Stem Cell Reviews and Reports

, Volume 15, Issue 5, pp 652–663 | Cite as

Biological Characteristics and Regulation of Early Megakaryocytopoiesis

  • Jingang Yang
  • Song Zhao
  • Dongchu MaEmail author


For decades, megakaryocytopoiesis is believed to occur following a classical binary hierarchical developmental model. This model is based on an analysis of predefined flow-sorted cell populations by using cell surface markers. However, this classical model has been challenged by increasing evidences obtained with new techniques which integrating flow cytometric, transcriptomic and functional data at single-cell level and with lineage tracing technique. These recent advances in megakaryocytopoiesis proposed that commitment of haematopoietic stem cells (HSCs) towards megakaryocytic lineage occurs in much earlier stage than that postulated in the classical model. There may exist multipotent but megakaryocyte (MK)/platelet-biased HSCs within HSC compartment and even HSCs can directly differentiate into MKs in steady state or in response to stress. In this review, we focus on recent findings about differentiation from commitment of HSCs to MK and its regulation, and discuss future directions in this research field.


Binary hierarchical developmental model Megakaryocytopoiesis Haematopoietic stem cells Commitment 



This work was supported by the National Natural Science Foundation of China (No. 31571398).

Compliance with Ethical Standards


The authors indicate no potential conflicts of interest.


  1. 1.
    Woolthuis, C. M., & Park, C. Y. (2016). Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage. Blood, 127, 1242–1248.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yu, M., & Cantor, A. B. (2012). Megakaryopoiesis and thrombopoiesis: An update on cytokines and lineage surface markers. Methods in Molecular Biology, 788, 291–303.CrossRefPubMedGoogle Scholar
  3. 3.
    Yang, J. G., Wang, L. L., & Ma, D. C. (2018). Effects of vascular endothelial growth factors and their receptors on megakaryocytes and platelets and related diseases., 180, 321–334.Google Scholar
  4. 4.
    Huang, H., & Cantor, A. B. (2009). Common features of megakaryocytes and hematopoietic stem cells: what's the connection? Journal of Cellular Biochemistry, 107, 857–864.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nishikii, H., Kurita, N., & Chiba, S. (2017). The road map for Megakaryopoietic lineage from hematopoietic stem/progenitor cells. Stem Cells Translational Medicine, 6, 1661–1665.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kimura, S., Roberts, A. W., Metcalf, D., & Alexander, W. S. (1998). Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proceedings of the National Academy of Sciences of the United States of America, 95, 1195–1200.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bersenev, A., C, W., Balcerek, J., & Tong, W. (2008). Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. The Journal of Clinical Investigation, 118, 2832–2844.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Qian, H., Buza-Vidas, N., Hyland, C. D., Jensen, C. T., Antonchuk, J., Mansson, R., Thoren, L. A., Ekblom, M., Alexander, W. S., & Jacobsen, S. E. (2007). Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell, 1, 671–684.CrossRefPubMedGoogle Scholar
  9. 9.
    Yoshihara, H., Arai, F., Hosokawa, K., Hagiwara, T., Takubo, K., Nakamura, Y., Gomei, Y., Iwasaki, H., Matsuoka, S., Miyamoto, K., Miyazaki, H., Takahashi, T., & Suda, T. (2007). Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell, 1, 685–697.CrossRefPubMedGoogle Scholar
  10. 10.
    Sugiyama, T., Kohara, H., Noda, M., & Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25, 977–988.CrossRefPubMedGoogle Scholar
  11. 11.
    Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., Nagler, A., Ben-Hur, H., Many, A., Shultz, L., Lider, O., Alon, R., Zipori, D., & Lapidot, T. (1999). Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science, 283, 845–848.CrossRefPubMedGoogle Scholar
  12. 12.
    Shooshtarizadeh P, A Helness, C Vadnais, N Brouwer, H Beauchemin, R Chen, H Bagci and FJT Staal. (2019). Gfi1b regulates the level of Wnt/beta-catenin signaling in hematopoietic stem cells and megakaryocytes. 10:1270.Google Scholar
  13. 13.
    Wang, J. F., Liu, Z. Y., & Groopman, J. E. (1998). The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood, 92, 756–764.PubMedGoogle Scholar
  14. 14.
    Pronk, C. J., Rossi, D. J., Mansson, R., Attema, J. L., Norddahl, G. L., Chan, C. K., Sigvardsson, M., Weissman, I. L., & Bryder, D. (2007). Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell, 1, 428–442.CrossRefPubMedGoogle Scholar
  15. 15.
    Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.CrossRefPubMedGoogle Scholar
  16. 16.
    Gekas, C., & Graf, T. (2013). CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood, 121, 4463–4472.CrossRefPubMedGoogle Scholar
  17. 17.
    Nakamura-Ishizu, A., Matsumura, T., Stumpf, P. S., Umemoto, T., Takizawa, H., Takihara, Y., O'Neil, A., Majeed, A., MacArthur, B. D., & Suda, T. (2018). Thrombopoietin metabolically primes hematopoietic stem cells to megakaryocyte-lineage differentiation. Cell Reports, 25, 1772–1785 e6.CrossRefPubMedGoogle Scholar
  18. 18.
    Knapp, D. J., & Eaves, C. J. (2014). Control of the hematopoietic stem cell state. Cell Research, 24, 3–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Nishikii, H., Kanazawa, Y., Umemoto, T., Goltsev, Y., Matsuzaki, Y., Matsushita, K., Yamato, M., Nolan, G. P., Negrin, R., & Chiba, S. (2015). Unipotent Megakaryopoietic pathway bridging hematopoietic stem cells and mature megakaryocytes. Stem Cells, 33, 2196–2207.CrossRefPubMedGoogle Scholar
  20. 20.
    Fiolka, K., Hertzano, R., Vassen, L., Zeng, H., Hermesh, O., Avraham, K. B., Duhrsen, U., & Moroy, T. (2006). Gfi1 and Gfi1b act equivalently in haematopoiesis, but have distinct, non-overlapping functions in inner ear development. EMBO Reports, 7, 326–333.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vassen, L., Okayama, T., & Moroy, T. (2007). Gfi1b:Green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is largely complementary to Gfi1. Blood, 109, 2356–2364.CrossRefPubMedGoogle Scholar
  22. 22.
    Khandanpour, C., Sharif-Askari, E., Vassen, L., Gaudreau, M. C., Zhu, J., Paul, W. E., Okayama, T., Kosan, C., & Moroy, T. (2010). Evidence that growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells. Blood, 116, 5149–5161.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Beauchemin, H., Shooshtarizadeh, P., Vadnais, C., Vassen, L., Pastore, Y. D., & Moroy, T. (2017). Gfi1b controls integrin signaling-dependent cytoskeleton dynamics and organization in megakaryocytes. Haematologica, 102, 484–497.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gerstein, R. M. (2009). Deciding the decider: Mef2c in hematopoiesis. Nature Immunology, 10, 235–236.CrossRefPubMedGoogle Scholar
  25. 25.
    Stehling-Sun, S., Dade, J., Nutt, S. L., DeKoter, R. P., & Camargo, F. D. (2009). Regulation of lymphoid versus myeloid fate 'choice' by the transcription factor Mef2c. Nature Immunology, 10, 289–296.CrossRefPubMedGoogle Scholar
  26. 26.
    Fuhrken, P. G., Chen, C., Apostolidis, P. A., Wang, M., Miller, W. M., & Papoutsakis, E. T. (2008). Gene ontology-driven transcriptional analysis of CD34+ cell-initiated megakaryocytic cultures identifies new transcriptional regulators of megakaryopoiesis. Physiological Genomics, 33, 159–169.CrossRefPubMedGoogle Scholar
  27. 27.
    Gekas, C., Rhodes, K. E., Gereige, L. M., Helgadottir, H., Ferrari, R., Kurdistani, S. K., Montecino-Rodriguez, E., Bassel-Duby, R., Olson, E., Krivtsov, A. V., Armstrong, S., Orkin, S. H., Pellegrini, M., & Mikkola, H. K. (2009). Mef2C is a lineage-restricted target of Scl/Tal1 and regulates megakaryopoiesis and B-cell homeostasis. Blood, 113, 3461–3471.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kong, X., Ma, L., Chen, E., Shaw, C. A., & Edelstein, L. C. (2019). Identification of the regulatory elements and target genes of Megakaryopoietic transcription factor MEF2C. Thrombosis and Haemostasis, 119, 716–725.CrossRefPubMedGoogle Scholar
  29. 29.
    Seto, E., & Yoshida, M. (2014). Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harbor Perspectives in Biology, 6, a018713.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Delcuve, G. P., Khan, D. H., & Davie, J. R. (2012). Roles of histone deacetylases in epigenetic regulation: Emerging paradigms from studies with inhibitors. Clinical Epigenetics, 4, 5.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Huang, X., Guo, B., Liu, S., Wan, J., & Broxmeyer, H. E. (2018). Neutralizing negative epigenetic regulation by HDAC5 enhances human haematopoietic stem cell homing and engraftment. Nature Communications, 9, 2741.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Speth, J. M., Hoggatt, J., Singh, P., & Pelus, L. M. (2014). Pharmacologic increase in HIF1alpha enhances hematopoietic stem and progenitor homing and engraftment. Blood, 123, 203–207.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Qi, J., You, T., Pan, T., Wang, Q., Zhu, L., & Han, Y. (2017). Downregulation of hypoxia-inducible factor-1alpha contributes to impaired megakaryopoiesis in immune thrombocytopenia. Thrombosis and Haemostasis, 117, 1875–1886.CrossRefPubMedGoogle Scholar
  34. 34.
    Cai, M., Langer, E. M., Gill, J. G., Satpathy, A. T., Albring, J. C., Kc, W., Murphy, T. L., & Murphy, K. M. (2012). Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation. Blood, 120, 335–346.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Okada, Y., Nagai, R., Sato, T., Matsuura, E., Minami, T., Morita, I., & Doi, T. (2003). Homeodomain proteins MEIS1 and PBXs regulate the lineage-specific transcription of the platelet factor 4 gene. Blood, 101, 4748–4756.CrossRefPubMedGoogle Scholar
  36. 36.
    Wilkinson, A. C., & Gottgens, B. (2013). Transcriptional regulation of haematopoietic stem cells. Advances in Experimental Medicine and Biology, 786, 187–212.CrossRefPubMedGoogle Scholar
  37. 37.
    Knudsen, K. J., Rehn, M., Hasemann, M. S., Rapin, N., Bagger, F. O., Ohlsson, E., Willer, A., Frank, A. K., Sondergaard, E., Jendholm, J., Thoren, L., Lee, J., Rak, J., Theilgaard-Monch, K., & Porse, B. T. (2015). ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation. Genes & Development, 29, 1915–1929.CrossRefGoogle Scholar
  38. 38.
    Kruse, E. A., Loughran, S. J., Baldwin, T. M., Josefsson, E. C., Ellis, S., Watson, D. K., Nurden, P., Metcalf, D., Hilton, D. J., Alexander, W. S., & Kile, B. T. (2009). Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. Proceedings of the National Academy of Sciences of the United States of America, 106, 13814–13819.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Salek-Ardakani, S., Smooha, G., de Boer, J., Sebire, N. J., Morrow, M., Rainis, L., Lee, S., Williams, O., Izraeli, S., & Brady, H. J. (2009). ERG is a megakaryocytic oncogene. Cancer Research, 69, 4665–4673.CrossRefPubMedGoogle Scholar
  40. 40.
    Yu, S., Cui, K., Jothi, R., Zhao, D. M., Jing, X., Zhao, K., & Xue, H. H. (2011). GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells. Blood, 117, 2166–2178.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pang, L., Xue, H. H., Szalai, G., Wang, X., Wang, Y., Watson, D. K., Leonard, W. J., Blobel, G. A., & Poncz, M. (2006). Maturation stage-specific regulation of megakaryopoiesis by pointed-domain Ets proteins. Blood, 108, 2198–2206.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cassel, D. L., Subudhi, S. K., Surrey, S., & McKenzie, S. E. (2000). GATA and NF-Y participate in transcriptional regulation of FcgammaRIIA in megakaryocytic cells. Blood Cells, Molecules & Diseases, 26, 587–597.CrossRefGoogle Scholar
  43. 43.
    Coller, B. S., & Shattil, S. J. (2008). The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: A technology-driven saga of a receptor with twists, turns, and even a bend. Blood, 112, 3011–3025.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Psaila, B., Barkas, N., Iskander, D., Roy, A., Anderson, S., Ashley, N., Caputo, V. S., Lichtenberg, J., Loaiza, S., Bodine, D. M., Karadimitris, A., Mead, A. J., & Roberts, I. (2016). Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biology, 17, 83.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Paul, F., Arkin, Y., Giladi, A., Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Winter, D., Lara-Astiaso, D., Gury, M., Weiner, A., David, E., Cohen, N., Lauridsen, F. K. B., Haas, S., Schlitzer, A., Mildner, A., Ginhoux, F., Jung, S., Trumpp, A., Porse, B. T., Tanay, A., & Amit, I. (2016). Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell, 164, 325.CrossRefPubMedGoogle Scholar
  46. 46.
    Adolfsson, J., Mansson, R., Buza-Vidas, N., Hultquist, A., Liuba, K., Jensen, C. T., Bryder, D., Yang, L., Borge, O. J., Thoren, L. A., Anderson, K., Sitnicka, E., Sasaki, Y., Sigvardsson, M., & Jacobsen, S. E. (2005). Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell, 121, 295–306.CrossRefPubMedGoogle Scholar
  47. 47.
    Akashi, K., Traver, D., & Zon, L. I. (2005). The complex cartography of stem cell commitment. Cell, 121, 160–162.CrossRefPubMedGoogle Scholar
  48. 48.
    Sanjuan-Pla, A., Macaulay, I. C., Jensen, C. T., Woll, P. S., Luis, T. C., Mead, A., Moore, S., Carella, C., Matsuoka, S., Bouriez Jones, T., Chowdhury, O., Stenson, L., Lutteropp, M., Green, J. C., Facchini, R., Boukarabila, H., Grover, A., Gambardella, A., Thongjuea, S., Carrelha, J., Tarrant, P., Atkinson, D., Clark, S. A., Nerlov, C., & Jacobsen, S. E. (2013). Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature, 502, 232–236.CrossRefPubMedGoogle Scholar
  49. 49.
    Shin, J. Y., Hu, W., Naramura, M., & Park, C. Y. (2014). High c-kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. The Journal of Experimental Medicine, 211, 217–231.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Grinenko, T., Arndt, K., Portz, M., Mende, N., Gunther, M., Cosgun, K. N., Alexopoulou, D., Lakshmanaperumal, N., Henry, I., Dahl, A., & Waskow, C. (2014). Clonal expansion capacity defines two consecutive developmental stages of long-term hematopoietic stem cells. The Journal of Experimental Medicine, 211, 209–215.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M., Rudolph, K. L., Ema, H., & Nakauchi, H. (2013). Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell, 154, 1112–1126.CrossRefPubMedGoogle Scholar
  52. 52.
    Haas, S., Hansson, J., Klimmeck, D., Loeffler, D., Velten, L., Uckelmann, H., Wurzer, S., Prendergast, A. M., Schnell, A., Hexel, K., Santarella-Mellwig, R., Blaszkiewicz, S., Kuck, A., Geiger, H., Milsom, M. D., Steinmetz, L. M., Schroeder, T., Trumpp, A., Krijgsveld, J., & Essers, M. A. (2015). Inflammation-induced emergency Megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell, 17, 422–434.CrossRefPubMedGoogle Scholar
  53. 53.
    Rodriguez-Fraticelli, A. E., Wolock, S. L., Weinreb, C. S., Panero, R., Patel, S. H., Jankovic, M., Sun, J., Calogero, R. A., Klein, A. M., & Camargo, F. D. (2018). Clonal analysis of lineage fate in native haematopoiesis. Nature, 553, 212–216.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Carrelha, J., Meng, Y., Kettyle, L. M., Luis, T. C., Norfo, R., Alcolea, V., Boukarabila, H., Grasso, F., Gambardella, A., Grover, A., Hogstrand, K., Lord, A. M., Sanjuan-Pla, A., Woll, P. S., Nerlov, C., & Jacobsen, S. E. W. (2018). Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature, 554, 106–111.CrossRefPubMedGoogle Scholar
  55. 55.
    Grover, A., Sanjuan-Pla, A., Thongjuea, S., Carrelha, J., Giustacchini, A., Gambardella, A., Macaulay, I., Mancini, E., Luis, T. C., Mead, A., Jacobsen, S. E., & Nerlov, C. (2016). Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nature Communications, 7, 11075.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Notta, F., Zandi, S., Takayama, N., Dobson, S., Gan, O. I., Wilson, G., Kaufmann, K. B., McLeod, J., Laurenti, E., Dunant, C. F., McPherson, J. D., Stein, L. D., Dror, Y., & Dick, J. E. (2016). Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science, 351, aab2116.CrossRefPubMedGoogle Scholar
  57. 57.
    Velten, L., Haas, S. F., Raffel, S., Blaszkiewicz, S., Islam, S., Hennig, B. P., Hirche, C., Lutz, C., Buss, E. C., Nowak, D., Boch, T., Hofmann, W. K., Ho, A. D., & Huber, W. (2017). Human haematopoietic stem cell lineage commitment is a continuous process., 19, 271–281.Google Scholar
  58. 58.
    Hirschi, K. K., Nicoli, S., & Walsh, K. (2017). Hematopoiesis lineage tree uprooted: Every cell is a rainbow. Developmental Cell, 41, 7–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Miyawaki, K., Iwasaki, H., Jiromaru, T., Kusumoto, H., Yurino, A., Sugio, T., Uehara, Y., Odawara, J., Daitoku, S., Kunisaki, Y., Mori, Y., Arinobu, Y., Tsuzuki, H., Kikushige, Y., Iino, T., Kato, K., Takenaka, K., Miyamoto, T., Maeda, T., & Akashi, K. (2017). Identification of unipotent megakaryocyte progenitors in human hematopoiesis. Blood, 129, 3332–3343.PubMedGoogle Scholar
  60. 60.
    Kiel, M. J., & Morrison, S. J. (2008). Uncertainty in the niches that maintain haematopoietic stem cells. Nature Reviews. Immunology, 8, 290–301.CrossRefPubMedGoogle Scholar
  61. 61.
    Mazharian, A. (2012). Assessment of megakaryocyte migration and chemotaxis. Methods in Molecular Biology, 788, 275–288.CrossRefPubMedGoogle Scholar
  62. 62.
    Chen, S., Su, Y., & Wang, J. (2013). ROS-mediated platelet generation: A microenvironment-dependent manner for megakaryocyte proliferation, differentiation, and maturation. Cell Death & Disease, 4, e722.CrossRefGoogle Scholar
  63. 63.
    Rafii, S., Mohle, R., Shapiro, F., Frey, B. M., & Moore, M. A. (1997). Regulation of hematopoiesis by microvascular endothelium. Leukemia & Lymphoma, 27, 375–386.CrossRefGoogle Scholar
  64. 64.
    Khodadi, E., Asnafi, A. A., Shahrabi, S., Shahjahani, M., & Saki, N. (2016). Bone marrow niche in immune thrombocytopenia: A focus on megakaryopoiesis. Annals of Hematology, 95, 1765–1776.CrossRefPubMedGoogle Scholar
  65. 65.
    Day, R. B., & Link, D. C. (2014). Megakaryocytes in the hematopoietic stem cell niche. Nature Medicine, 20, 1233–1234.CrossRefPubMedGoogle Scholar
  66. 66.
    Bruns, I., Lucas, D., Pinho, S., Ahmed, J., Lambert, M. P., Kunisaki, Y., Scheiermann, C., Schiff, L., Poncz, M., Bergman, A., & Frenette, P. S. (2014). Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Medicine, 20, 1315–1320.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhao, M., Perry, J. M., Marshall, H., Venkatraman, A., Qian, P., He, X. C., Ahamed, J., & Li, L. (2014). Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nature Medicine, 20, 1321–1326.CrossRefPubMedGoogle Scholar
  68. 68.
    Nakamura-Ishizu, A., Takubo, K., Fujioka, M., & Suda, T. (2014). Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochemical and Biophysical Research Communications, 454, 353–357.CrossRefPubMedGoogle Scholar
  69. 69.
    Heazlewood, S. Y., Neaves, R. J., Williams, B., Haylock, D. N., Adams, T. E., & Nilsson, S. K. (2013). Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Research, 11, 782–792.CrossRefPubMedGoogle Scholar
  70. 70.
    Kacena, M. A., & Ciovacco, W. A. (2010). Megakaryocyte-bone cell interactions. Advances in Experimental Medicine and Biology, 658, 31–41.CrossRefPubMedGoogle Scholar
  71. 71.
    Yu, V. W., & Scadden, D. T. (2016). Heterogeneity of the bone marrow niche. Current Opinion in Hematology, 23, 331–338.CrossRefPubMedGoogle Scholar
  72. 72.
    Sugiyama, T., Omatsu, Y., & Nagasawa, T. (2019). Niches for hematopoietic stem cells and immune cell progenitors. International Immunology, 31, 5–11.CrossRefPubMedGoogle Scholar
  73. 73.
    Pinho, S., Marchand, T., Yang, E., Wei, Q., Nerlov, C., & Frenette, P. S. (2018). Lineage-biased hematopoietic stem cells are regulated by distinct niches. Developmental Cell, 44, 634–641.e4.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Howell, W. H., & Donahue, D. D. (1937). THE PRODUCTION OF BLOOD PLATELETS IN THE LUNGS. The Journal of Experimental Medicine, 65, 177–203.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Levine, R. F., Eldor, A., Shoff, P. K., Kirwin, S., Tenza, D., & Cramer, E. M. (1993). Circulating megakaryocytes: Delivery of large numbers of intact, mature megakaryocytes to the lungs. European Journal of Haematology, 51, 233–246.CrossRefPubMedGoogle Scholar
  76. 76.
    Zucker-Franklin, D., & Philipp, C. S. (2000). Platelet production in the pulmonary capillary bed: new ultrastructural evidence for an old concept. The American Journal of Pathology, 157, 69–74.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Weyrich, A. S., & Zimmerman, G. A. (2013). Platelets in lung biology. Annual Review of Physiology, 75, 569–591.CrossRefPubMedGoogle Scholar
  78. 78.
    Lefrancais, E., Ortiz-Munoz, G., Caudrillier, A., Mallavia, B., Liu, F., Sayah, D. M., Thornton, E. E., Headley, M. B., David, T., Coughlin, S. R., Krummel, M. F., Leavitt, A. D., Passegue, E., & Looney, M. R. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 544, 105–109.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Roch, A., Trachsel, V., & Lutolf, M. P. (2015). Brief report: Single-cell analysis reveals cell division-independent emergence of megakaryocytes from phenotypic hematopoietic stem cells. Stem Cells, 33, 3152–3157.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Experimental MedicineGeneral Hospital of Northern Theatre CommandShenyangPeople’s Republic of China

Personalised recommendations