Clinical Reviews in Allergy & Immunology

, Volume 57, Issue 1, pp 23–38 | Cite as

Transglutaminase 2 and Transglutaminase 2 Autoantibodies in Celiac Disease: a Review

  • Tiina Rauhavirta
  • Minna Hietikko
  • Teea Salmi
  • Katri LindforsEmail author


Celiac disease is a common inflammatory disorder with a prevalence of 1–2 % in which a distinct dietary wheat, rye, and barley component, gluten, induces small-bowel mucosal villous atrophy, crypt hyperplasia, and inflammation. The small-bowel mucosal damage can be reversed by a strict lifelong gluten-free diet, which is currently the only effective treatment for the condition. A key player in the pathogenetic process leading to the enteropathy is played by a protein called transglutaminase 2 (TG2), which is able to enzymatically modify gluten-derived gliadin peptides. The TG2-catalyzed deamidation of the gliadin peptides results in their increased binding affinity to the disease-predisposing human leukocyte antigen (HLA) DQ2 and DQ8 molecules, thus enabling a strong immune response to be launched. Blocking the enzymatic activity of TG2 has thus been suggested as a suitable novel pharmacological approach to treat celiac disease. By virtue of its transamidation capacity, TG2 is also able to cross-link gliadin peptides to itself, this resulting in the generation of TG2-gliadin peptide complexes whose presence might provide an explanation for the generation of the TG2 autoantibodies characteristic of celiac disease. Due to their excellent specificity for the disorder, the TG2-targeted autoantibodies are widely used in the diagnostics as a first-line test to select patients for gastrointestinal endoscopy. More recently, it has come to be appreciated that these autoantibodies and also the TG2-specific B cells might play an active role in the disease pathogenesis. In this review, we assess the role of TG2, TG2-specific B cells, and autoantibodies in celiac disease.


Celiac disease Transglutaminase 2 Transglutaminase 2 autoantibodies 



This work was supported by funding from the Academy of Finland, the Competitive State Research Financing of the Expert Responsibility Areas of Tampere University Hospital (Grant 9T058), the Finnish Medical Foundation, the Sigrid Juselius Foundation, and the Päivikki and Sakari Sohlberg Foundation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lorand L, Graham R (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156Google Scholar
  2. 2.
    Griffin M, Casadio R, Bergamini C (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396Google Scholar
  3. 3.
    Sarkar NK, Clarke DD, Waelsch H (1957) An enzymically catalyzed incorporation of amines into proteins. Biochim Biophys Acta 25:451–452Google Scholar
  4. 4.
    Folk JEFJ (1977) The epsilon-(gamma-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem 31:1–133Google Scholar
  5. 5.
    Gentile V, Davies P, Baldini A (1994) The human tissue transglutaminase gene maps on chromosome 20q12 by in situ fluorescence hybridization. Genomics 20:295–297Google Scholar
  6. 6.
    Liu S, Cerione R, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci U S A 99:2743–2747Google Scholar
  7. 7.
    Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5:2788–2796Google Scholar
  8. 8.
    Lai T, Greenberg CS (2013) TGM2 and implications for human disease: role of alternative splicing. Front Biosci 18:504–519Google Scholar
  9. 9.
    Nurminskaya MV, Belkin AM (2012) Cellular functions of tissue transglutaminase. Int Rev Cell Mol Biol 294:1–97Google Scholar
  10. 10.
    Davies PJ, Murtaugh MP, Moore WT Jr, Johnson GS, Lucas D (1985) Retinoic acid-induced expression of tissue transglutaminase in human promyelocytic leukemia (HL-60) cells. J Biol Chem 260:5166–5174Google Scholar
  11. 11.
    Park D, Choi SS, Ha K (2010) Transglutaminase 2: a multi-functional protein in multiple subcellular compartments. Amino Acids 39:619–631Google Scholar
  12. 12.
    Zemskov EA, Mikhailenko I, Hsia R, Zaritskaya L, Belkin AM (2011) Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. FEBS J 278:96–96Google Scholar
  13. 13.
    Achyuthan KE, Greenberg CS (1987) Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem 262:1901–1906Google Scholar
  14. 14.
    Stamnaes J, Pinkas DM, Fleckenstein B, Khosla C, Sollid LM (2010) Redox regulation of transglutaminase 2 activity. J Biol Chem 285:25402–25409Google Scholar
  15. 15.
    Siegel M, Strnad P, Watts RE, Choi K, Jabri B, Omary MB, Khosla C (2008) Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One 3:e1861Google Scholar
  16. 16.
    Jin X, Stamnaes J, Klock C, DiRaimondo TR, Sollid LM, Khosla C (2011) Activation of extracellular transglutaminase 2 by thioredoxin. J Biol Chem 286:37866–37873Google Scholar
  17. 17.
    Lai T, Hausladen A, Slaughter T, Eu J, Stamler J, Greenberg C (2001) Calcium regulates S-nitrosylation, denitrosylation, and activity of tissue transglutaminase. Biotechnology (N Y) 40:4904–4910Google Scholar
  18. 18.
    Mishra S, Murphy L (2004) Tissue transglutaminase has intrinsic kinase activity—identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279:23863–23868Google Scholar
  19. 19.
    Mishra S, Melino G, Murphy LJ (2007) Transglutaminase 2 kinase activity facilitates protein kinase A-induced phosphorylation of retinoblastoma protein. J Biol Chem 282:18108–18115Google Scholar
  20. 20.
    Wang Z, Griffin M (2012) TG2, a novel extracellular protein with multiple functions. Amino Acids 42:939–949Google Scholar
  21. 21.
    Esposito C, Caputo I (2005) Mammalian transglutaminases—identification of substrates as a key to physiological function and physiopathological relevance. FEBS J 272:615–631Google Scholar
  22. 22.
    Kanchan K, Fuxreiter M, Fésüs L (2015) Physiological, pathological, and structural implications of non-enzymatic protein–protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 72:3009–3035Google Scholar
  23. 23.
    Fleckenstein B, Molberg Y, Qiao S, Schmid D, von der Mullbe F, Elgstoen K, Jung G, Sollid L (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease—role of enzyme specificity and pH influence on the transamidation versus deamidation reactions. J Biol Chem 277:34109–34116Google Scholar
  24. 24.
    Nakaoka H, Perez D, Baek K, Das T, Husain A, Misono K, Im M, Graham R (1994) G(h)—a Gtp-binding protein with transglutaminase activity and receptor signaling function. Science 264:1593–1596Google Scholar
  25. 25.
    Iismaa SE, Chung L, Wu M, Teller DC, Yee VC, Graham RM (1997) The core domain of the tissue transglutaminase Gh hydrolyzes GTP and ATP. Biochemistry 36:11655–1166 4Google Scholar
  26. 26.
    Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373:793–803Google Scholar
  27. 27.
    Mishra S, Saleh A, Espino PS, Davie JR, Murphy LJ (2006) Phosphorylation of histones by tissue transglutaminase. J Biol Chem 281:5532–5538Google Scholar
  28. 28.
    Akimov S, Krylov D, Fleischman L, Belkin A (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148:825–838Google Scholar
  29. 29.
    Akimov S, Belkin A (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98:1567–1576Google Scholar
  30. 30.
    Iismaa SE, Mearns BM, Lorand L, Graham RM (2009) Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 89:991–1023Google Scholar
  31. 31.
    Sulkanen S, Halttunen T, Laurila K, Kolho K, Korponay-Szabó IR, Sarnesto A, Savilahti E, Collin P, Mäki M (1998) Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology 115:1322–1328Google Scholar
  32. 32.
    Chorzelski TP, Sulej J, Tchorzewska H, Jablonska S, Beutner EH, Kumar V (1983) IgA class endomysium antibodies in dermatitis herpetiformis and coeliac disease a. Ann N Y Acad Sci 420:325–334Google Scholar
  33. 33.
    Rashtak S, Ettore MW, Homburger HA, Murray JA (2008) Comparative usefulness of deamidated gliadin antibodies in the diagnosis of celiac disease. Clin Gastroenterol Hepatol 6:426–432Google Scholar
  34. 34.
    Mustalahti K, Catassi C, Reunanen A, Fabiani E, Heier M, McMillan S, Murray L, Metzger M, Gasparin M, Bravi E (2010) The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med 42:587–595Google Scholar
  35. 35.
    Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, Drago S, Elitsur Y, Green PH, Guandalini S, Hill ID (2003) Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med 163:286–292Google Scholar
  36. 36.
    Lohi S, Mustalahti K, Kaukinen K, Laurila K, Collin P, Rissanen H, Lohi O, Bravi E, Gasparin M, Reunanen A (2007) Increasing prevalence of coeliac disease over time. Aliment Pharmacol Ther 26:1217–1225Google Scholar
  37. 37.
    Green PH, Lebwohl B, Greywoode R (2015) Celiac disease. J Allergy Clin Immunol 135:1099–1106Google Scholar
  38. 38.
    Mäki M, Mustalahti K, Kokkonen J, Kulmala P, Haapalahti M, Karttunen T, Ilonen J, Laurila K, Dahlbom I, Hansson T (2003) Prevalence of celiac disease among children in Finland. N Engl J Med 348:2517–2524Google Scholar
  39. 39.
    Vilppula A, Kaukinen K, Luostarinen L, Krekelä I, Patrikainen H, Valve R, Mäki M, Collin P (2009) Increasing prevalence and high incidence of celiac disease in elderly people: a population-based study. BMC Gastroenterol 9:1Google Scholar
  40. 40.
    Tack GJ, Verbeek WH, Schreurs MW, Mulder CJ (2010) The spectrum of celiac disease: epidemiology, clinical aspects and treatment. Nat Rev Gastroenterol Hepatol 7:204–213Google Scholar
  41. 41.
    Sollid LM (2004) Intraepithelial lymphocytes in celiac disease: license to kill revealed. Immunity 21:303–304Google Scholar
  42. 42.
    Akobeng AK, Ramanan AV, Buchan I, Heller RF (2006) Effect of breast feeding on risk of coeliac disease: a systematic review and meta-analysis of observational studies. Arch Dis Child 91:39–43Google Scholar
  43. 43.
    Silano M, Agostoni C, Guandalini S (2010) Effect of the timing of gluten introduction on the development of celiac disease. World J Gastroenterol 16:1939–1942Google Scholar
  44. 44.
    Vriezinga SL, Auricchio R, Bravi E, Castillejo G, Chmielewska A, Crespo Escobar P, Kolaček S, Koletzko S, Korponay-Szabo IR, Mummert E (2014) Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med 371:1304–1315Google Scholar
  45. 45.
    Silano M, Agostoni C, Sanz Y, Guandalini S (2016) Infant feeding and risk of developing celiac disease: a systematic review. BMJ Open 6:e009163–2015-009163Google Scholar
  46. 46.
    Mårild K, Kahrs CR, Tapia G, Stene LC, Størdal K (2015) Infections and risk of celiac disease in childhood: a prospective nationwide cohort study. Am J Gastroenterol 110:1475–1484Google Scholar
  47. 47.
    Stene LC, Honeyman MC, Hoffenberg EJ, Haas JE, Sokol RJ, Emery L, Taki I, Norris JM, Erlich HA, Eisenbarth GS (2006) Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol 101:2333–2340Google Scholar
  48. 48.
    Plot L, Amital H, Barzilai O, Ram M, Nicola B, Shoenfeld Y (2009) Infections may have a protective role in the etiopathogenesis of celiac disease. Ann N Y Acad Sci 1173:670–674Google Scholar
  49. 49.
    Kondrashova A, Mustalahti K, Kaukinen K, Viskari H, Volodicheva V, Haapala A, Ilonen J, Knip M, Mäki M, Hyöty H (2008) Lower economic status and inferior hygienic environment may protect against celiac disease. Ann Med 40:223–231Google Scholar
  50. 50.
    Dieli-Crimi R, Cénit MC, Núñez C (2015) The genetics of celiac disease: a comprehensive review of clinical implications. J Autoimmun 64:26–41Google Scholar
  51. 51.
    Hadithi M, Von Blomberg B, Mary E, Crusius JBA, Bloemena E, Kostense PJ, Meijer JW, Mulder CJ, Stehouwer CD (2007) Accuracy of serologic tests and HLA-DQ typing for diagnosing celiac disease. Ann Intern Med 147:294–302Google Scholar
  52. 52.
    Romanos J, Rosen A, Kumar V, Trynka G, Franke L, Szperl A, Gutierrez-Achury J, van Diemen CC, Kanninga R, SA J, Steck A, Eisenbarth G, van Heel DA, Cukrowska B, Bruno V, Mazzilli MC, Nunez C, Bilbao JR, Mearin ML, Barisani D, Rewers M, Norris JM, Ivarsson A, Boezen HM, Liu E, Wijmenga C, Prevent CD Group (2014) Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut 63:415–422Google Scholar
  53. 53.
    Kivelä L, Kaukinen K, Lähdeaho M, Huhtala H, Ashorn M, Ruuska T, Hiltunen P, Visakorpi J, Mäki M, Kurppa K (2015) Presentation of celiac disease in Finnish children is no longer changing: a 50-year perspective. J Pediatr 167:1109–1115Google Scholar
  54. 54.
    Garampazzi A, Rapa A, Mura S, Capelli A, Valori A, Boldorini R, Oderda G (2007) Clinical pattern of celiac disease is still changing. J Pediatr Gastroenterol Nutr 45:611–614Google Scholar
  55. 55.
    Leffler DA, Green PH, Fasano A (2015) Extraintestinal manifestations of coeliac disease. Nat Rev Gastroenterol Hepatol 12:561–571Google Scholar
  56. 56.
    Reunala T, Salmi TT, Hervonen K (2015) Dermatitis herpetiformis: pathognomonic transglutaminase IgA deposits in the skin and excellent prognosis on a gluten-free diet. Acta Derm Venereol 95:917–922Google Scholar
  57. 57.
    Dieterich W, Laag E, Bruckner-Tuderman L, Reunala T, Kárpáti S, Zágoni T, Riecken EO, Schuppan D (1999) Antibodies to tissue transglutaminase as serologic markers in patients with dermatitis herpetiformis. J Investig Dermatol 113:133–136Google Scholar
  58. 58.
    Salmi TT, Hervonen K, Laurila K, Collin P, MäKI M, Koskinen O, Huhtala H, Kaukinen K, Reunala T (2014) Small bowel transglutaminase 2-specific IgA deposits in dermatitis herpetiformis. Acta Derm Venereol 94:393–397Google Scholar
  59. 59.
    Sardy M, Karpati S, Merkl B, Paulsson M, Smyth N (2002) Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 195:747–757Google Scholar
  60. 60.
    Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D (2008) Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 64:332–343Google Scholar
  61. 61.
    Hadjivassiliou M, Sanders DS, Grünewald RA, Woodroofe N, Boscolo S, Aeschlimann D (2010) Gluten sensitivity: from gut to brain. Lancet Neurol 9:318–330Google Scholar
  62. 62.
    Halfdanarson TR, Litzow MR, Murray JA (2007) Hematologic manifestations of celiac disease. Blood 109:412–421Google Scholar
  63. 63.
    Bardella MT, Vecchi M, Conte D, Del Ninno E, Fraquelli M, Pacchetti S, Minola E, Landoni M, Cesana BM, De Franchis R (1999) Chronic unexplained hypertransaminasemia may be caused by occult celiac disease. Hepatology 29:654–657Google Scholar
  64. 64.
    Kaukinen K, Halme L, Collin P, Färkkilä M, Mäki M, Vehmanen P, Partanen J, Höckerstedt K (2002) Celiac disease in patients with severe liver disease: gluten-free diet may reverse hepatic failure. Gastroenterology 122:881–888Google Scholar
  65. 65.
    Mazure R, Vazquez H, Gonzalez D, Mautalen C, Pedreira S, Boerr L, Bai JC (1994) Bone mineral affection in asymptomatic adult patients with celiac disease. Am J Gastroenterol 89:2130–2134Google Scholar
  66. 66.
    Vazquez H, Mazure R, Gonzalez D, Flores D, Pedreira S, Niveloni S, Smecuol E, Mauriño E, Bai JC (2000) Risk of fractures in celiac disease patients: a cross-sectional, case-control study. Am J Gastroenterol 95:183–189Google Scholar
  67. 67.
    Saccone G, Berghella V, Sarno L, Maruotti GM, Cetin I, Greco L, Khashan AS, McCarthy F, Martinelli D, Fortunato F (2015) Celiac disease and obstetric complications: a systematic review and metaanalysis. Obstet Gynecol 4:225–234Google Scholar
  68. 68.
    Ventura A, Magazzù G, Greco L (1999) Duration of exposure to gluten and risk for autoimmune disorders in patients with celiac disease. Gastroenterology 117:297–303Google Scholar
  69. 69.
    Viljamaa M, Kaukinen K, Huhtala H, Kyrönpalo S, Rasmussen M, Collin P (2005) Coeliac disease, autoimmune diseases and gluten exposure. Scand J Gastroenterol 40:437–443Google Scholar
  70. 70.
    Mårild K, Stephansson O, Grahnquist L, Cnattingius S, Söderman G, Ludvigsson JF (2013) Down syndrome is associated with elevated risk of celiac disease: a nationwide case-control study. J Pediatr 163:237–242Google Scholar
  71. 71.
    Frost AR, Band MM, Conway GS (2009) Serological screening for coeliac disease in adults with Turner’s syndrome: prevalence and clinical significance of endomysium antibody positivity. Eur J Endocrinol 160:675–679Google Scholar
  72. 72.
    Walker-Smith J, Guandalini S, Schmitz J, Shmerling D, Visakorpi J (1990) Revised criteria for diagnosis of coeliac disease. Arch Dis Child 65:909–911Google Scholar
  73. 73.
    Taavela J, Koskinen O, Huhtala H, Lähdeaho M, Popp A, Laurila K, Collin P, Kaukinen K, Kurppa K, Mäki M (2013) Validation of morphometric analyses of small-intestinal biopsy readouts in celiac disease. PLoS One 8:e76163Google Scholar
  74. 74.
    Salmi T, Collin P, Reunala T, Mäki M, Kaukinen K (2010) Diagnostic methods beyond conventional histology in coeliac disease diagnosis. Dig Liver Dis 42:28–32Google Scholar
  75. 75.
    Freeman HJ (2004) REVIEW: adult celiac disease and the severe “flat” small bowel biopsy lesion. Dig Dis Sci 49:535–545Google Scholar
  76. 76.
    Marsh MN (1992) Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (“celiac sprue”). Gastroenterology 102:330–354Google Scholar
  77. 77.
    Kurppa K, Collin P, Viljamaa M, Haimila K, Saavalainen P, Partanen J, Laurila K, Huhtala H, Paasikivi K, Mäki M (2009) Diagnosing mild enteropathy celiac disease: a randomized, controlled clinical study. Gastroenterology 136:816–823Google Scholar
  78. 78.
    Kaukinen K, Lindfors K, Collin P, Koskinen O, Maki M (2010) Coeliac disease—a diagnostic and therapeutic challenge. Clin Chem Lab Med 48:1205–1216Google Scholar
  79. 79.
    Walker MM, Murray JA, Ronkainen J, Aro P, Storskrubb T, D'Amato M, Lahr B, Talley NJ, Agreus L (2010) Detection of celiac disease and lymphocytic enteropathy by parallel serology and histopathology in a population-based study. Gastroenterology 139:112–119Google Scholar
  80. 80.
    Järvinen TT, Kaukinen K, Laurila K, Kyrönpalo S, Rasmussen M, Mäki M, Korhonen H, Reunala T, Collin P (2003) Intraepithelial lymphocytes in celiac disease. Am J Gastroenterol 98:1332–1337Google Scholar
  81. 81.
    Leffler DA, Schuppan D (2010) Update on serologic testing in celiac disease. Am J Gastroenterol 105:2520–2524Google Scholar
  82. 82.
    Kaukinen K, Collin P, Laurila K, Kaartinen T, Partanen J, Mäki M (2007) Resurrection of gliadin antibodies in coeliac disease. Deamidated gliadin peptide antibody test provides additional diagnostic benefit. Scand J Gastroenterol 42:1428–1433Google Scholar
  83. 83.
    Kurppa K, Lindfors K, Collin P, Saavalainen P, Partanen J, Haimila K, Huhtala H, Laurila K, Maki M, Kaukinen K (2011) Antibodies against deamidated gliadin peptides in early-stage celiac disease. J Clin Gastroenterol 45:673–678Google Scholar
  84. 84.
    Dahle C, Hagman A, Ignatova S, Ström M (2010) Antibodies against deamidated gliadin peptides identify adult coeliac disease patients negative for antibodies against endomysium and tissue transglutaminase. Aliment Pharmacol Ther 32:254–260Google Scholar
  85. 85.
    Seah P, Fry L, Rossiter M, Hopfbrand A, Holborow E (1971) Anti-reticulin antibodies in childhood coeliac disease. Lancet 298:681–682Google Scholar
  86. 86.
    Chorzelski T, Beutner E, Sulej J, Tchorzewska H, Jablonska S, Kumar V, Kapuscinska A (1984) IgA anti-endomysium antibody. A new immunological marker of dermatitis herpetiformis and coeliac disease. Br J Dermatol 111:395–402Google Scholar
  87. 87.
    Ladinser B, Rossipal E, Pittschieler K (1994) Endomysium antibodies in coeliac disease: an improved method. Gut 35:776–778Google Scholar
  88. 88.
    Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken E, Schuppan D (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3:797–801Google Scholar
  89. 89.
    Maki M, Holm K, Hallstrom O, Collin P, Viander M, Savilahti E, Lipsanen V, Koskimies S (1991) Serological markers and HLA genes among healthy first-degree relatives of patients with coeliac disease. Lancet 338:1350–1353Google Scholar
  90. 90.
    Taavela J, Kurppa K, Collin P, Lähdeaho M, Salmi T, Saavalainen P, Haimila K, Huhtala H, Laurila K, Sievänen H (2013) Degree of damage to the small bowel and serum antibody titers correlate with clinical presentation of patients with celiac disease. Clin Gastroenterol Hepatol 11:166–171Google Scholar
  91. 91.
    Husby S, Koletzko S, Korponay-Szabo IR, Mearin ML, Phillips A, Shamir R, Troncone R, Giersiepen K, Branski D, Catassi C, Lelgeman M, Maki M, Ribes-Koninckx C, Ventura A, Zimmer KP, ESPGHAN Working Group on Coeliac Disease Diagnosis, ESPGHAN Gastroenterology Committee & European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (2012) European Society for Pediatric Gastroenterology, hepatology, and nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr 54:136–160Google Scholar
  92. 92.
    Nemec G, Ventura A, Stefano M, Di Leo G, Baldas V, Tommasini A, Ferrara F, Taddio A, Citta A, Sblattero D (2006) Looking for celiac disease: diagnostic accuracy of two rapid commercial assays. Am J Gastroenterol 101:1597–1600Google Scholar
  93. 93.
    Popp A, Jinga M, Jurcut C, Balaban V, Bardas C, Laurila K, Vasilescu F, Ene A, Anca I, Maki M (2013) Fingertip rapid point-of-care test in adult case-finding in coeliac disease. BMC Gastroenterol 13:115Google Scholar
  94. 94.
    Mooney PD, Wong SH, Johnston AJ, Kurien M, Avgerinos A, Sanders DS (2015) Increased detection of celiac disease with measurement of deamidated gliadin peptide antibody before endoscopy. Clin Gastroenterol Hepatol 13:1278–1284Google Scholar
  95. 95.
    Marzari R, Sblattero D, Florian F, Tongiorgi E, Not T, Tommasini A, Ventura A, Bradbury A (2001) Molecular dissection of the tissue transglutaminase antoantibody response in celiac disease. J Immunol 166:4170–4176Google Scholar
  96. 96.
    Sblattero D, Ventura A, Tommasini A, Cattin L, Martelossi S, Florian F, Marzari R, Bradbury A, Not T (2006) Cryptic gluten intolerance in type 1 diabetes: identifying suitable candidates for a gluten free diet. Gut 55:133–134Google Scholar
  97. 97.
    Shiner M, Ballard J (1972) Antigen-antibody reactions in jejunal mucosa in childhood coeliac disease after gluten challenge. Lancet 299:1202–1205Google Scholar
  98. 98.
    Kárpáti S, Kósnai I, Török É, Kovács JB (1988) Immunoglobulin a deposition in jejunal mucosa of children with dermatitis herpetiformis. J Investig Dermatol 91:336–339Google Scholar
  99. 99.
    Korponay-Szabo I, Halttunen T, Szalai Z, Laurila K, Kiraly R, Kovacs J, Fesus L, Maki M (2004) In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies. Gut 53:641–648Google Scholar
  100. 100.
    Kaukinen K, Peräaho M, Collin P, Partanen J, Woolley N, Kaartinen T, Nuutinen T, Halttunen T, Mäki M, Korponay-Szabo I (2005) Small-bowel mucosal transglutaminase 2-specific IgA deposits in coeliac disease without villous atrophy: a prospective and randomized clinical study. Scand J Gastroenterol 40:564–572Google Scholar
  101. 101.
    Salmi TT, Collin P, Korponay-Szabo IR, Laurila K, Partanen J, Huhtala H, Kiraly R, Lorand L, Reunala T, Maki M, Kaukinen K (2006) Endomysial antibody-negative coeliac disease: clinical characteristics and intestinal autoantibody deposits. Gut 55:1746–1753Google Scholar
  102. 102.
    Jv M (1969) Granular deposits of immunoglobulins in the skin of patients with dermatitis herpetiformis. An immunofluorescent study. Br J Dermatol 81:493–503Google Scholar
  103. 103.
    Heil PM, Volc-Platzer B, Karlhofer F, Gebhart W, Huber W, Benesch T, Vogelsang H, Stingl G (2005) Transglutaminases as diagnostically relevant autoantigens in patients with gluten sensitivity. J Dtsch Dermatol Ges 3:974–978Google Scholar
  104. 104.
    Marietta EV, Camilleri MJ, Castro LA, Krause PK, Pittelkow MR, Murray JA (2008) Transglutaminase autoantibodies in dermatitis herpetiformis and celiac sprue. J Investig Dermatol 128:332–335Google Scholar
  105. 105.
    Hull CM, Liddle M, Hansen N, Meyer L, Schmidt L, Taylor T, Jaskowski T, Hill H, Zone J (2008) Elevation of IgA anti-epidermal transglutaminase antibodies in dermatitis herpetiformis. Br J Dermatol 159:120–124Google Scholar
  106. 106.
    Borroni G, Biagi F, Ciocca O, Vassallo C, Carugno A, Cananzi R, Campanella J, Bianchi P, Brazzelli V, Corazza G (2013) IgA anti-epidermal transglutaminase autoantibodies: a sensible and sensitive marker for diagnosis of dermatitis herpetiformis in adult patients. J Eur Acad Dermatol Venereol 27:836–841Google Scholar
  107. 107.
    Jaskowski TD, Hamblin T, Wilson AR, Hill HR, Book LS, Meyer LJ, Zone JJ, Hull CM (2009) IgA anti-epidermal transglutaminase antibodies in dermatitis herpetiformis and pediatric celiac disease. J Investig Dermatol 129:2728–2730Google Scholar
  108. 108.
    Janatuinen EK, Kemppainen TA, Julkunen RJ, Kosma VM, Maki M, Heikkinen M, Uusitupa MI (2002) No harm from five year ingestion of oats in coeliac disease. Gut 50:332–335Google Scholar
  109. 109.
    Kaukinen K, Collin P, Huhtala H, Mäki M (2013) Long-term consumption of oats in adult celiac disease patients. Nutrients 5:4380–4389Google Scholar
  110. 110.
    Hopman EG, von Blomberg ME, Batstra MR, Morreau H, Dekker FW, Koning F, Lamers CB, Mearin ML (2008) Gluten tolerance in adult patients with celiac disease 20 years after diagnosis? Eur J Gastroenterol Hepatol 20:423–429Google Scholar
  111. 111.
    Bardella M, Fredella C, Trovato C, Ermacora E, Cavalli R, Saladino V, Prampolini L (2003) Long-term remission in patients with dermatitis herpetiformis on a normal diet. Br J Dermatol 149:968–971Google Scholar
  112. 112.
    Paek SY, Steinberg SM, Katz SI (2011) Remission in dermatitis herpetiformis: a cohort study. Arch Dermatol 147:301–305Google Scholar
  113. 113.
    Tio M, Cox M, Eslick G (2012) Meta-analysis: coeliac disease and the risk of all-cause mortality, any malignancy and lymphoid malignancy. Aliment Pharmacol Ther 35:540–551Google Scholar
  114. 114.
    Hervonen K, Vornanen M, Kautiainen H, Collin P, Reunala T (2005) Lymphoma in patients with dermatitis herpetiformis and their first-degree relatives. Br J Dermatol 152:82–86Google Scholar
  115. 115.
    Blazina Š, Bratanič N, Čampa AŠ (2010) Bone mineral density and importance of strict gluten-free diet in children and adolescents with celiac disease. Bone 47:598–603Google Scholar
  116. 116.
    See JA, Kaukinen K, Makharia GK, Gibson PR, Murray JA (2015) Practical insights into gluten-free diets. Nat Rev Gastroenterol Hepatol 12:580–591Google Scholar
  117. 117.
    van Gils T, Nijeboer P, van Wanrooij RL, Bouma G, Mulder CJ (2015) Mechanisms and management of refractory coeliac disease. Nat Rev Gastroenterol Hepatol 12:572–579Google Scholar
  118. 118.
    Ilus T, Kaukinen K, Virta L, Huhtala H, Mäki M, Kurppa K, Heikkinen M, Heikura M, Hirsi E, Jantunen K (2014) Refractory coeliac disease in a country with a high prevalence of clinically-diagnosed coeliac disease. Aliment Pharmacol Ther 39:418–425Google Scholar
  119. 119.
    Sanchez M, Mohaidle A, Baistrocchi A, Matoso D, Vázquez H, González A, Mazure R, Maffei E, Ferrari G, Smecuol E (2011) Risk of fracture in celiac disease: gender, dietary compliance, or both. World J Gastroenterol 17:3035–3042Google Scholar
  120. 120.
    Norström F, Sandström O, Lindholm L, Ivarsson A (2012) A gluten-free diet effectively reduces symptoms and health care consumption in a Swedish celiac disease population. BMC Gastroenterol 12:1Google Scholar
  121. 121.
    Lerner A (2010) New therapeutic strategies for celiac disease. Autoimmun Rev 9:144–147Google Scholar
  122. 122.
    Sulic A, Kurppa K, Rauhavirta T, Kaukinen K, Lindfors K (2015) Transglutaminase as a therapeutic target for celiac disease. Expert Opin Ther Targets 19:335–348Google Scholar
  123. 123.
    Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray G, Sollid L, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279Google Scholar
  124. 124.
    Quarsten H, Molberg Ø, Fugger L, McAdam SN, Sollid LM (1999) HLA binding and T cell recognition of a tissue transglutaminase-modified gliadin epitope. Eur J Immunol 29:2506–2514Google Scholar
  125. 125.
    Vader L, de Ru A, van der Wal Y, Kooy Y, Benckhuijsen W, Mearin M, Drijfhout J, van Veelen P, Koning F (2002) Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 195:643–649Google Scholar
  126. 126.
    Molberg O, Mcadam S, Korner R, Quarsten H, Kristiansen C, Madsen L, Fugger L, Scott H, Noren O, Roepstorff P, Lundin K, Sjostrom H, Sollid L (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease RID G-8565-2011. Nat Med 4:713–717Google Scholar
  127. 127.
    Dahal-Koirala S, Risnes L, Christophersen A, Sarna V, Lundin KE, Sollid L, Qiao S (2016) TCR sequencing of single cells reactive to DQ2. 5-glia-α2 and DQ2. 5-glia-ω2 reveals clonal expansion and epitope-specific V-gene usage. Mucosal Immunol. doi: 10.1038/mi.2015.147 CrossRefGoogle Scholar
  128. 128.
    Qiao SW, Christophersen A, Lundin KE, Sollid LM (2014) Biased usage and preferred pairing of alpha- and beta-chains of TCRs specific for an immunodominant gluten epitope in coeliac disease. Int Immunol 26:13–19Google Scholar
  129. 129.
    Qiao SW, Raki M, Gunnarsen KS, Loset GA, Lundin KE, Sandlie I, Sollid LM (2011) Posttranslational modification of gluten shapes TCR usage in celiac disease. J Immunol 187:3064–3071Google Scholar
  130. 130.
    Petersen J, Montserrat V, Mujico JR, Loh KL, Beringer DX, van Lummel M, Thompson A, Mearin ML, Schweizer J, Kooy-Winkelaar Y (2014) T-cell receptor recognition of HLA-DQ2–gliadin complexes associated with celiac disease. Nat Struct Mol Biol 21:480–488Google Scholar
  131. 131.
    Fleckenstein B, Qiao SW, Larsen MR, Jung G, Roepstorff P, Sollid LM (2004) Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem 279:17607–17616Google Scholar
  132. 132.
    du Pré MF, Sollid LM (2015) T-cell and B-cell immunity in celiac disease. Best Pract Res Clin Gastroenterol 29:413–423Google Scholar
  133. 133.
    Di Niro R, Mesin L, Zheng N, Stamnaes J, Morrissey M, Lee J, Huang M, Iversen R, du Pre MF, Qiao S, Lundin KEA, Wilson PC, Sollid LM (2012) High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat Med 18:441–445Google Scholar
  134. 134.
    Villanacci V, Not T, Sblattero D, Gaiotto T, Chirdo F, Galletti A, Bassotti G (2009) Mucosal tissue transglutaminase expression in celiac disease. J Cell Mol Med 13:334–340Google Scholar
  135. 135.
    Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD (1988) Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29:1035–1041Google Scholar
  136. 136.
    Rauhavirta T, Qiao S, Jiang Z, Myrsky E, Loponen J, Korponay-Szabo IR, Salovaara H, Garcia-Horsman JA, Venalainen J, Mannisto PT, Collighan R, Mongeot A, Griffin M, Maki M, Kaukinen K, Lindfors K (2011) Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin a. Clin Exp Immunol 164:127–136Google Scholar
  137. 137.
    Thomazy VA, Vega F, Medeiros LJ, Davies PJ, Jones D (2003) Phenotypic modulation of the stromal reticular network in normal and neoplastic lymph nodes: tissue transglutaminase reveals coordinate regulation of multiple cell types. Am J Pathol 163:165–174Google Scholar
  138. 138.
    Mention J, Ahmed MB, Bègue B, Barbe U, Verkarre V, Asnafi V, Colombel J, Cugnenc P, Ruemmele FM, Mcintyre E (2003) Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125:730–745Google Scholar
  139. 139.
    Barone MV, Zanzi D, Maglio M, Nanayakkara M, Santagata S, Lania G, Miele E, Ribecco MTS, Maurano F, Auricchio R (2011) Gliadin-mediated proliferation and innate immune activation in celiac disease are due to alterations in vesicular trafficking. PLoS One 6:e17039Google Scholar
  140. 140.
    Hue S, Mention J, Monteiro R, Zhang S, Cellier C, Schmitz J, Verkarre V, Fodil N, Bahram S, Cerf-Bensussan N, Caillat-Zucman S (2004) A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21:367–377Google Scholar
  141. 141.
    Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC, Jabri B (2001) NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 167:5527–5530Google Scholar
  142. 142.
    Setty M, Discepolo V, Abadie V, Kamhawi S, Mayassi T, Kent A, Ciszewski C, Maglio M, Kistner E, Bhagat G (2015) Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology 149:681–691Google Scholar
  143. 143.
    Meresse B, Curran SA, Ciszewski C, Orbelyan G, Setty M, Bhagat G, Lee L, Tretiakova M, Semrad C, Kistner E, Winchester RJ, Braud V, Lanier LL, Geraghty DE, Green PH, Guandalini S, Jabri B (2006) Reprogramming of CTLs into natural killer-like cells in celiac disease. J Exp Med 203:1343–1355Google Scholar
  144. 144.
    Steinsbø Ø, Dunand CJH, Huang M, Mesin L, Salgado-Ferrer M, Lundin KE, Jahnsen J, Wilson PC, Sollid LM (2014) Restricted VH/VL usage and limited mutations in gluten-specific IgA of coeliac disease lesion plasma cells. Nat Commun 5:4041Google Scholar
  145. 145.
    Sblattero D, Florian F, Azzoni E, Zyla T, Park M, Baldas V, Not T, Ventura A, Bradbury A, Marzari R (2002) The analysis of the fine specificity of celiac disease antibodies using tissue transglutaminase fragments. Eur J Biochem 269:5175–5181Google Scholar
  146. 146.
    Comerford R, Byrne G, Feighery C, Kelly J (2012) Binding of autoantibodies to the core region of tissue transglutaminase is a feature of paediatric coeliac disease. J Pediatr Gastroenterol Nutr 55:445–450Google Scholar
  147. 147.
    Simon-Vecsei Z, Kiraly R, Bagossi P, Toth B, Dahlbom I, Caja S, Csosz E, Lindfors K, Sblattero D, Nemes E, Maki M, Fesus L, Korponay-Szabo IR (2012) A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci U S A 109:431–436Google Scholar
  148. 148.
    Iversen R, Di Niro R, Stamnaes J, Lundin KE, Wilson PC, Sollid LM (2013) Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J Immunol 190:5981–5991Google Scholar
  149. 149.
    Farrace MG, Picarelli A, Di Tola M, Sabbatella L, Marchione OP, Ippolito G, Piacentini M (2001) Presence of anti-“tissue” transglutaminase antibodies in inflammatory intestinal diseases: an apoptosis-associated event? Cell Death Differ 8:767–770Google Scholar
  150. 150.
    Lidar M, Langevitz P, Barzilai O, Ram M, Porat-Katz B, Bizzaro N, Tonutti E, Maieron R, Chowers Y, Bar-Meir S (2009) Infectious serologies and autoantibodies in inflammatory bowel disease. Ann N Y Acad Sci 1173:640–648Google Scholar
  151. 151.
    Pereda I, Bartolomé-Pacheco MJ, Martín M, López-Escribano H, Echevarría S, López-Hoyos M (2001) Antitissue transglutaminase antibodies in HIV infection and effect of highly active antiretroviral therapy. J Acquir Immune Defic Syndr 27:507–508Google Scholar
  152. 152.
    Peracchi M, Trovato C, Longhi M, Gasparin M, Conte D, Tarantino C, Prati D, Bardella MT (2002) Tissue transglutaminase antibodies in patients with end-stage heart failure. Am J Gastroenterol 97:2850–2854Google Scholar
  153. 153.
    Sárdy M, Csikós M, Geisen C, Preisz K, Kornseé Z, Tomsits E, Töx U, Hunzelmann N, Wieslander J, Kárpáti S (2007) Tissue transglutaminase ELISA positivity in autoimmune disease independent of gluten-sensitive disease. Clin Chim Acta 376:126–135Google Scholar
  154. 154.
    Kiraly R, Vecsei Z, Demenyi T, Korponay-Szabo I, Fesus L (2006) Coeliac autoantibodies can enhance transamidating and inhibit GTPase activity of tissue transglutaminase: dependence on reaction environment and enzyme fitness. J Autoimmun 26:278–287Google Scholar
  155. 155.
    Myrsky E, Caja S, Simon-Vecsei Z, Korponay-Szabo IR, Nadalutti C, Collighan R, Mongeot A, Griffin M, Maki M, Kaukinen K, Lindfors K (2009) Celiac disease IgA modulates vascular permeability in vitro through the activity of transglutaminase 2 and RhoA. Cell Mol Life Sci 66:3375–3385Google Scholar
  156. 156.
    Dieterich W, Trapp D, Esslinger B, Leidenberger M, Piper J, Hahn E, Schuppan D (2003) Autoantibodies of patients with coeliac disease are insufficient to block tissue transglutaminase activity. Gut 52:1562–1566Google Scholar
  157. 157.
    Byrne G, Feighery C, Jackson J, Kelly J (2010) Coeliac disease autoantibodies mediate significant inhibition of tissue transglutaminase. Clin Immunol 136:426–431Google Scholar
  158. 158.
    Esposito C, Paparo F, Caputo I, Rossi M, Maglio M, Sblattero D, Not T, Porta R, Auricchio S, Marzari R, Troncone R (2002) Anti-tissue transglutaminase antibodies from coeliac patients inhibit transglutaminase activity both in vitro and in situ. Gut 51:177–181Google Scholar
  159. 159.
    Halttunen T, Maki M (1999) Serum immunoglobulin a from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation. Gastroenterology 116:566–572Google Scholar
  160. 160.
    Barone MV, Caputo I, Ribecco MT, Maglio M, Marzari R, Sblattero D, Troncone R, Auricchio S, Esposito C (2007) Humoral immune response to tissue transglutaminase is related to epithelial cell proliferation in celiac disease. Gastroenterology 132:1245–1253Google Scholar
  161. 161.
    Teesalu K, Panarina M, Uibo O, Uibo R, Utt M (2012) Autoantibodies from patients with celiac disease inhibit transglutaminase 2 binding to heparin/heparan sulfate and interfere with intestinal epithelial cell adhesion. Amino Acids 42:1055–1064Google Scholar
  162. 162.
    Zanoni G, Navone R, Lunardi C, Tridente G, Bason C, Sivori S, Beri R, Dolcino M, Valletta E, Corrocher R, Puccetti A (2006) In celiac disease, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes. PLoS Med 3:1637–1653Google Scholar
  163. 163.
    Lebreton C, Ménard S, Abed J, Moura IC, Coppo R, Dugave C, Monteiro RC, Fricot A, Traore MG, Griffin M, Cellier C, Malamut G, Cerf-Bensussan N, Heyman M (2012) Interactions among secretory immunoglobulin a, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology 143(3):698–707Google Scholar
  164. 164.
    Ménard S, Lebreton C, Schumann M, Matysiak-Budnik T, Dugave C, Bouhnik Y, Malamut G, Cellier C, Allez M, Crenn P (2012) Paracellular versus transcellular intestinal permeability to gliadin peptides in active celiac disease. Am J Pathol 180:608–615Google Scholar
  165. 165.
    Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, Lebreton C, Menard S, Candalh C, Ben-Khalifa K, Dugave C, Tamouza H, van Niel G, Bouhnik Y, Lamarque D, Chaussade S, Malamut G, Cellier C, Cerf-Bensussan N, Monteiro RC, Heyman M (2008) Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med 205:143–154Google Scholar
  166. 166.
    Nadalutti CA, Korponay-Szabo IR, Kaukinen K, Griffin M, Mäki M, Lindfors K (2014) Celiac disease patient IgA antibodies induce endothelial adhesion and cell polarization defects via extracellular transglutaminase 2. Cell Mol Life Sci 71:1315–1326Google Scholar
  167. 167.
    Kalliokoski S, Sulic A, Korponay-Szabó IR, Szondy Z, Frias R, Perez MA, Martucciello S, Roivainen A, Pelliniemi LJ, Esposito C (2013) Celiac disease-specific TG2-targeted autoantibodies inhibit angiogenesis ex vivo and in vivo in mice by interfering with endothelial cell dynamics. PLoS One 8:e65887Google Scholar
  168. 168.
    Myrsky E, Kaukinen K, Syrjanen M, Korponay-Szabo IR, Maki M, Lindfors K (2008) Coeliac disease-specific autoantibodies targeted against transglutaminase 2 disturb angiogenesis. Clin Exp Immunol 152:111–119Google Scholar
  169. 169.
    Cooke WT, Holmes GKT (1984) Coeliac disease. Churchill Livingstone, LondonGoogle Scholar
  170. 170.
    Freitag T, Schulze-Koops H, Niedobitek G, Melino G, Schuppan D (2004) The role of the immune response against tissue transglutaminase in the pathogenesis of coeliac disease. Autoimmun Rev 3:13–20Google Scholar
  171. 171.
    Di Niro R, Sblattero D, Florian F, Stebel M, Zentilin L, Giacca M, Villanacci V, Galletti A, Not T, Ventura A (2008) Anti-idiotypic response in mice expressing human autoantibodies. Mol Immunol 45:1782–1791Google Scholar
  172. 172.
    Kalliokoski S, Caja S, Frias R, Laurila K, Koskinen O, Niemelä O, Mäki M, Kaukinen K, Korponay-Szabó IR, Lindfors K (2015) Injection of celiac disease patient sera or immunoglobulins to mice reproduces a condition mimicking early developing celiac disease. J Mol Med 93:51–62Google Scholar
  173. 173.
    Hadjivassiliou M, Maki M, Sanders D, Williamson C, Grunewald R, Woodroofe N, Korponay-Szabo I (2006) Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology 66:373–377Google Scholar
  174. 174.
    Boscolo S, Lorenzon A, Sblattero D, Florian F, Stebel M, Marzari R, Not T, Aeschlimann D, Ventura A, Hadjivassiliou M (2010) Anti transglutaminase antibodies cause ataxia in mice. PLoS One 5:e9698Google Scholar
  175. 175.
    Smecuol E, Mauriño E, Vazquez H, Pedreira S, Niveloni S, Mazure R, Boerr L, Bai JC (1996) Gynaecological and obstetric disorders in coeliac disease: frequent clinical onset during pregnancy or the puerperium. Eur J Gastroenterol Hepatol 8:63–68Google Scholar
  176. 176.
    Lasa JS, Zubiaurre I, Soifer LO (2014) Risk of infertility in patients with celiac disease: a meta-analysis of observational studies. Arq Gastroenterol 51:144–150Google Scholar
  177. 177.
    Anjum N, Baker PN, Robinson NJ, Aplin JD (2009) Maternal celiac disease autoantibodies bind directly to syncytiotrophoblast and inhibit placental tissue transglutaminase activity. Reprod Biol Endocrinol 7:16Google Scholar
  178. 178.
    Sóñora C, Calo G, Fraccaroli L, Pérez-Leirós C, Hernández A, Ramhorst R (2014) Tissue transglutaminase on trophoblast cells as a possible target of autoantibodies contributing to pregnancy complications in celiac patients. Am J Reprod Immunol 72:485–495Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tiina Rauhavirta
    • 1
  • Minna Hietikko
    • 1
  • Teea Salmi
    • 2
    • 3
  • Katri Lindfors
    • 1
    Email author
  1. 1.Pediatric Research CenterUniversity of Tampere and Tampere University HospitalTampereFinland
  2. 2.School of MedicineUniversity of TampereTampereFinland
  3. 3.Department of DermatologyTampere University HospitalTampereFinland

Personalised recommendations