI, Crevel RWR, Mills ENC (2011) Detection of allergens in foods. In: Nollet LML, van Hengel AJ (eds) Food allergens: analysis instrumentation and methods. CRC Press, Taylor & Francis Group, Boca Raton, pp 13–27Google Scholar
  110. 110.
    Schubert-Ullrich P, Rudolf J, Ansari et al (2009) Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Anal Bioanal Chem 395:69–81. doi: 10.1007/s00216-009-2715-y Google Scholar
  111. 111.
    Wei Y, Sathe SK, Teuber SS, Roux KH (2002) A sensitive sandwich ELISA for the detection of trace amount of cashew nut in foods. J Allergy Clin Immunol 109(1 supp 1):S303. doi: 10.1016/S0091-6749(02)82063-2 Google Scholar
  112. 112.
    Wei YH, Sathe SK, Teuber SS, Roux KH (2003) A sensitive sandwich ELISA for the detection of trace amounts of cashew (Anacardium occidentale L.) nut in foods. J Agric Food Chem 51:3215–3221. doi: 10.1021/jf025977x Google Scholar
  113. 113.
    Gaskin FE, Niemann LM, Hefle SL, Taylor SL (2009) Validated enzyme-linked immunosorbent assay (ELISA) for detection of undeclared cashew nut residues in foods. J Allergy Clin Immunol 123(2, Supplement):S245. doi: 10.1016/j.jaci.2008.12.946 Google Scholar
  114. 114.
    Gaskin FE, Taylor SL (2011) Sandwich enzyme-linked immunosorbent assay (ELISA) for detection of cashew nut in foods. J Food Sci 76:T218–T226. doi: 10.1111/j.1750-3841.2011.02407.x Google Scholar
  115. 115.
    Rejeb SB, Abbott M, Davies D, Cleroux C, Delahaut P (2005) Multi-allergen screening immunoassay for the detection of protein markers of peanut and four tree nuts in chocolate. Food Addit Contam 22:709–715. doi: 10.1080/026520030500158450 Google Scholar
  116. 116.
    Cho CY, Nowatzke W, Oliver K, Garber EAE (2015) Multiplex detection of food allergens and gluten. Anal Bioanal Chem 407:4195–4206. doi: 10.1007/s00216-015-8645-y Google Scholar
  117. 117.
    Rebe Raz S, Liu H, Norde W, Bremer MGEG (2010) Food allergens profiling with an imaging surface plasmon resonance-based biosensor. Anal Chem 82:8485–8491. doi: 10.1021/ac101819g Google Scholar
  118. 118.
    Bignardi C, Elviri L, Penna A, Careri M, Mangia A (2010) Particle-packed column versus silica-based monolithic column for liquid chromatography-electrospray-linear ion trap-tandem mass spectrometry multiallergen trace analysis in foods. J Chromatogr A 1217:7579–7585. doi: 10.1016/j.chroma.2010.10.037 Google Scholar
  119. 119.
    Bignardi C, Mattarozzi M, Penna A et al (2013) A rapid size-exclusion solid-phase extraction step for enhanced sensitivity in multi-allergen determination in dark chocolate and biscuits by liquid chromatography-tandem mass spectrometry. Food Anal Meth 6:1144–1152. doi: 10.1007/s12161-012-9521-4 Google Scholar
  120. 120.
    Sealey-Voyksner J, Zweigenbaum J, Voyksner R (2016) Discovery of highly conserved unique peanut and tree nut peptides by LC-MS/MS for multi-allergen detection. Food Chem 194:201–211. doi: 10.1016/j.foodchem.2015.07.043 Google Scholar
  121. 121.
    Pilolli R, Monaci L, Visconti A (2013) Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. Trac-Trends Anal Chem 47:12–26. doi: 10.1016/j.trac.2013.02.005 Google Scholar
  122. 122.
    Prado M, Ortea I, Vial S, Rivas J, Calo-Mata P, Barros-Velázquez J (in press) Advanced DNA- and protein-based methods for the detection and investigation of food allergens. Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2013.873767
  123. 123.
    Alves RC, Barroso MF, González-García MB, Oliveira MBPP, Delerue-Matos MC (in press) New trends in food allergens detection: towards biosensing strategies. Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2013.831026
  124. 124.
    Cunsolo V, Muccilli V, Saletti R, Foti S (2014) Mass spectrometry in food proteomics: a tutorial. J Mass Spectrom 49:768–784. doi: 10.1002/jms.3374 Google Scholar
  125. 125.
    Fæste CK, Rønning HT, Christians U, Granum PE (2011) Liquid chromatography and mass spectrometry in food allergen detection. J Food Prot 74:316–345. doi: 10.4315/0362-028X.JFP-10-336 Google Scholar
  126. 126.
    Monaci L, Visconti A (2009) Mass spectrometry-based proteomics methods for analysis of food allergens. Trac-Trend Anal Chem 28:581–591. doi: 10.1016/j.trac.2009.02.013 Google Scholar
  127. 127.
    Picariello G, Mamone G, Addeo F, Ferranti P (2011) The frontiers of mass spectrometry-based techniques in food allergenomics. J Chromatogr A 1218:7386–7398. doi: 10.1016/j.chroma.2011.06.033 Google Scholar
  128. 128.
    Costa J, Mafra I, Carrapatoso I, Oliveira M (2012) Almond allergens: molecular characterization, detection, and clinical relevance. J Agric Food Chem 60:1337–1349. doi: 10.1021/jf2044923 Google Scholar
  129. 129.
    Brzezinski JL (2006) Detection of cashew nut DNA in spiked baked goods using a real-time polymerase chain reaction method. J AOAC Int 89:1035–1038Google Scholar
  130. 130.
    Piknova L, Kuchta T (2007) Detection of cashew nuts in food by real-time polymerase chain reaction. J Food Nutr Res 46:101–104Google Scholar
  131. 131.
    Ehlert A, Hupfer C, Demmel A, Engel KH, Busch U (2008) Detection of cashew nut in foods by a specific real-time PCR method. Food Anal Meth 1:136–143. doi: 10.1007/s12161-008-9023-6 Google Scholar
  132. 132.
    Lopez-Calleja IM, de la Cruz S, Gonzalez I, Garcia T, Martin R (2015) Development of real-time PCR assays to detect cashew (Anacardium occidentale) and macadamia (Macadamia intergrifolia) residues in market analysis of processed food products. LWT-Food Sci Technol 62:233–241. doi: 10.1016/j.lwt.2015.01.023 Google Scholar
  133. 133.
    Pafundo S, Gulli M, Marmiroli N (2010) Multiplex real-time PCR using SYBR GreenER for the detection of DNA allergens in food. Anal Bioanal Chem 396:1831–1839. doi: 10.1007/s00216-009-3419-z Google Scholar
  134. 134.
    Koppel R, van Velsen-Zimmerli F, Bucher T (2012) Two quantitative hexaplex real-time PCR systems for the detection and quantification of DNA from twelve allergens in food. Eur Food Res Technol 235:843–852. doi: 10.1007/s00217-012-1806-8 Google Scholar
  135. 135.
    Ehlert A, Demmel A, Hupfer C, Busch U, Engel KH (2009) Simultaneous detection of DNA from 10 food allergens by ligation-dependent probe amplification. Food Addit Contam A 26:409–418. doi: 10.1080/02652030802593529 Google Scholar
  136. 136.
    Wang W, Han JX, Wu YJ, Yuan F, Chen Y, Ge YQ (2011) Simultaneous detection of eight food allergens using optical thin-film biosensor chips. J Agric Food Chem 59:6889–6894. doi: 10.1021/jf200933b Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.REQUIMTE-LAQV, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
  2. 2.CEB, Centro de Engenharia BiológicaUniversidade do MinhoBragaPortugal

Personalised recommendations