Advertisement

Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders

  • Mohamad Al Naem
  • Lynda Bourebaba
  • Katarzyna Kucharczyk
  • Michael Röcken
  • Krzysztof MaryczEmail author
Article
  • 20 Downloads

Abstract

Mesenchymal stromal cells (MSC) have become a popular treatment modality in equine orthopaedics. Regenerative therapies are especially interesting for pathologies like complicated tendinopathies of the distal limb, osteoarthritis, osteochondritis dissecans (OCD) and more recently metabolic disorders. Main sources for MSC harvesting in the horse are bone marrow, adipose tissue and umbilical cord blood. While the acquisition of umbilical cord blood is fairly easy and non-invasive, extraction of bone marrow and adipose tissue requires more invasive techniques. Characterization of the stem cells as a result of any isolation method, is also a crucial step for the confirmation of the cells’ stemness properties; thus, three main characteristics must be fulfilled by these cells, namely: adherence, expression of a series of well-defined differentiation clusters as well as pluripotency. EVs, resulting from the paracrine action of MSCs, also play a key role in the therapeutic mechanisms mediated by stem cells; MSC-EVs are thus largely implicated in the regulation of proliferation, maturation, polarization and migration of various target cells. Evidence that EVs alone represent a complex network 0involving different soluble factors and could then reflect biophysical characteristics of parent cells has fuelled the importance of developing highly specific techniques for their isolation and analysis. All these aspects related to the functional and technical understanding of MSCs will be discussed and summarized in this review.

Keywords

Equine MSCs Isolation Characterisation Secretome Regenerative medicine 

Notes

Compliance with ethical standards

Conflict of interest

There is no conflict of interest

References

  1. 1.
    Lopez, M. J., & Jarazo, J. (2015). State of the art: Stem cells in equine regenerative medicine. Equine Veterinary Journal, 47(2), 145–154.  https://doi.org/10.1111/evj.12311.CrossRefPubMedGoogle Scholar
  2. 2.
    Mao, A. S., & Mooney, D. J. (2015). Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences, 112(47), 14452–14459.  https://doi.org/10.1073/pnas.1508520112.CrossRefGoogle Scholar
  3. 3.
    Fisher, M. B., & Mauck, R. L. (2012). Tissue Engineering and Regenerative Medicine: Recent Innovations and the Transition to Translation. Tissue Engineering Part B: Reviews, 19(1), 1–13.  https://doi.org/10.1089/ten.teb.2012.0723.CrossRefGoogle Scholar
  4. 4.
    Shyam, H., Singh, S. K., Kant, R., & Saxena, S. K. (2017). Mesenchymal stem cells in regenerative medicine: a new paradigm for degenerative bone diseases. Regenerative Medicine, 12(2), 111–114.  https://doi.org/10.2217/rme-2016-0162.CrossRefPubMedGoogle Scholar
  5. 5.
    Hosseini, S., Taghiyar, L., Safari, F., & Baghaban Eslaminejad, M. (2018). Regenerative medicine applications of mesenchymal stem cells. Advances in Experimental Medicine and Biology, 1089(May), 115–141.  https://doi.org/10.1007/5584_2018_213.CrossRefPubMedGoogle Scholar
  6. 6.
    Schäfer, R., Spohn, G., & Baer, P. C. (2016). Mesenchymal stem/stromal cells in regenerative medicine: Can preconditioning strategies improve therapeutic efficacy? Transfusion Medicine and Hemotherapy, 43(4), 256–267.  https://doi.org/10.1159/000447458.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Esteves, C. L., Sheldrake, T. A., Mesquita, S. P., Pesántez, J. J., Menghini, T., Dawson, L., et al. (2017). Isolation and characterization of equine native MSC populations. Stem Cell Research and Therapy, 8(1), 1–12.  https://doi.org/10.1186/s13287-017-0525-2.CrossRefGoogle Scholar
  8. 8.
    De Schauwer, C., Van de Walle, G. R., Van Soom, A., & Meyer, E. (2013). Mesenchymal stem cell therapy in horses: Useful beyond orthopedic injuries? Veterinary Quarterly, 33(4), 234–241.  https://doi.org/10.1080/01652176.2013.800250.CrossRefPubMedGoogle Scholar
  9. 9.
    Gershwin, L. J. (2007). Veterinary autoimmunity: Autoimmune diseases in domestic animals. Annals of the New York Academy of Sciences, 1109, 109–116.  https://doi.org/10.1196/annals.1398.013.CrossRefPubMedGoogle Scholar
  10. 10.
    Borjesson, D. L., & Peroni, J. F. (2011). The Regenerative Medicine Laboratory: Facilitating Stem Cell Therapy for Equine Disease. Clinics in Laboratory Medicine, 31(1), 109–123.  https://doi.org/10.1016/j.cll.2010.12.001.CrossRefPubMedGoogle Scholar
  11. 11.
    Vidal, M. A., Walker, N. J., Napoli, E., & Borjesson, D. L. (2012). Evaluation of Senescence in Mesenchymal Stem Cells Isolated from Equine Bone Marrow, Adipose Tissue, and Umbilical Cord Tissue. Stem Cells and Development, 21(2), 273–283.  https://doi.org/10.1089/scd.2010.0589.CrossRefGoogle Scholar
  12. 12.
    Barrachina, L., Romero, A., Zaragoza, P., Rodellar, C., & Vázquez, F. J. (2018). Practical considerations for clinical use of mesenchymal stem cells: From the laboratory to the horse. Veterinary Journal, 238, 49–57.  https://doi.org/10.1016/j.tvjl.2018.07.004.CrossRefGoogle Scholar
  13. 13.
    Gittel, C., Brehm, W., Burk, J., Juelke, H., Staszyk, C., & Ribitsch, I. (2013). Isolation of equine multipotent mesenchymal stromal cells by enzymatic tissue digestion or explant technique: Comparison of cellular properties. BMC Veterinary Research, 9, 1–14.  https://doi.org/10.1186/1746-6148-9-221.CrossRefGoogle Scholar
  14. 14.
    Colbath, A. C., Frisbie, D. D., Dow, S. W., Kisiday, J. D., McIlwraith, C. W., & Goodrich, L. R. (2017). Equine Models for the Investigation of Mesenchymal Stem Cell Therapies in Orthopaedic Disease. Operative Techniques in Sports Medicine, 25(1), 41–49.  https://doi.org/10.1053/j.otsm.2016.12.007.CrossRefGoogle Scholar
  15. 15.
    Tessier, L., Bienzle, D., Williams, L. B., & Koch, T. G. (2015). Phenotypic and immunomodulatory properties of equine cord blood-derived mesenchymal stromal cells. PLoS ONE, 10(4), 1–19.  https://doi.org/10.1371/journal.pone.0122954.CrossRefGoogle Scholar
  16. 16.
    Goodrich, L.R., D.D. Frisbie, and J. D. K. (2008). No Title. In How to harvest bone marrow derived mesenchymal stem cells for expansion and injection. AAEP Proceedings.Google Scholar
  17. 17.
    Stewart, M. C., & Stewart, A. A. (2011). Mesenchymal Stem Cells: Characteristics, Sources, and Mechanisms of Action. Veterinary Clinics of North America - Equine Practice, 27(2), 243–261.  https://doi.org/10.1016/j.cveq.2011.06.004.CrossRefPubMedGoogle Scholar
  18. 18.
    Kasashima, Y., Ueno, T., Tomita, A., Goodship, A. E., & Smith, R. K. W. (2011). Optimisation of bone marrow aspiration from the equine sternum for the safe recovery of mesenchymal stem cells. Equine Veterinary Journal, 43(3), 288–294.  https://doi.org/10.1111/j.2042-3306.2010.00215.x.CrossRefPubMedGoogle Scholar
  19. 19.
    SMITH, R. K. W., KORDA, M., BLUNN, G. W., & GOODSHIP, A. E. (2007). Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Veterinary Journal, 35(1), 99–102.  https://doi.org/10.2746/042516403775467388.CrossRefGoogle Scholar
  20. 20.
    Kisiday, J. D., Goodrich, L. R., Wayne McIlwraith, C., & Frisbie, D. D. (2013). Effects of equine bone marrow aspirate volume on isolation, proliferation, and differentiation potential of mesenchymal stem cells. American Journal of Veterinary Research, 74(5), 801–807.  https://doi.org/10.2460/ajvr.74.5.801.CrossRefPubMedGoogle Scholar
  21. 21.
    Arnhold, S. J., Goletz, I., Klein, H., Stumpf, G., Beluche, L. A., Rohde, C., et al. (2007). Isolation and characterization of bone marrow-derived equine mesenchymal stem cells. American Journal of Veterinary Research, 68(10), 1095–1105.  https://doi.org/10.2460/ajvr.68.10.1095.CrossRefPubMedGoogle Scholar
  22. 22.
    Fortier, L. A., Nixon, A. J., Williams, J., & C. C. (1998). Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res., 59(9), 1182–1187.Google Scholar
  23. 23.
    J. S. McDaniel, B. Antebi, M. Pilia, B. J. Hurtgen, S. Belenkiy, C. Necsoiu, L. C. Cancio, C. R. Rathbone, and A. I. B. (2017). Quantitative Assessment of Optimal Bone Marrow Site for the Isolation of Porcine Mesenchymal Stem Cells. Stem Cells International, 2017. doi: https://doi.org/10.1155/2017/1836960 CrossRefGoogle Scholar
  24. 24.
    Yelick, P. C., & Zhang, W. (2012). Mesenchymal stem cells. Tissue Engineering: Principles and Practices, 10-1-10–14.  https://doi.org/10.1201/b13978.Google Scholar
  25. 25.
    Schnabel, L. V., Pezzanite, L. M., Antczak, D. F., Felippe, M. J. B., & Fortier, L. A. (2014). Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro. Stem Cell Research and Therapy, 5(1), 1–13.  https://doi.org/10.1186/scrt402.CrossRefGoogle Scholar
  26. 26.
    Pacini, S., Spinabella, S., Trombi, L., Fazzi, R., Galimberti, S., Dini, F., et al. (2007). Suspension of Bone Marrow–Derived Undifferentiated Mesenchymal Stromal Cells for Repair of Superficial Digital Flexor Tendon in Race Horses. Tissue Engineering, 13(12), 2949–2955.  https://doi.org/10.1089/ten.2007.0108.CrossRefPubMedGoogle Scholar
  27. 27.
    Vidal, M. A., Kilroy, G. E., Johnson, J. R., Lopez, M. J., Moore, R. M., & Gimble, J. M. (2006). Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: Adipogenic and osteogenic capacity. Veterinary Surgery, 35(7), 601–610.  https://doi.org/10.1111/j.1532-950X.2006.00197.x.CrossRefPubMedGoogle Scholar
  28. 28.
    Bourzac, C., Smith, L. C., Vincent, P., Beauchamp, G., Lavoie, J. P., & Laverty, S. (2010). Isolation of equine bone marrow-derived mesenchymal stem cells: a comparison between three protocols. Equine Veterinary Journal, 42(6), 519–527.  https://doi.org/10.1111/j.2042-3306.2010.00098.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Wilke, M. M., Nydam, D. V., & Nixon, A. J. (2007). Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. Journal of Orthopaedic Research, 25(7), 913–925.  https://doi.org/10.1002/jor.20382.CrossRefPubMedGoogle Scholar
  30. 30.
    Colleoni, S., Bottani, E., Tessaro, I., Mari, G., Merlo, B., Romagnoli, N., et al. (2009). Isolation, growth and differentiation of equine mesenchymal stem cells: Effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. Veterinary Research Communications, 33(8), 811–821.  https://doi.org/10.1007/s11259-009-9229-0.CrossRefPubMedGoogle Scholar
  31. 31.
    Pösel, C., Möller, K., Fröhlich, W., Schulz, I., Boltze, J., & Wagner, D. C. (2012). Density Gradient Centrifugation Compromises Bone Marrow Mononuclear Cell Yield. PLoS ONE, 7(12), 1–10.  https://doi.org/10.1371/journal.pone.0050293.CrossRefGoogle Scholar
  32. 32.
    Seeger, F. H., Tonn, T., Krzossok, N., Zeiher, A. M., & Dimmeler, S. (2007). Cell isolation procedures matter: A comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. European Heart Journal, 28(6), 766–772.  https://doi.org/10.1093/eurheartj/ehl509.CrossRefPubMedGoogle Scholar
  33. 33.
    Taylor, S. E., & Clegg, P. D. (2011). Collection and Propagation Methods for Mesenchymal Stromal Cells. Veterinary Clinics of North America - Equine Practice, 27(2), 263–274.  https://doi.org/10.1016/j.cveq.2011.05.003.CrossRefPubMedGoogle Scholar
  34. 34.
    Vidal, M. A., Robinson, S. O., Lopez, M. J., Paulsen, D. B., Borkhsenious, O., Johnson, J. R., et al. (2008). Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Veterinary Surgery, 37(8), 713–724.  https://doi.org/10.1111/j.1532-950X.2008.00462.x.CrossRefPubMedGoogle Scholar
  35. 35.
    Lawver, J., & Thaler, R. (2016). Ultrasound-guided lipoaspiration for mesenchymal stromal cell harvest in the horse. Equine Veterinary Education, 28(1), 23–29.  https://doi.org/10.1111/eve.12398.CrossRefGoogle Scholar
  36. 36.
    Brehm, W., Burk, J., & U. D. (2014). Application of Stem Cells for the Treatment of Joint Disease in Horses. Stem Cells in Equine Joint Disease, 1213, 4939–1453.Google Scholar
  37. 37.
    de Mattos Carvalho, A., Alves, A. L. G., Golim, M. A., Moroz, A., Hussni, C. A., de Oliveira, P. G. G., & Deffune, E. (2009). Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine species adipose tissue. Veterinary Immunology and Immunopathology, 132(2–4), 303–306.  https://doi.org/10.1016/j.vetimm.2009.06.014.CrossRefPubMedGoogle Scholar
  38. 38.
    Huang, S. J., Fu, R. H., Shyu, W. C., Liu, S. P., Jong, G. P., Chiu, Y. W., et al. (2013). Adipose-derived stem cells: Isolation, characterization, and differentiation potential. Cell Transplantation, 22(4), 701–709.  https://doi.org/10.3727/096368912X655127.CrossRefPubMedGoogle Scholar
  39. 39.
    Alonso-Goulart, V., Ferreira, L. B., Duarte, C. A., de Lima, I. L., Ferreira, E. R., de Oliveira, B. C., et al. (2017). Mesenchymal stem cells from human adipose tissue and bone repair: a literature review. Biotechnology Research and Innovation, 2(1), 74–80.  https://doi.org/10.1016/j.biori.2017.10.005.CrossRefGoogle Scholar
  40. 40.
    Ghorbani, A., Jalali, S. A., & Varedi, M. (2014). Isolation of adipose tissue mesenchymal stem cells without tissue destruction: A non-enzymatic method. Tissue and Cell, 46(1), 54–58.  https://doi.org/10.1016/j.tice.2013.11.002.CrossRefPubMedGoogle Scholar
  41. 41.
    Jane sottile. (2003). Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Molecular Biology of the Cell, 14(February), 2372–2384. doi: https://doi.org/10.1091/mbc.E02
  42. 42.
    Yarak, S., & Okamoto, O. K. (2010). Human adipose-derived stem cells: current challenges and clinical perspectives. Anais brasileiros de dermatologia, 85(5), 647–56. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21152789
  43. 43.
    Mosna, F., Sensebé, L., & Krampera, M. (2010). Human Bone Marrow and Adipose Tissue Mesenchymal Stem Cells: A User’s Guide. Stem Cells and Development, 19(10), 1449–1470.  https://doi.org/10.1089/scd.2010.0140.CrossRefPubMedGoogle Scholar
  44. 44.
    Dhot, P. S., Sirohi, D., & Swamy, G. L. N. (2003). Collection, separation, enumeration and cryopreservation of umbilical cord blood haematopoietic stem cells - An experimental study. Medical Journal Armed Forces India, 59(4), 298–301.  https://doi.org/10.1016/S0377-1237(03)80138-7.CrossRefGoogle Scholar
  45. 45.
    Koch, T. G., Heerkens, T., Thomsen, P. D., & Betts, D. H. (2007). Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnology, 7, 1–9.  https://doi.org/10.1186/1472-6750-7-26.CrossRefGoogle Scholar
  46. 46.
    Sultana, T., Lee, S., Yoon, H. Y., & Lee, J. I. (2018). Current status of canine umbilical cord blood-derived mesenchymal stem cells in veterinary medicine. Stem Cells International, 2018.  https://doi.org/10.1155/2018/8329174.CrossRefGoogle Scholar
  47. 47.
    Davies, J. E., Walker, J. T., & Keating, A. (2017). Concise Review: Wharton’s Jelly: The Rich, but Enigmatic, Source of Mesenchymal Stromal Cells. Stem Cells Translational Medicine, 6(7), 1620–1630.  https://doi.org/10.1002/sctm.16-0492.CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Regidor, C., Posada, M., Monteagudo, D., Garaulet, C., Somolinos, N., Forés, R., et al. (1999). Umbilical cord blood banking for unrelated transplantation. Experimental Hematology, 27(2), 380–385.  https://doi.org/10.1016/s0301-472x(98)00016-2.CrossRefPubMedGoogle Scholar
  49. 49.
    Bieback, K. (2004). Critical Parameters for the Isolation of Mesenchymal Stem Cells from Umbilical Cord Blood. Stem Cells, 22(4), 625–634.  https://doi.org/10.1634/stemcells.22-4-625.CrossRefPubMedGoogle Scholar
  50. 50.
    M-Reboredo, N., & A Dı´az, A. C. and R. V. (2000). Collection, processing and cryopreservation of umbilical cord blood for unrelated transplantation. Bone Marrow Transplantation, 26(12), 1263–1270.  https://doi.org/10.1038/sj.bmt.1702728.CrossRefGoogle Scholar
  51. 51.
    Barry, F. P., & Murphy, J. M. (2004). Mesenchymal stem cells: Clinical applications and biological characterization. International Journal of Biochemistry and Cell Biology, 36(4), 568–584.  https://doi.org/10.1016/j.biocel.2003.11.001.CrossRefGoogle Scholar
  52. 52.
    Mcelreavey, K. D., & Irvine, A. I. (1991). a Range. Biochemical Society Transactions, 19(1), 29S.Google Scholar
  53. 53.
    Baudin, B., Bruneel, A., Bosselut, N., & Vaubourdolle, M. (2007). A protocol for isolation and culture of human umbilical vein endothelial cells. Nature Protocols, 2(3), 481–485.  https://doi.org/10.1038/nprot.2007.54.CrossRefPubMedGoogle Scholar
  54. 54.
    C, C. T., F, F. H., F, G. A., B, N. J., Camila, S.-F., C, F. M., … Roberto, G. (2012). Isolation and characterization of Wharton’s jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. BMC Biotechnology, 12(1), 18. Retrieved from http://www.doaj.org/doaj?func=openurl&issn=14726750&date=2012&volume=12&issue=1&spage=18&genre=article
  55. 55.
    Nazari-shafti, T. Z., Bruno, I. G., Martinez, R. F., Coleman, M. E., Alt, E. U., & Mcclure, S. R. (2015). Stem Cell Protocols, 1235.  https://doi.org/10.1007/978-1-4939-1785-3.Google Scholar
  56. 56.
    Evangelista, M., Soncini, M., & Parolini, O. (2008). Placenta-derived stem cells: New hope for cell therapy? Cytotechnology, 58(1), 33–42.  https://doi.org/10.1007/s10616-008-9162-z.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lange-Consiglio, A., & B. Corradetti2, D. Bizzaro, M. Magatti3, L. Ressel, S. T., & Cremonesi, O. P. and F. C. (2011). Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. J Tissue Eng Regen Med, 6(8), 622–635.  https://doi.org/10.1002/term.
  58. 58.
    Pappa, K. I., & Anagnou, N. P. (2009). Novel sources of fetal stem cells: Where do they fit on the developmental continuum? Regenerative Medicine, 4(3), 423–433.  https://doi.org/10.2217/rme.09.12.CrossRefPubMedGoogle Scholar
  59. 59.
    Cai, J., Li, W., Su, H., Qin, D., Yang, J., Zhu, F., et al. (2010). Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. Journal of Biological Chemistry, 285(15), 11227–11234.  https://doi.org/10.1074/jbc.M109.086389.CrossRefPubMedGoogle Scholar
  60. 60.
    Roubelakis, M. G., Trohatou, O., & Anagnou, N. P. (2012). Amniotic fluid and amniotic membrane stem cells: Marker discovery. Stem Cells International, 2012. doi: https://doi.org/10.1155/2012/107836 CrossRefGoogle Scholar
  61. 61.
    Miki, T., Marongiu, F., Dorko, K., Ellis, E. C. S., & Strom, S. C. (2010). Isolation of amniotic epithelial stem cells. Current Protocols in Stem Cell Biology, (SUPPL.12), 1–9. doi: https://doi.org/10.1002/9780470151808.sc01e03s3
  62. 62.
    Parolini, O., Alviano, F., Bagnara, G. P., Bilic, G., Bühring, H.-J., Evangelista, M., … Strom, S. C. (2008). Concise Review: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells. Stem Cells, 26(2), 300–311. doi: https://doi.org/10.1634/stemcells.2007-0594 CrossRefGoogle Scholar
  63. 63.
    Marongiu, F., Gramignoli, R., Sun, Q., Tahan, V., Dorko, K., Ellis, E., & Strom, S. C. (2007). Current Protocols in Stem Cell Biology. Current Protocols in Stem Cell Biology., 1–11.  https://doi.org/10.1002/9780470151808.
  64. 64.
    Klemmt, P. A., Vafaizadeh, V., & Groner, B. (2011). The potential of amniotic fluid stem cells for cellular therapy and tissue engineering. Expert Opinion on Biological Therapy, 11(10), 1297–1314.  https://doi.org/10.1517/14712598.2011.587800.CrossRefGoogle Scholar
  65. 65.
    Bossolasco, P., Montemurro, T., Cova, L., Zangrossi, S., Calzarossa, C., Buiatiotis, S., et al. (2006). Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Research, 16(4), 329–336.  https://doi.org/10.1038/sj.cr.7310043.CrossRefPubMedGoogle Scholar
  66. 66.
    Ditadi, A., De Coppi, P., Picone, O., Gautreau, L., Smati, R., Six, E., … André-Schmutz, I. (2016). HEMATOPOIESIS AND STEM CELLS Human and murine amniotic fluid c-Kit ϩ Lin Ϫ cells display hematopoietic activity, 113(17), 5–7. doi: https://doi.org/10.1182/blood-2008-10
  67. 67.
    Delo, D. M., De Coppi, P., Bartsch, G., & Atala, A. (2006). Amniotic Fluid and Placental Stem Cells. Methods in Enzymology, 419(6), 426–438.  https://doi.org/10.1016/S0076-6879(06)19017-5.CrossRefPubMedGoogle Scholar
  68. 68.
    Roubelakis, M. G., Bitsika, V., Zagoura, D., Trohatou, O., Pappa, K. I., Makridakis, M., et al. (2011). In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. Journal of Cellular and Molecular Medicine, 15(9), 1896–1913.  https://doi.org/10.1111/j.1582-4934.2010.01180.x.CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Sessarego, N., Parodi, A., Podestà, M., Benvenuto, F., Mogni, M., Raviolo, V., et al. (2008). Multipotent mesenchymal stromal cells from amniotic fluid: Solid perspectives for clinical application. Haematologica, 93(3), 339–346.  https://doi.org/10.3324/haematol.11869.CrossRefPubMedGoogle Scholar
  70. 70.
    Xie, W., Wang, X., Du, W., Liu, W., Qin, X., & Huang, S. (2010). Detection of molecular targets on the surface of CD34+CD38 - bone marrow cells in myelodysplastic syndromes. Cytometry Part A, 77(9), 840–848.  https://doi.org/10.1002/cyto.a.20929.CrossRefGoogle Scholar
  71. 71.
    Hughes, O. R., Stewart, R., Dimmick, I., & Jones, E. A. (2009). A critical appraisal of factors affecting the accuracy of results obtained when using flow cytometry in stem cell investigations: Where do you put your gates? Cytometry Part A, 75(9), 803–810.  https://doi.org/10.1002/cyto.a.20764.CrossRefGoogle Scholar
  72. 72.
    Van Soom, A., Hoogewijs, M. K., De Schauwer, C., Meyer, E., Van de Walle, G. R., Braeckmans, K., et al. (2012). In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytometry Part A, 81A(4), 312–323.  https://doi.org/10.1002/cyto.a.22026.CrossRefGoogle Scholar
  73. 73.
    Gugjoo, M. B., Amarpal, M., & D. M., & Sharma, G. T. (2019). Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. Journal of Equine Veterinary Science, 72, 16–27.  https://doi.org/10.1016/j.jevs.2018.10.007.CrossRefGoogle Scholar
  74. 74.
    Oreffo, R. O. C., Cooper, C., Mason, C., & Clements, M. (2005). Mesenchymal stem cells lineage, plasticity, and skeletal therapeutic potential. Stem Cell Reviews, 1(2), 169–178.  https://doi.org/10.1385/SCR:1:2:169.CrossRefPubMedGoogle Scholar
  75. 75.
    Bernal, M. L., Lyahyai, J., Ranera, B., Romero, A., Rodellar, C., Martín-Burriel, I., et al. (2011). Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Veterinary Immunology and Immunopathology, 144(1–2), 147–154.  https://doi.org/10.1016/j.vetimm.2011.06.033.CrossRefPubMedGoogle Scholar
  76. 76.
    Guest, D. J., Smith, M. R. W., & Allen, W. R. (2008). Monitoring the fate of autologous and allogeneic mesenchymal progenitor cells injected into the superficial digital flexor tendon of horses: Preliminary study. Equine Veterinary Journal, 40(2), 178–181.  https://doi.org/10.2746/042516408X276942.CrossRefPubMedGoogle Scholar
  77. 77.
    Radcliffe, C. H., Flaminio, M. J. B. F., & Fortier, L. A. (2009). Temporal Analysis of Equine Bone Marrow Aspirate During Establishment of Putative Mesenchymal Progenitor Cell Populations. Stem Cells and Development, 19(2), 269–282.  https://doi.org/10.1089/scd.2009.0091.CrossRefGoogle Scholar
  78. 78.
    Puissant, B., Barreau, C., Bourin, P., Clavel, C., Corre, J., Bousquet, C., et al. (2005). Immunomodulatory effect of human adipose tissue-derived adult stem cells: Comparison with bone marrow mesenchymal stem cells. British Journal of Haematology, 129(1), 118–129.  https://doi.org/10.1111/j.1365-2141.2005.05409.x.CrossRefPubMedGoogle Scholar
  79. 79.
    Im, G. I., Shin, Y. W., & Lee, K. B. (2005). Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis and Cartilage, 13(10), 845–853.  https://doi.org/10.1016/j.joca.2005.05.005.CrossRefGoogle Scholar
  80. 80.
    Gangenahalli, G. U., Singh, V. K., & Verma, Y. K. (2006). Hematopoietic Stem Cell Antigen CD34 :, 313, 305–313.Google Scholar
  81. 81.
    De Ugarte, D. A., Alfonso, Z., Zuk, P. A., Elbarbary, A., Zhu, M., Ashjian, P., et al. (2003). Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunology Letters, 89(2–3), 267–270.  https://doi.org/10.1016/S0165-2478(03)00108-1.CrossRefPubMedGoogle Scholar
  82. 82.
    Iacono, E., Brunori, L., Pirrone, A., Pagliaro, P. P., Ricci, F., Tazzari, P. L., & Merlo, B. (2012). Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton’s jelly in the horse. Reproduction, 143(4), 455–468.  https://doi.org/10.1530/REP-10-0408.CrossRefPubMedGoogle Scholar
  83. 83.
    Pascucci, L., Curina, G., Mercati, F., Marini, C., Dall’Aglio, C., Paternesi, B., & Ceccarelli, P. (2011). Flow cytometric characterization of culture expanded multipotent mesenchymal stromal cells (MSCs) from horse adipose tissue: Towards the definition of minimal stemness criteria. Veterinary Immunology and Immunopathology, 144(3–4), 499–506.  https://doi.org/10.1016/j.vetimm.2011.07.017.CrossRefPubMedGoogle Scholar
  84. 84.
    Braun, J., Kohler, K., Skutella, T., Aicher, W. K., Hack, A., Weis-Klemm, M., et al. (2010). Evaluation of the osteogenic and chondrogenic differentiation capacities of equine adipose tissue-derived mesenchymal stem cells. American Journal of Veterinary Research, 71(10), 1228–1236.  https://doi.org/10.2460/ajvr.71.10.1228.CrossRefPubMedGoogle Scholar
  85. 85.
    Barberini, D. J., Freitas, N. P. P., Magnoni, M. S., Maia, L., Listoni, A. J., Heckler, M. C., et al. (2014). Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: Immunophenotypic characterization and differentiation potential. Stem Cell Research and Therapy, 5(1), 1–11.  https://doi.org/10.1186/scrt414.CrossRefGoogle Scholar
  86. 86.
    Xie, L., Zhang, N., Marsano, A., Vunjak-Novakovic, G., Zhang, Y., & Lopez, M. J. (2013). In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold. Stem Cell Reviews and Reports, 9(6), 858–872.  https://doi.org/10.1007/s12015-013-9456-1.CrossRefGoogle Scholar
  87. 87.
    Hoynowski, S. M., Fry, M. M., Gardner, B. M., Leming, M. T., Tucker, J. R., Black, L., et al. (2007). Characterization and differentiation of equine umbilical cord-derived matrix cells. Biochemical and Biophysical Research Communications, 362(2), 347–353.  https://doi.org/10.1016/j.bbrc.2007.07.182.CrossRefPubMedGoogle Scholar
  88. 88.
    Carrade, D. D., Lame, M. W., Kent, M. S., Clark, K. C., Walker, N. J., & Borjesson, D. L. (2012). Comparative Analysis of the Immunomodulatory Properties of Equine Adult-Derived Mesenchymal Stem Cells. Cell Medicine, 4(1), 1–12.  https://doi.org/10.3727/215517912x647217.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Carlin, R., Davis, D., Weiss, M., Schultz, B., & Troyer, D. (2006). Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reproductive Biology and Endocrinology, 4, 1–13.  https://doi.org/10.1186/1477-7827-4-8.CrossRefGoogle Scholar
  90. 90.
    Hardy, W. B., Mosca, J. D., Buyaner, D., Majumdar, M. K., McIntosh, K. R., Keane-Moore, M., & Moorman, M. A. (2003). Characterization and Functionality of Cell Surface Molecules on Human Mesenchymal Stem Cells. Journal of Biomedical Science, 10(2), 228–241.  https://doi.org/10.1159/000068710.CrossRefPubMedGoogle Scholar
  91. 91.
    Mechiche Alami, S., Velard, F., Draux, F., Siu Paredes, F., Josse, J., Lemaire, F., et al. (2014). Gene screening of Wharton’s jelly derived stem cells. Bio-medical materials and engineering, 24(1), 53–61.  https://doi.org/10.3233/BME-140974.CrossRefPubMedGoogle Scholar
  92. 92.
    Rallapalli, S., Bishi, D. K., Verma, R. S., Cherian, K. M., & Guhathakurta, S. (2009). A multiplex PCR technique to characterize human bone marrow derived mesenchymal stem cells. Biotechnology Letters, 31(12), 1843–1850.  https://doi.org/10.1007/s10529-009-0106-2.CrossRefPubMedGoogle Scholar
  93. 93.
    Pham, H., Tonai, R., Wu, M., Birtolo, C., & Chen, M. (2018). CD73, CD90, CD105 and cadherin-11 RT-PCR screening for mesenchymal stem cells from cryopreserved human cord tissue. International Journal of Stem Cells, 11(1), 26–38. doi:10.15283/ijsc17015CrossRefGoogle Scholar
  94. 94.
    Aliborzi, G., Vahdati, A., Mehrabani, D., Hosseini, S. E., & Tamadon, A. (2016). Isolation, characterization and growth kinetic comparison of bone marrow and adipose tissue mesenchymal stem cells of Guinea pig. International Journal of Stem Cells, 9(1), 115–123. doi:10.15283/ijsc.2016.9.1.115CrossRefGoogle Scholar
  95. 95.
    Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235), 467–470.  https://doi.org/10.1126/science.270.5235.467.CrossRefPubMedGoogle Scholar
  96. 96.
    Roberts, C. J., Nelson, B., Marton, M. J., Stoughton, R., Meyer, M. R., Bennett, H. A., … Hughes, T. R. (2016). Signaling and Circuitry of Multiple MAPK Pathways Revealed by a Matrix of Global Gene Expression Profiles Published by : American Association for the Advancement of Science Linked references are available on JSTOR for this article : Signaling and Circuitr, (May).Google Scholar
  97. 97.
    Bataille, P., Pruna, A., Cardon, G., Bouzernidj, M., el Esper, N., Ghazali, A., et al. (2000). Renal and hypertensive complications of extracorporeal lithotripsy. Presse medicale (Paris, France : 1983), 29(1), 34–348.Google Scholar
  98. 98.
    Golub, A. T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., … Lander, E. S. (1999). Molecular Classification of Cancer : Class Discovery and Class Prediction by Gene Expression Monitoring Published by : American Association for the Advancement of Science Stable URL : http://www.jstor.org/stable/2899325 Linked references are available on , 286(5439), 531–537.
  99. 99.
    Pruitt, K. D., Katz, K. S., Sicotte, H., & Maglott, D. R. (2000). Introducing RefSeq and LocusLink: curated human genome resources at the NCBI. Trends in Genetics, 16(1), 44–47 Retrieved from www.ncbi.nlm.nih.gov/UniGene/.CrossRefGoogle Scholar
  100. 100.
    Yamada, Y., Fujimoto, A., Ito, A., Yoshimi, R., & Ueda, M. (2006). Cluster analysis and gene expression profiles: A cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials, 27(20), 3766–3781.  https://doi.org/10.1016/j.biomaterials.2006.02.009.CrossRefPubMedGoogle Scholar
  101. 101.
    Tremain, N., Korkko, J., Ibberson, D., Kopen, G. C., DiGirolamo, C., & Phinney, D. G. (2001). MicroSAGE Analysis of 2,353 Expressed Genes in a Single Cell-Derived Colony of Undifferentiated Human Mesenchymal Stem Cells Reveals mRNAs of Multiple Cell Lineages. Stem Cells, 19(5), 408–418.  https://doi.org/10.1634/stemcells.19-5-408.CrossRefPubMedGoogle Scholar
  102. 102.
    Yang, G. P., Ross, D. T., Kuang, W. W., Brown, P. O., & Weigel, R. J. (1999). Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes. Nucleic Acids Research, 27(6), 1517–1523.  https://doi.org/10.1093/nar/27.6.1517.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Vizoso, F. J., Eiro, N., Cid, S., Schneider, J., & Perez-Fernandez, R. (2017). Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. International Journal of Molecular Sciences, 18(9).  https://doi.org/10.3390/ijms18091852.CrossRefGoogle Scholar
  104. 104.
    Beer, L., Mildner, M., & Ankersmit, H. J. (2017). Cell secretome based drug substances in regenerative medicine: when regulatory affairs meet basic science. Annals of Translational Medicine, 5(7), 170–170. doi:10.21037/atm.2017.03.50CrossRefGoogle Scholar
  105. 105.
    Kupcova Skalnikova, H. (2013). Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie, 95(12), 2196–2211.  https://doi.org/10.1016/j.biochi.2013.07.015.CrossRefGoogle Scholar
  106. 106.
    Schinköthe, T., Bloch, W., & Schmidt, A. (2008). In Vitro Secreting Profile of Human Mesenchymal Stem Cells. Stem Cells and Development, 17(1), 199–206.  https://doi.org/10.1089/scd.2007.0175.CrossRefPubMedGoogle Scholar
  107. 107.
    Hsiao, S. T.-F., Asgari, A., Lokmic, Z., Sinclair, R., Dusting, G. J., Lim, S. Y., & Dilley, R. J. (2012). Comparative Analysis of Paracrine Factor Expression in Human Adult Mesenchymal Stem Cells Derived from Bone Marrow, Adipose, and Dermal Tissue. Stem Cells and Development, 21(12), 2189–2203.  https://doi.org/10.1089/scd.2011.0674.CrossRefPubMedGoogle Scholar
  108. 108.
    Du, W. J., Chi, Y., Yang, Z. X., Li, Z. J., Cui, J. J., Song, B. Q., et al. (2016). Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Research and Therapy, 7(1), 1–11.  https://doi.org/10.1186/s13287-016-0418-9.CrossRefGoogle Scholar
  109. 109.
    Sudhir, R. H. (2013). Harnessing the MSC Secretome for the Treatment of Cardiovascular Disease. Cell Stem Cell, 10(3), 244–258.  https://doi.org/10.1016/j.stem.2012.02.005.Harnessing.CrossRefGoogle Scholar
  110. 110.
    Azar, W. J., Azar, S. H. X., Higgins, S., Hu, J. F., Hoffman, A. R., Newgreen, D. F., et al. (2011). IGFBP-2 enhances VEGF gene promoter activity and consequent promotion of angiogenesis by neuroblastoma cells. Endocrinology, 152(9), 3332–3342.  https://doi.org/10.1210/en.2011-1121.CrossRefPubMedGoogle Scholar
  111. 111.
    Bussche, L., & Van de Walle, G. R. (2014). Peripheral Blood-Derived Mesenchymal Stromal Cells Promote Angiogenesis via Paracrine Stimulation of Vascular Endothelial Growth Factor Secretion in the Equine Model. Stem Cells Transl Med, 3(12), 1514–1525.CrossRefGoogle Scholar
  112. 112.
    Sherman, A. B., Gilger, B. C., Berglund, A. K., & Schnabel, L. V. (2017). Effect of bone marrow-derived mesenchymal stem cells and stem cell supernatant on equine corneal wound healing in vitro. Stem Cell Research and Therapy, 8(1), 1–10.  https://doi.org/10.1186/s13287-017-0577-3.CrossRefGoogle Scholar
  113. 113.
    Marialaura Madrigal, K. S. R., & N. H. R. (2014). A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. Journal of Translational Medicine, 12, 260.CrossRefGoogle Scholar
  114. 114.
    Bermudez, M. A., Sendon-Lago, J., Seoane, S., Eiro, N., Gonzalez, F., Saa, J., et al. (2016). Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Experimental Eye Research, 149, 84–92.  https://doi.org/10.1016/j.exer.2016.06.022.CrossRefPubMedGoogle Scholar
  115. 115.
    Kim, D., Nishida, H., An, S. Y., Shetty, A. K., Bartosh, T. J., & Prockop, D. J. (2016). Chromatographically isolated CD63 + CD81 + extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proceedings of the National Academy of Sciences, 113(1), 170–175.  https://doi.org/10.1073/pnas.1522297113.CrossRefGoogle Scholar
  116. 116.
    Sriramulu, S., Banerjee, A., Di Liddo, R., Jothimani, G., Gopinath, M., Murugesan, R., et al. (2018). Concise review on clinical applications of conditioned medium derived from human umbilical cord-mesenchymal stem cells (UC-MSCS). International Journal of Hematology-Oncology and Stem Cell Research, 12(3), 229–233.Google Scholar
  117. 117.
    Ferreira, J. R., Teixeira, G. Q., Santos, S. G., Barbosa, M. A., Almeida-Porada, G., & Gonçalves, R. M. (2018). Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Frontiers in immunology, 9(December), 2837.  https://doi.org/10.3389/fimmu.2018.02837.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Linero, I., & Chaparro, O. (2014). Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS ONE, 9(9), 1–12.  https://doi.org/10.1371/journal.pone.0107001.CrossRefGoogle Scholar
  119. 119.
    Inukai, T., Katagiri, W., Yoshimi, R., Osugi, M., Kawai, T., Hibi, H., & Ueda, M. (2013). Novel application of stem cell-derived factors for periodontal regeneration. Biochemical and Biophysical Research Communications, 430(2), 763–768.  https://doi.org/10.1016/j.bbrc.2012.11.074.CrossRefPubMedGoogle Scholar
  120. 120.
    Polacek, M., Bruun, J. A., Elvenes, J., Figenschau, Y., & Martinez, I. (2011). The secretory profiles of cultured human articular chondrocytes and mesenchymal stem cells: Implications for autologous cell transplantation strategies. Cell Transplantation, 20(9), 1381–1393.  https://doi.org/10.3727/096368910X550215.CrossRefPubMedGoogle Scholar
  121. 121.
    Osugi, M., Katagiri, W., Yoshimi, R., Inukai, T., Hibi, H., & Ueda, M. (2012). Conditioned Media from Mesenchymal Stem Cells Enhanced Bone Regeneration in Rat Calvarial Bone Defects. Tissue Engineering Part A, 18(13–14), 1479–1489.  https://doi.org/10.1089/ten.tea.2011.0325.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Ando, Y., Matsubara, K., Ishikawa, J., Fujio, M., Shohara, R., Hibi, H., et al. (2014). Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms. Bone, 61, 82–90.  https://doi.org/10.1016/j.bone.2013.12.029.CrossRefPubMedGoogle Scholar
  123. 123.
    Lv, F., Sun, Y., Zhou, L. X., Lu, M. M., Chan, D., Zheng, Z., et al. (2014). The Potential of Umbilical Cord Derived Mesenchymal Stem Cells in Intervertebral Disc Repair. Global Spine Journal, 4(1_suppl), s-0034-1376649-s-0034-1376649.  https://doi.org/10.1055/s-0034-1376649.CrossRefGoogle Scholar
  124. 124.
    Brisby, H., Papadimitriou, N., Brantsing, C., Bergh, P., Lindahl, A., & Barreto Henriksson, H. (2012). The Presence of Local Mesenchymal Progenitor Cells in Human Degenerated Intervertebral Discs and Possibilities to Influence These In Vitro: A Descriptive Study in Humans. Stem Cells and Development, 22(5), 804–814.  https://doi.org/10.1089/scd.2012.0179.CrossRefPubMedGoogle Scholar
  125. 125.
    van Koppen, A., Joles, J. A., van Balkom, B. W. M., Lim, S. K., de Kleijn, D., Giles, R. H., & Verhaar, M. C. (2012). Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS ONE, 7(6), 1–12.  https://doi.org/10.1371/journal.pone.0038746.CrossRefGoogle Scholar
  126. 126.
    J. Braga Osorio Gomes Salgado, A., L. Goncalves Reis, R., Jorge Carvalho Sousa, N., M. Gimble, J., J. Salgado, A., L. Reis, R., & Sousa, N. (2010). Adipose Tissue Derived Stem Cells Secretome: Soluble Factors and Their Roles in Regenerative Medicine. Current Stem Cell Research & Therapy, 5(2), 103–110.  https://doi.org/10.2174/157488810791268564.CrossRefGoogle Scholar
  127. 127.
    Bussche, L., Harman, R. M., Syracuse, B. A., Plante, E. L., Lu, Y. C., Curtis, T. M., et al. (2015). Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro. Stem Cell Research and Therapy, 6(1), 1–15.  https://doi.org/10.1186/s13287-015-0037-x.CrossRefGoogle Scholar
  128. 128.
    Harman, R. M., Bihun, I. V., & Van de Walle, G. R. (2017). Secreted factors from equine mesenchymal stromal cells diminish the effects of TGF-β1 on equine dermal fibroblasts and alter the phenotype of dermal fibroblasts isolated from cutaneous fibroproliferative wounds. Wound Repair and Regeneration, 25(2), 234–247.  https://doi.org/10.1111/wrr.12515.CrossRefPubMedGoogle Scholar
  129. 129.
    Carrade Holt, D. D., Wood, J. A., Granick, J. L., Walker, N. J., Clark, K. C., & Borjesson, D. L. (2014). Equine Mesenchymal Stem Cells Inhibit T Cell Proliferation Through Different Mechanisms Depending on Tissue Source. Stem Cells and Development, 23(11), 1258–1265.  https://doi.org/10.1089/scd.2013.0537.CrossRefGoogle Scholar
  130. 130.
    Lange-Consiglio, A., Rossi, D., Tassan, S., Perego, R., Cremonesi, F., & Parolini, O. (2013). Conditioned Medium from Horse Amniotic Membrane-Derived Multipotent Progenitor Cells: Immunomodulatory Activity In Vitro and First Clinical Application in Tendon and Ligament Injuries In Vivo. Stem Cells and Development, 22(22), 3015–3024.  https://doi.org/10.1089/scd.2013.0214.CrossRefPubMedGoogle Scholar
  131. 131.
    Anderson, Johnathon D. Johansson, H. J., Graham, C. S., Vesterlund, M., Pham, M. T., Bramlett, Charles S. Montgomery, Elizabeth N. Mellema, M. S., Bardini, R. L., … Nolta, J. A. (2016). Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling. Stem Cells, 34(3), 601–613.  https://doi.org/10.1016/j.cogdev.2010.08.003.Personal.
  132. 132.
    Angulski, A. B. B., Capriglione, L. G., Batista, M., Marcon, B. H., Senegaglia, A. C., Stimamiglio, M. A., & Correa, A. (2017). The Protein Content of Extracellular Vesicles Derived from Expanded Human Umbilical Cord Blood-Derived CD133+ and Human Bone Marrow-Derived Mesenchymal Stem Cells Partially Explains Why both Sources are Advantageous for Regenerative Medicine. Stem Cell Reviews and Reports, 13(2), 244–257.  https://doi.org/10.1007/s12015-016-9715-z.CrossRefGoogle Scholar
  133. 133.
    Lopatina, T., Deregibus, M. C., Cantaluppi, V., & Camussi, G. (2011). Stem Cell-Derived Microvesicles: A Cell Free Therapy Approach to the Regenerative Medicine. Current Biotechnology, 1(1), 11–22.  https://doi.org/10.2174/2211551x11201010011.CrossRefGoogle Scholar
  134. 134.
    Eirin, A., Zhu, X. Y., Puranik, A. S., Woollard, J. R., Tang, H., Dasari, S., et al. (2016). Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells. Scientific Reports, 6(June), 1–12.  https://doi.org/10.1038/srep36120.CrossRefGoogle Scholar
  135. 135.
    Wang, L., Hu, L., Zhou, X., Xiong, Z., Zhang, C., Shehada, H. M. A., et al. (2017). Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Scientific Reports, 7(1), 1–12.  https://doi.org/10.1038/s41598-017-12919-x.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Ti, D., Hao, H., Fu, X., & Han, W. (2016). Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Science China Life Sciences, 59(12), 1305–1312.  https://doi.org/10.1007/s11427-016-0240-4.CrossRefGoogle Scholar
  137. 137.
    Kim, Y.-L., Kang, K.-S., Lee, S., & Yoo, S. mi, Seo, K.-W., Kim, Y.-J., … Park, H. H. (2017). Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochemical and Biophysical Research Communications, 493(2), 1102–1108.  https://doi.org/10.1016/j.bbrc.2017.09.056.CrossRefGoogle Scholar
  138. 138.
    Biancone, L., Bruno, S., Deregibus, M. C., Tetta, C., & Camussi, G. (2012). Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrology Dialysis Transplantation, 27(8), 3037–3042.  https://doi.org/10.1093/ndt/gfs168.CrossRefGoogle Scholar
  139. 139.
    Riazifar, M., Pone, E. J., Lötvall, J., & Zhao, W. (2016). Stem Cell Extracellular Vesicles: Extended Messages of Regeneration. Annual Review of Pharmacology and Toxicology, 57(1), 125–154.  https://doi.org/10.1146/annurev-pharmtox-061616-030146.CrossRefPubMedCentralGoogle Scholar
  140. 140.
    Colombo, M., Raposo, G., & Théry, C. (2014). Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology, 30(1), 255–289.  https://doi.org/10.1146/annurev-cellbio-101512-122326.CrossRefGoogle Scholar
  141. 141.
    Villarroya-Beltri, C., Baixauli, F., Gutiérrez-Vázquez, C., Sánchez-Madrid, F., & Mittelbrunn, M. (2014). Sorting it out: Regulation of exosome loading. Seminars in Cancer Biology, 28, 3–13.  https://doi.org/10.1016/j.semcancer.2014.04.009.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Blaser, M. C., & Aikawa, E. (2018). Roles and Regulation of Extracellular Vesicles in Cardiovascular Mineral Metabolism. Frontiers in Cardiovascular Medicine, 5(December).  https://doi.org/10.3389/fcvm.2018.00187.
  143. 143.
    Chiang, C. Y., & Chen, C. (2019). Toward characterizing extracellular vesicles at a single-particle level Tse-Hua Tan. Journal of Biomedical Science, 26(1), 1–10.  https://doi.org/10.1186/s12929-019-0502-4.CrossRefGoogle Scholar
  144. 144.
    Sturk, A., Nieuwland, R., van der Pol, E., Boing, A. N., & Harrison, P. (2012). Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacological Reviews, 64(3), 676–705.  https://doi.org/10.1124/pr.112.005983.CrossRefPubMedGoogle Scholar
  145. 145.
    Pállinger, É., László, V., Pásztói, M., Nagy, G., Pál, Z., Kittel, Á., et al. (2011). Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and Molecular Life Sciences, 68(16), 2667–2688.  https://doi.org/10.1007/s00018-011-0689-3.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Konoshenko, M. Y., Lekchnov, E. A., Vlassov, A. V., & Laktionov, P. P. (2018). Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BioMed Research International, 2018, 1–27.  https://doi.org/10.1155/2018/8545347.CrossRefGoogle Scholar
  147. 147.
    Panagiotou, N., Wayne Davies, R., Selman, C., & Shiels, P. G. (2016). Microvesicles as Vehicles for Tissue Regeneration: Changing of the Guards. Current Pathobiology Reports, 4(4), 181–187.  https://doi.org/10.1007/s40139-016-0115-5.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Théry, C., Aled, C., Sebastian, A., & Graça, R. (2006). Isolation and Characterization of Exosomes from Cell Culture Supernatants. Current Protocols in Cell Biology, 3(22), 1–29.Google Scholar
  149. 149.
    Raj, D. A. A., Fiume, I., Capasso, G., & Pocsfalvi, G. (2012). A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. Kidney International, 81(12), 1263–1272.  https://doi.org/10.1038/ki.2012.25.CrossRefPubMedGoogle Scholar
  150. 150.
    Araùjo, M., Hube, L. A., & Stasyk, T. (2008). Isolation of Endocitic Organelles by Density Gradient Centrifugation, 424, 317–331.  https://doi.org/10.1007/978-1-60327-064-9_25.CrossRefGoogle Scholar
  151. 151.
    Collino, F., Pomatto, M., Bruno, S., Lindoso, R. S., Tapparo, M., Sicheng, W., et al. (2017). Exosome and Microvesicle-Enriched Fractions Isolated from Mesenchymal Stem Cells by Gradient Separation Showed Different Molecular Signatures and Functions on Renal Tubular Epithelial Cells. Stem Cell Reviews and Reports, 13(2), 226–243.  https://doi.org/10.1007/s12015-016-9713-1.CrossRefGoogle Scholar
  152. 152.
    Musante, L., Tataruch, D. E., & Holthofer, H. (2014). Use and isolation of urinary exosomes as biomarkers for diabetic nephropathy. Frontiers in Endocrinology, 5(SEP), 1–13.  https://doi.org/10.3389/fendo.2014.00149.
  153. 153.
    Tataruch-Weinert, D., Musante, L., Kretz, O., & Holthofer, H. (2016). Urinary extracellular vesicles for RNA extraction: optimization of a protocol devoid of prokaryote contamination. Journal of Extracellular Vesicles, 5(1), 0–14. doi: https://doi.org/10.3402/jev.v5.30281 CrossRefGoogle Scholar
  154. 154.
    Watkins, S. C., Muller, L., Whiteside, T. L., Hong, C.-S., & Stolz, D. B. (2014). Isolation of biologically-active exosomes from human plasma. Journal of Immunological Methods, 411, 55–65.  https://doi.org/10.1016/j.jim.2014.06.007.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Baranyai, T., Herczeg, K., Onódi, Z., Voszka, I., Módos, K., Marton, N., et al. (2015). Isolation of exosomes from blood plasma: Qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS ONE, 10(12), 1–13.  https://doi.org/10.1371/journal.pone.0145686.CrossRefGoogle Scholar
  156. 156.
    Welton, J. L., Webber, J. P., Botos, L. A., Jones, M., & Clayton, A. (2015). Ready-made chromatography columns for extracellular vesicle isolation from plasma. Journal of Extracellular Vesicles, 4(2015), 1–9.  https://doi.org/10.3402/jev.v4.27269.CrossRefGoogle Scholar
  157. 157.
    Andreu, Z., Rivas, E., Sanguino-Pascual, A., Lamana, A., Marazuela, M., González-Alvaro, I., et al. (2016). Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. Journal of Extracellular Vesicles, 5(1).  https://doi.org/10.3402/jev.v5.31655.CrossRefGoogle Scholar
  158. 158.
    Kang, H., Kim, J., & Park, J. (2017). Methods to isolate extracellular vesicles for diagnosis. Micro and Nano Systems Letters, 5(1).  https://doi.org/10.1186/s40486-017-0049-7.
  159. 159.
    Brownlee, Z., Lynn, K. D., Thorpe, P. E., & Schroit, A. J. (2014). A novel “salting-out” procedure for the isolation of tumor-derived exosomes. Journal of Immunological Methods, 407, 120–126.  https://doi.org/10.1016/j.jim.2014.04.003.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Deregibus, M. C., Figliolini, F., D’Antico, S., Manzini, P. M., Pasquino, C., De Lena, M., et al. (2016). Charge-based precipitation of extracellular vesicles. International Journal of Molecular Medicine, 38(5), 1359–1366.  https://doi.org/10.3892/ijmm.2016.2759.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Kim, J., Shin, H., Kim, J., Kim, J., & Park, J. (2015). Isolation of high-purity extracellular vesicles by extracting proteins using aqueous two-phase system. PLoS ONE, 10(6), 1–16.  https://doi.org/10.1371/journal.pone.0129760.CrossRefGoogle Scholar
  162. 162.
    Shin, H., Han, C., Labuz, J. M., Kim, J., Kim, J., Cho, S., et al. (2015). High-yield isolation of extracellular vesicles using aqueous two-phase system. Scientific Reports, 5, 1–11.  https://doi.org/10.1038/srep13103.CrossRefGoogle Scholar
  163. 163.
    Charwat, V., Spittler, A., Mushahary, D., Kasper, C., & Weber, V. (2017). Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry Part A, 93(1), 19–31.  https://doi.org/10.1002/cyto.a.23242.CrossRefGoogle Scholar
  164. 164.
    Akers, J. C., Gonda, D., Kim, R., Carter, B. S., & Chen, C. C. (2013). Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. Journal of Neuro-Oncology, 113(1), 1–11.  https://doi.org/10.1007/s11060-013-1084-8.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Lässer, C., Eldh, M., & Lötvall, J. (2012). Isolation and Characterization of RNA-Containing Exosomes. Journal of Visualized Experiments, 59, 1–6.  https://doi.org/10.3791/3037.CrossRefGoogle Scholar
  166. 166.
    Magnan, P. E., Piercecchi-Marti, M. D., Sarlon, E., Bartoli, M. A., Boudes, A., Mancini, J., et al. (2013). Plasmatic Level of Leukocyte-Derived Microparticles Is Associated With Unstable Plaque in Asymptomatic Patients With High-Grade Carotid Stenosis. Journal of the American College of Cardiology, 62(16), 1436–1441.  https://doi.org/10.1016/j.jacc.2013.03.078.CrossRefGoogle Scholar
  167. 167.
    Ramos, T. L., Sánchez-Abarca, L. I., Muntión, S., Preciado, S., Puig, N., López-Ruano, G., et al. (2016). MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Communication and Signaling, 14(1), 1–14.  https://doi.org/10.1186/s12964-015-0124-8.CrossRefGoogle Scholar
  168. 168.
    Grootemaat, A. E., Nieuwland, R., van der Pol, E., van Leeuwen, T. G., Harrison, P., Coumans, F. A. W., et al. (2014). Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. Journal of Thrombosis and Haemostasis, 12(7), 1182–1192.  https://doi.org/10.1111/jth.12602.CrossRefPubMedGoogle Scholar
  169. 169.
    Arraud, N., Gounou, C., Turpin, D., & Brisson, A. R. (2016). Fluorescence triggering: A general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry Part A, 89(2), 184–195.  https://doi.org/10.1002/cyto.a.22669.CrossRefGoogle Scholar
  170. 170.
    Brisson, A. R., Tan, S., Linares, R., Gounou, C., & Arraud, N. (2017). Extracellular vesicles from activated platelets: a semiquantitative cryo-electron microscopy and immuno-gold labeling study. Platelets, 28(3), 263–271.  https://doi.org/10.1080/09537104.2016.1268255.CrossRefGoogle Scholar
  171. 171.
    Danielson, K. M., Estanislau, J., Tigges, J., Toxavidis, V., Camacho, V., Felton, E. J., et al. (2016). Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS ONE, 11(1), 1–11.  https://doi.org/10.1371/journal.pone.0144678.CrossRefGoogle Scholar
  172. 172.
    Mason, C., & Dunnill, P. (2008). A brief definition of regenerative medicine. Regenerative Medicine, 3(1), 1–5.  https://doi.org/10.2217/17460751.3.1.1.CrossRefPubMedGoogle Scholar
  173. 173.
    Mahla, R. S. (2016). Stem cells applications in regenerative medicine and disease therapeutics. International Journal of Cell Biology, 2016.  https://doi.org/10.1155/2016/6940283.CrossRefGoogle Scholar
  174. 174.
    Law, S., & Chaudhuri, S. (2013). Am J Stem Cells 2013 Law S.pdf, 2(1), 22–38.Google Scholar
  175. 175.
    Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences, 100(10), 5807–5812.  https://doi.org/10.1073/pnas.0937635100.CrossRefGoogle Scholar
  176. 176.
    Gimble, J. M. (2003). Adipose tissue-derived therapeutics. Expert Opinion on Biological Therapy, 3(5), 705–713.  https://doi.org/10.1517/14712598.3.5.705.CrossRefPubMedGoogle Scholar
  177. 177.
    Menard, C., Pacelli, L., Bassi, G., Dulong, J., Bifari, F., Bezier, I., et al. (2013). Clinical-Grade Mesenchymal Stromal Cells Produced Under Various Good Manufacturing Practice Processes Differ in Their Immunomodulatory Properties: Standardization of Immune Quality Controls. Stem Cells and Development, 22(12), 1789–1801.  https://doi.org/10.1089/scd.2012.0594.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Le Blanc, K., & Mougiakakos, D. (2012). Multipotent mesenchymal stromal cells and the innate immune system. Nature Reviews Immunology, 12(5), 383–396.  https://doi.org/10.1038/nri3209.CrossRefPubMedGoogle Scholar
  179. 179.
    Cui, L., Yin, S., Liu, W., Li, N., Zhang, W., & Cao, Y. (2007). Expanded Adipose-Derived Stem Cells Suppress Mixed Lymphocyte Reaction by Secretion of Prostaglandin E2. Tissue Engineering, 13(6), 1185–1195.  https://doi.org/10.1089/ten.2006.0315.CrossRefPubMedGoogle Scholar
  180. 180.
    Doorn, J., Moll, G., Le Blanc, K., van Blitterswijk, C., & de Boer, J. (2011). Therapeutic Applications of Mesenchymal Stromal Cells: Paracrine Effects and Potential Improvements. Tissue Engineering Part B: Reviews, 18(2), 101–115.  https://doi.org/10.1089/ten.teb.2011.0488.CrossRefGoogle Scholar
  181. 181.
    Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., et al. (2008). Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide. Cell Stem Cell, 2(2), 141–150.  https://doi.org/10.1016/j.stem.2007.11.014.CrossRefPubMedGoogle Scholar
  182. 182.
    Smith, R. K. W., Garvican, E. R., & Fortier, L. A. (2014). The current “state of play” of regenerative medicine in horses: What the horse can tell the human. Regenerative Medicine, 9(5), 673–685.  https://doi.org/10.2217/rme.14.42.CrossRefPubMedGoogle Scholar
  183. 183.
    Kang, J. G., Park, S. B., Seo, M. S., Kim, H. S., Chae, J. S., & Kang, K. S. (2013). Characterization and clinical application of mesenchymal stem cells from equine umbilical cord blood. Journal of Veterinary Science, 14(3), 367–371.  https://doi.org/10.4142/jvs.2013.14.3.367.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Ricco, S., Renzi, S., Del Bue, M., Conti, V., Merli, E., Ramoni, R., et al. (2013). Allogeneic adipose tissue-derived mesenchymal stem cells in combination with platelet rich plasma are safe and effective in the therapy of superficial digital flexor tendonitis in the horse. International Journal of Immunopathology and Pharmacology, 26(1), 61–68.  https://doi.org/10.1177/03946320130260S108.CrossRefPubMedGoogle Scholar
  185. 185.
    Godwin, E. E., Young, N. J., Dudhia, J., Beamish, I. C., & Smith, R. K. W. (2012). Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Veterinary Journal, 44(1), 25–32.  https://doi.org/10.1111/j.2042-3306.2011.00363.x.CrossRefPubMedGoogle Scholar
  186. 186.
    Broeckx, S., Suls, M., Beerts, C., Vandenberghe, A., Seys, B., Wuertz-Kozak, K., et al. (2014). Allogenic Mesenchymal Stem Cells as a Treatment for Equine Degenerative Joint Disease: A Pilot Study. Current Stem Cell Research & Therapy, 9(6), 497–503.  https://doi.org/10.2174/1574888x09666140826110601.CrossRefGoogle Scholar
  187. 187.
    Grayson, W. L., Bunnell, B. A., Martin, E., Frazier, T., Hung, B. P., & Gimble, J. M. (2015). Stromal cells and stem cells in clinical bone regeneration. Nature Reviews Endocrinology, 11(3), 140–150.  https://doi.org/10.1038/nrendo.2014.234.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Giuliani, N., Lisignoli, G., Magnani, M., Racano, C., Bolzoni, M., Dalla Palma, B., et al. (2013). New Insights into Osteogenic and Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells and Their Potential Clinical Applications for Bone Regeneration in Pediatric Orthopaedics. Stem Cells International, 2013, 1–11.  https://doi.org/10.1155/2013/312501.CrossRefGoogle Scholar
  189. 189.
    Lin, W., Xu, L., Zwingenberger, S., Gibon, E., Goodman, S. B., & Li, G. (2017). Mesenchymal stem cells homing to improve bone healing. Journal of Orthopaedic Translation, 9, 19–27.  https://doi.org/10.1016/j.jot.2017.03.002.CrossRefPubMedCentralGoogle Scholar
  190. 190.
    Branly, T., Bertoni, L., Contentin, R., Rakic, R., Gomez-Leduc, T., Desancé, M., et al. (2017). Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1. Stem Cell Reviews and Reports, 13(5), 611–630.  https://doi.org/10.1007/s12015-017-9748-y.CrossRefGoogle Scholar
  191. 191.
    Shao, J., Zhang, W., & Yang, T. (2015). Using mesenchymal stem cells as a therapy for bone regeneration and repairing. Biological Research, 48, 1–7.  https://doi.org/10.1186/s40659-015-0053-4.CrossRefGoogle Scholar
  192. 192.
    Koch, T. G., Berg, L. C., & Betts, D. H. (2009). Current and future regenerative medicine — Principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Canadian Veterinary Journal Revue Veterinaire Canadienne, 50(February), 155–165.PubMedGoogle Scholar
  193. 193.
    McDuffee, L. A., Anderson, G. I., Wright, G. M., & Ryan, D. A. J. (2006). In vitro heterogeneity of osteogenic cell populations at various equine skeletal sites. Canadian Journal of Veterinary Research, 70(4), 277–284.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Sethe, S., Scutt, A., & Stolzing, A. (2006). Aging of mesenchymal stem cells. Ageing Research Reviews, 5(1), 91–116.  https://doi.org/10.1016/j.arr.2005.10.001.CrossRefPubMedGoogle Scholar
  195. 195.
    Stolzing, A., Jones, E., McGonagle, D., & Scutt, A. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mechanisms of Ageing and Development, 129(3), 163–173.  https://doi.org/10.1016/j.mad.2007.12.002.CrossRefPubMedGoogle Scholar
  196. 196.
    Marycz, K., Grzesiak, J., Wrzeszcz, K., & Golonka, P. (2012). Adipose stem cell combined with plasma-based implant bone tissue differentiation in vitro and in a horse with a phalanx digitalis distalis fracture: A case report. Veterinarni Medicina, 57(11), 610–617. doi:10.17221/6469-VETMEDCrossRefGoogle Scholar
  197. 197.
    Carstanjen, B., Desbois, C., Hekmati, M., & Behr, L. (2006). Successful engraftment of cultured autologous mesenchymal stem cells in a surgically repaired soft palate defect in an adult horse. Can J Vet Res., 70(2), 143–147.PubMedPubMedCentralGoogle Scholar
  198. 198.
    McDuffee, L. A., Pack, L., Lores, M., Wright, G. M., Esparza-Gonzalez, B., & Masaoud, E. (2012). Osteoprogenitor cell therapy in an equine fracture model. Veterinary Surgery, 41(7), 773–783.  https://doi.org/10.1111/j.1532-950X.2012.01024.x.CrossRefPubMedGoogle Scholar
  199. 199.
    McDuffee, L. A., Esparza Gonzalez, B. P., Nino-Fong, R., & Aburto, E. (2014). Evaluation of an in vivo heterotopic model of osteogenic differentiation of equine bone marrow and muscle mesenchymal stem cells in fibrin glue scaffold. Cell and Tissue Research, 355(2), 327–335.  https://doi.org/10.1007/s00441-013-1742-3.CrossRefPubMedGoogle Scholar
  200. 200.
    Seo, J. P., Tsuzuki, N., Haneda, S., Yamada, K., Furuoka, H., Tabata, Y., & Sasaki, N. (2014). Osteoinductivity of gelatin/β-tricalcium phosphate sponges loaded with different concentrations of mesenchymal stem cells and bone morphogenetic protein-2 in an equine bone defect model. Veterinary Research Communications, 38(1), 73–80.  https://doi.org/10.1007/s11259-013-9587-5.CrossRefPubMedGoogle Scholar
  201. 201.
    Ehnert, S., Glanemann, M., Schmitt, A., Vogt, S., Shanny, N., Nussler, N. C., et al. (2009). The possible use of stem cells in regenerative medicine: Dream or reality? Langenbeck’s Archives of Surgery, 394(6), 985–997.  https://doi.org/10.1007/s00423-009-0546-0.CrossRefPubMedGoogle Scholar
  202. 202.
    Jensen, J., Hyllner, J., & Björquist, P. (2009). Human embryonic stem cell technologies and drug discovery. Journal of Cellular Physiology, 219(3), 513–519.  https://doi.org/10.1002/jcp.21732.CrossRefPubMedGoogle Scholar
  203. 203.
    Mahmoud, M., Abu-Shahba, N., Azmy, O., & El-Badri, N. (2019). Impact of Diabetes Mellitus on Human Mesenchymal Stromal Cell Biology and Functionality: Implications for Autologous Transplantation. Stem Cell Reviews and Reports, 194–217.  https://doi.org/10.1007/s12015-018-9869-y.CrossRefGoogle Scholar
  204. 204.
    Durward-Akhurst, S. A., Schultz, N. E., Norton, E. M., Rendahl, A. K., Besselink, H., Behnisch, P. A., et al. (2019). Associations between endocrine disrupting chemicals and equine metabolic syndrome phenotypes. Chemosphere, 652–661.  https://doi.org/10.1016/j.chemosphere.2018.11.136.CrossRefGoogle Scholar
  205. 205.
    Payab, M., Goodarzi, P., Foroughi Heravani, N., Hadavandkhani, M., Zarei, Z., Falahzadeh, K., et al. (2018). Stem cell and obesity: Current state and future perspective. Advances in Experimental Medicine and Biology, 1089, 1–22.  https://doi.org/10.1007/5584_2018_227.CrossRefPubMedGoogle Scholar
  206. 206.
    Cao, M., Pan, Q., Dong, H., Yuan, X., Li, Y., Sun, Z., et al. (2015). Adipose-derived mesenchymal stem cells improve glucose homeostasis in high-fat diet-induced obese mice. Stem Cell Research and Therapy, 6(1), 1–13.  https://doi.org/10.1186/s13287-015-0201-3.CrossRefGoogle Scholar
  207. 207.
    Shang, Q., Bai, Y., Wang, G., Song, Q., Guo, C., Zhang, L., & Wang, Q. (2015). Delivery of adipose-derived stem cells attenuates adipose tissue inflammation and insulin resistance in obese mice through remodeling macrophage phenotypesNo Title. Stem Cells Dev, 24, 2052–2064.CrossRefGoogle Scholar
  208. 208.
    Chandravanshi, B., & Bhonde, R. R. (2017). Shielding Engineered Islets With Mesenchymal Stem Cells Enhance Survival Under Hypoxia. Journal of Cellular Biochemistry, 118(9), 2672–2683.  https://doi.org/10.1002/jcb.25885.CrossRefPubMedGoogle Scholar
  209. 209.
    Cho, J., D’Antuono, M., Glicksman, M., Wang, J., & Jonklaas, J. (2018). A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. American journal of stem cells, 7(4), 82–93. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/30510843.
  210. 210.
    Y., Z., Z., J., T., Z., M., Y., C., H., H., Z., … H., L. (2013). Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: Phase I/II clinical trial. BMC Medicine, 11(1).  https://doi.org/10.1186/1741-7015-11-160.
  211. 211.
    Zang, L., Hao, H., Liu, J., Li, Y., Han, W., & Mu, Y. (2017). Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetology and Metabolic Syndrome, 9(1), 1–11.  https://doi.org/10.1186/s13098-017-0233-1.CrossRefGoogle Scholar
  212. 212.
    Mohamed, J., Nazratun Nafizah, A. H., Zariyantey, A. H., & Budin, S. B. (2016). Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation. Sultan Qaboos University Medical Journal, 16(2), e132–e141. doi:10.18295/squmj.2016.16.02.002CrossRefGoogle Scholar
  213. 213.
    Winkler, S., & Christ, B. (2014). Animal Models for Stem Cell Therapy, 1213, 51–56.  https://doi.org/10.1007/978-1-4939-1453-1.CrossRefGoogle Scholar
  214. 214.
    De Freitas Souza, B. S., Nogueira, R. C., De Oliveira, S. A., De Freitas, L. A. R., Lyra, L. G. C., Dos Santos, R. R., et al. (2009). Current status of stem cell therapy for liver diseases. Cell Transplantation, 18(12), 1261–1279.  https://doi.org/10.3727/096368909X470522.CrossRefGoogle Scholar
  215. 215.
    Damania, A., Jaiman, D., Teotia, A. K., & Kumar, A. (2018). Mesenchymal stromal cell-derived exosome-rich fractionated secretome confers a hepatoprotective effect in liver injury. Stem Cell Research and Therapy, 9(1), 1–12.  https://doi.org/10.1186/s13287-017-0752-6.CrossRefGoogle Scholar
  216. 216.
    Pérez, L. M., De Lucas, B., & Gálvez, B. G. (2018). Unhealthy Stem Cells: When Health Conditions Upset Stem Cell Properties. Cellular Physiology and Biochemistry, 46(5), 1999–2016.  https://doi.org/10.1159/000489440.CrossRefPubMedGoogle Scholar
  217. 217.
    Scott, E. W. (2017). Stem Cell Reviews and Reports: Adult Stem Cells and Tissue Regeneration Section. Stem Cell Reviews and Reports, 13(1), 2–2.  https://doi.org/10.1007/s12015-017-9724-6.CrossRefGoogle Scholar
  218. 218.
    Yang, S.-R., Park, J.-R., & Kang, K.-S. (2015). Reactive Oxygen Species in Mesenchymal Stem Cell Aging: Implication to Lung Diseases. Oxidative Medicine and Cellular Longevity, 2015, 1–11.  https://doi.org/10.1155/2015/486263.CrossRefGoogle Scholar
  219. 219.
    Yun, M. H. (2015). Changes in regenerative capacity through lifespan. International Journal of Molecular Sciences, 16(10), 25392–25432.  https://doi.org/10.3390/ijms161025392.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Bratic, A., & Larsson, N. (2013). Review series The role of mitochondria in aging. The Journal of Clinical Investigation, 123(3), 951–957.  https://doi.org/10.1172/JCI64125.Mitochondrial.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Tomaru, U., Takahashi, S., Ishizu, A., Miyatake, Y., Gohda, A., Suzuki, S., et al. (2012). Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. American Journal of Pathology, 180(3), 963–972.  https://doi.org/10.1016/j.ajpath.2011.11.012.CrossRefPubMedGoogle Scholar
  222. 222.
    Achike, F. I., To, N. H. P., Wang, H., & Kwan, C. Y. (2011). Obesity, metabolic syndrome, adipocytes and vascular function: A holistic viewpoint. Clinical and Experimental Pharmacology and Physiology, 38(1), 1–10.  https://doi.org/10.1111/j.1440-1681.2010.05460.x.CrossRefPubMedGoogle Scholar
  223. 223.
    Pérez, L. M., Bernal, A., San Martín, N., & Gálvez, B. G. (2013). Obese-derived ASCs show impaired migration and angiogenesis properties. Archives of Physiology and Biochemistry, 119(5), 195–201.  https://doi.org/10.3109/13813455.2013.784339.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Oñate, B., Vilahur, G., Ferrer-Lorente, R., Ybarra, J., Díez-Caballero, A., Ballesta-López, C., et al. (2012). The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB Journal, 26(10), 4327–4336.  https://doi.org/10.1096/fj.12-207217.CrossRefPubMedGoogle Scholar
  225. 225.
    Marycz, K., Kornicka, K., Basinska, K., & Czyrek, A. (2016). Equine Metabolic Syndrome Affects Viability, Senescence, and Stress Factors of Equine Adipose-Derived Mesenchymal Stromal Stem Cells: New Insight into EqASCs Isolated from EMS Horses in the Context of Their Aging. Oxidative Medicine and Cellular Longevity, 2016.  https://doi.org/10.1155/2016/4710326.Google Scholar
  226. 226.
    Marycz, K., Weiss, C., Śmieszek, A., & Kornicka, K. (2018). Evaluation of Oxidative Stress and Mitophagy during Adipogenic Differentiation of Adipose-Derived Stem Cells Isolated from Equine Metabolic Syndrome (EMS) Horses. Stem Cells International, 2018, 1–18.  https://doi.org/10.1155/2018/5340756.CrossRefGoogle Scholar
  227. 227.
    Marycz, K., Kornicka, K., Marędziak, M., Golonka, P., & Nicpoń, J. (2016). Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. Journal of Cellular and Molecular Medicine, 20(12), 2384–2404.  https://doi.org/10.1111/jcmm.12932.CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Kornicka, K., Houston, J., & Marycz, K. (2018). Dysfunction of Mesenchymal Stem Cells Isolated from Metabolic Syndrome and Type 2 Diabetic Patients as Result of Oxidative Stress and Autophagy may Limit Their Potential Therapeutic Use. Stem Cell Reviews and Reports, 14(3), 337–345.  https://doi.org/10.1007/s12015-018-9809-x.CrossRefGoogle Scholar
  229. 229.
    Menaa, F., Shahrokhi, S., & Shastri, V. P. (2018). Impact and challenges of mesenchymal stem cells in medicine: An overview of the current knowledge. Stem Cells International, 2018, 11–13.  https://doi.org/10.1155/2018/5023925.CrossRefGoogle Scholar
  230. 230.
    Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35(2), 1–18.  https://doi.org/10.1042/bsr20150025.CrossRefGoogle Scholar
  231. 231.
    Najar, M., Bouhtit, F., Melki, R., Afif, H., Hamal, A., Fahmi, H., et al. (2019). Mesenchymal Stromal Cell-Based Therapy: New Perspectives and Challenges. Journal of Clinical Medicine, 8(5), 626.  https://doi.org/10.3390/jcm8050626.CrossRefPubMedCentralGoogle Scholar
  232. 232.
    Xue, W., Yu, J., & Chen, W. (2018). Plants and Their Bioactive Constituents in Mesenchymal Stem Cell-Based Periodontal Regeneration: A Novel Prospective. BioMed Research International, 2018, 1–15.  https://doi.org/10.1155/2018/7571363.CrossRefGoogle Scholar
  233. 233.
    Hwang, E. S., Ok, J. S., & Song, S. B. (2016). Chemical and Physical Approaches to Extend the Replicative and Differentiation Potential of Stem Cells. Stem Cell Reviews and Reports, 12(3), 315–326.  https://doi.org/10.1007/s12015-016-9652-x.CrossRefGoogle Scholar
  234. 234.
    Subash-Babu, P., & Alshatwi, A. A. (2012). Aloe-emodin inhibits adipocyte differentiation and maturation during in vitro human mesenchymal stem cell adipogenesis. Journal of Biochemical and Molecular Toxicology, 26(8), 291–300.  https://doi.org/10.1002/jbt.21415.CrossRefPubMedGoogle Scholar
  235. 235.
    Huynh, T., & Technologies, P. (2017). ( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2012 / 0226334 A1 Figure 1 a, 1(19).Google Scholar
  236. 236.
    Zheng, Z. ., & Zhang, T. . (2012). We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. School of Enviromental Sciences.Google Scholar
  237. 237.
    Bourebaba, L., Michalak, I., Röcken, M., & Marycz, K. (2019). Cladophora glomerata methanolic extract decreases oxidative stress and improves viability and mitochondrial potential in equine adipose derived mesenchymal stem cells (ASCs). Biomedicine and Pharmacotherapy, 111(December 2018), 6–18.  https://doi.org/10.1016/j.biopha.2018.12.020.CrossRefPubMedGoogle Scholar
  238. 238.
    Marycz, K., Michalak, I., Kocherova, I., Edziak, M. M., & Weiss, C. (2017). The cladophora glomerata enriched by biosorption process in Cr(III) improves viability, and reduces oxidative stress and apoptosis in equine metabolic syndrome derived adipose mesenchymal stromal stem cells (ASCs) and their extracellular vesicles (MV’s). Marine Drugs, 15(12), 1–18.  https://doi.org/10.3390/md15120385.CrossRefGoogle Scholar
  239. 239.
    Nawrocka, D., Kornicka, K., Śmieszek, A., & Marycz, K. (2017). Spirulina platensis improves mitochondrial function impaired by elevated oxidative stress in adipose-derived mesenchymal stromal cells (ASCs) and intestinal epithelial cells (IECs), and enhances insulin sensitivity in Equine Metabolic Syndrome (EMS) horse. Marine Drugs, 15(8), 1–28.  https://doi.org/10.3390/md15080237.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Veterinary Medicine, Equine Clinic - Equine SurgeryJustus-Liebig-UniversityGießenGermany
  2. 2.Department of Experimental Biology, Faculty of Biology and Animal ScienceWrocław University of Environmental and Life SciencesWrocławPoland
  3. 3.International Institute of Translational MedicineWisznia MałaPoland

Personalised recommendations