Advertisement

Stem Cell Reviews and Reports

, Volume 15, Issue 4, pp 506–518 | Cite as

Is Stem Cell Commerce in Small Animal Therapies Scientifically and Morally Justified?

  • Luane Lopes PinheiroEmail author
  • Ana Rita de Lima
  • Érika Branco
Article

Abstract

The lack of clear regulations for the use of veterinary stem cells has triggered the commercialization of unproven experimental therapies for companion animal diseases. Adult stem cells have complex biological characteristics that are directly related to the therapeutic application, but several questions remain to be answered. In order to regulate the use of these cells, well-conducted, controlled scientific studies that generate high-quality data should be performed, in order to assess the efficacy and safety of the intended treatment. This paper discusses the scientific challenges of mesenchymal stem cell therapy in veterinary regenerative medicine, and reviews published trials of adipose-tissue-derived stem cells in companion animal diseases that spontaneously occur.

Keywords

Adipose-derived stem cell (ASC) Cat Cell therapy Dog Small animal 

Notes

Acknowledgements

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil (Finance Code 001).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Markoski, M. M. (2016). Advances in the use of stem cells in veterinary medicine: From basic research to clinical practice. Scientifica, 2016, 1–12.  https://doi.org/10.1155/2016/4516920.Google Scholar
  2. 2.
    Santos, E. J. C. (2017). Therapeutic application of stem cells in veterinary medicine: A new scope for bioeconomics. Multidisciplinary Scientific Journal Nucleus of Knowledge, 01(2), 536–546.Google Scholar
  3. 3.
    Vieira, N. M., Brandalise, V., Zucconi, E., Secco, M., Strauss, B. E., & Zatz, M. (2010). Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplantation, 19(3), 279–289.  https://doi.org/10.3727/096368909X481764.Google Scholar
  4. 4.
    Nagata, T., Mitsumori, T., & Iwaguro, H. (2013). Adipose tissue-derived stem and regenerative cells for tissue regeneration. Journal of Oral Biosciences, 55(3), 127–131.  https://doi.org/10.1016/j.job.2013.06.005.Google Scholar
  5. 5.
    Marx, C., Silveira, M. D., & Beyer Nardi, N. (2015). Adipose-derived stem cells in veterinary medicine: Characterization and therapeutic applications. Stem Cells and Development, 24, 803–813.  https://doi.org/10.1089/scd.2014.0407.Google Scholar
  6. 6.
    FDA. (2015). Food and Drug Administration. Guidance for Industry: Cell-Based Products for Animal Use. Rockville, MD: United States Food and Drug Administration Center for Veterinary Medicine, 2015. Available from: https://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcementGuidanceforIndustry/UCM405679.pdf. Accessed 18 Nov 2018.
  7. 7.
    FDA. (2017). Food and Drug Administration. Veterinary Regenerative Medicine & Animal Cell-Based Products, 2017. Available from: https://www.fda.gov/AnimalVeterinary/DevelopmentApprovalProcess/ucm524521.htm. Accessed 18 Nov 2018.
  8. 8.
    Devireddy, L. R., Boxer, L., Myers, M. J., Skasko, M., & Screven, R. (2017). Questions and challenges in the development of mesenchymal stromal/stem cell-based therapies in veterinary medicine. Tissue Engineering Part B: Reviews, 23(5), 462–470.  https://doi.org/10.1089/ten.teb.2016.0451.Google Scholar
  9. 9.
    Bakker, E., Van Ryssen, B., De Schauwer, C., & Meyer, E. (2013). Canine mesenchymal stem cells: State of the art, perspectives as therapy for dogs and as a model for man. The Veterinary Quarterly, 33(4), 225–233.  https://doi.org/10.1080/01652176.2013.873963.Google Scholar
  10. 10.
    Borgers, S. H. (2018). Cell-based therapies for joint disease in veterinary medicine: What we have learned and what we need to know. Frontiers in Veterinary Science, 5, 70.  https://doi.org/10.3389/fvets.2018.00070.Google Scholar
  11. 11.
    Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic transplants of bone marrow. Transplantation, 6(2), 230–247.  https://doi.org/10.1097/00007890-196803000-00009.Google Scholar
  12. 12.
    Owen, M., & Friedenstein, A. J. (1988). Stromal stem cells: Marrow-derived osteogenic precursors. Ciba Foundation Symposium, 136, 42–60.Google Scholar
  13. 13.
    Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650.  https://doi.org/10.1002/jor.1100090504.Google Scholar
  14. 14.
    Young, H. E., Mancini, M., Wright, R. P., et al. (1995). Mesenchymal stem cells reside within the connective tissues of many organs. Developmental Dynamics, 202(2), 137–144.  https://doi.org/10.1002/aja.1002020205.Google Scholar
  15. 15.
    Watt, F. M., & Hogan, B. L. M. (2000). Out of the Eden: Stem cells and their niches. Science, 287(5457), 1427–1430.  https://doi.org/10.1126/science.287.5457.1427.Google Scholar
  16. 16.
    Mimeault, M., Hauke, R., & Batra, S. K. (2007). Stem cells: A revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology and Therapeutics, 82(3), 252–264.  https://doi.org/10.1038/sj.clpt.6100301.Google Scholar
  17. 17.
    Hwang, N. S., Zhang, C., Hwang, Y. S., & Varghese, S. (2009). Mesenchymal stem cell differentiation and roles in regenerative edicine. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 1(1), 97–106.  https://doi.org/10.1002/wsbm.26.Google Scholar
  18. 18.
    Vizoso, F. J., Eiro, N., Cid, S., Schneider, J., & Perez-Fernandez, R. (2017). Mesenchymal stem cell Secretome: Toward cell-free therapeutic strategies in regenerative medicine. International Journal of Molecular Sciences, 18(9), 1852.  https://doi.org/10.3390/ijms18091852.Google Scholar
  19. 19.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.  https://doi.org/10.1080/14653240600855905.Google Scholar
  20. 20.
    Zuk, P. (2013). Adipose-derived stem cells in tissue regeneration: A review. ISRN Stem Cells, 2013, 1–35.  https://doi.org/10.1155/2013/713959.Google Scholar
  21. 21.
    Ryan, J. M., Barry, F. P., Murphy, J. M., & Mahon, B. P. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation (London), 2, 8.  https://doi.org/10.1186/1476-9255-2-8.Google Scholar
  22. 22.
    DelaRosa, O., Sanchez-Correa, B., Morgado, S., et al. (2012). Human adipose-derived stem cells impair natural killer cell function and exhibit low susceptibility to natural killer-mediated lysis. Stem Cells and Development, 21(8), 1333–1343.  https://doi.org/10.1089/scd.2011.0139.Google Scholar
  23. 23.
    Fitzsimmons, R. E. B., Mazurek, M. S., Soos, A., & Simmons, C. A. (2018). Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells International, 2018, 8031718.  https://doi.org/10.1155/2018/8031718.Google Scholar
  24. 24.
    Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., & Park, T. S. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.  https://doi.org/10.1016/j.stem.2008.07.003.Google Scholar
  25. 25.
    Meirelles, L. S., Malta, T. M., Wagatsuma, V. M. D., et al. (2015). Cultured human adipose tissue Pericytes and mesenchymal stromal cells display a very similar gene expression profile. Stem Cells and Development, 24(23), 2822–2840.  https://doi.org/10.1089/scd.2015.0153.Google Scholar
  26. 26.
    Meirelles, L. S., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt11), 2204–2213.  https://doi.org/10.1242/jcs.02932.Google Scholar
  27. 27.
    Caplan, A. I. (2017). Mesenchymal stem cells: Time to change the name! Stem Cells Translational Medicine, 6(6), 1445–1451.  https://doi.org/10.1002/sctm.17-0051.Google Scholar
  28. 28.
    Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076–1084.  https://doi.org/10.1002/jcb.20886.Google Scholar
  29. 29.
    Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.  https://doi.org/10.1161/CIRCRESAHA.108.176826.Google Scholar
  30. 30.
    Meirelles, L. S., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20(5–6), 419–427.  https://doi.org/10.1016/j.cytogfr.2009.10.002.Google Scholar
  31. 31.
    Caplan, A. I., & Correa, D. (2011). The MSC: An injury drugstore. Cell Stem Cell, 9(1), 11–15.  https://doi.org/10.1016/j.stem.2011.06.008.Google Scholar
  32. 32.
    Baglio, S. R., Pegtel, D. M., & Baldini, N. (2012). Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Frontiers in Physiology, 3, 359.  https://doi.org/10.3389/fphys.2012.00359.Google Scholar
  33. 33.
    Tao, H., Han, Z., Han, Z. C., & Li, Z. (2016). Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells International, 2016, 11.  https://doi.org/10.1155/2016/1314709.Google Scholar
  34. 34.
    Guimarães-Camboa, N., Cattaneo, P., Sun, Y., Moore-Morris, T., Gu, Y., Dalton, N. D., Rockenstein, E., Masliah, E., Peterson, K. L., Stallcup, W. B., Chen, J., & Evans, S. M. (2017). Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell, 20(3), 345–359.e5.  https://doi.org/10.1016/j.stem.2016.12.006.Google Scholar
  35. 35.
    Caplan, A. I. (2010). What’s in a name? Tissue Engineering. Part A, 16(8), 2415–2417.  https://doi.org/10.1089/ten.TEA.2010.0216.Google Scholar
  36. 36.
    Maguire, G. (2013). Stem cell therapy without the cells. Communicative & Integrative Biology, 6(6), e26631.  https://doi.org/10.4161/cib.26631.Google Scholar
  37. 37.
    Madrigal, M., Rao, K. S., & Riordan, N. H. (2014). A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. Journal of Translational Medicine, 12, 260.  https://doi.org/10.1186/s12967-014-0260-8.Google Scholar
  38. 38.
    Russell, K. A., Chow, N. H. C., Dukoff, D., Gibson, T. W. G., LaMarre, J., Betts, D. H., & Koch, T. G. (2016). Characterization and immunomodulatory effects of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells. PLoS One, 11(12), e0167442.  https://doi.org/10.1371/journal.pone.0167442.Google Scholar
  39. 39.
    Assoni, A., Coatti, G., Valadares, M. C., Beccari, M., Gomes, J., Pelatti, M., Mitne-Neto, M., Carvalho, V. M., & Zatz, M. (2017). Different donors mesenchymal stromal cells Secretomes reveal heterogeneous profile of relevance for therapeutic use. Stem Cells and Development, 26(3), 206–214.  https://doi.org/10.1089/scd.2016.0218.Google Scholar
  40. 40.
    Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., & Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 7, 211–228.  https://doi.org/10.1089/107632701300062859.Google Scholar
  41. 41.
    Bajek, A., Gurtowska, N., Olkowska, J., Kazmierski, L., Maj, M., & Drewa, T. (2016). Adipose-derived stem cells as a tool in cell-based therapies. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 64(6), 443–454.  https://doi.org/10.1007/s00005-016-0394-x.Google Scholar
  42. 42.
    Sabol, R. A., Bowles, A. C., Côté, A., Wise, R., Pashos, N., & Bunnell, B. A. (2018). Therapeutic potential of adipose stem cells. Advances in Experimental Medicine and Biology, 1–11.  https://doi.org/10.1007/5584_2018_248.
  43. 43.
    Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100(9), 1249–1260.  https://doi.org/10.1161/01.RES.0000265074.83288.09.Google Scholar
  44. 44.
    Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., & Cui, Z. (2008). Adipose-derived stem cell: A better stem cell than BMSC. Cell Biochemistry and Function, 26(6), 664–675.  https://doi.org/10.1002/cbf.1488.Google Scholar
  45. 45.
    Zhu, X., Shi, W., Tai, W., & Liu, F. (2012). The comparition of biological characteristics and multilineage differentiation of bone marrow and adipose derived mesenchymal stem cells. Cell and Tissue Research, 350(2), 277–287.  https://doi.org/10.1007/s00441-012-1453-1.Google Scholar
  46. 46.
    Bahamondes, F., Flores, E., Cattaneo, G., Bruna, F., & Conget, P. (2017). Omental adipose tissue is a more suitable source of canine mesenchymal stem cells. BMC Veterinary Research, 13(1), 166.  https://doi.org/10.1186/s12917-017-1053-0.Google Scholar
  47. 47.
    Wu, P. X., Sato, K., Yukawa, S., Hikasa, Y., & Kagota, K. (2001). Differentiation of stromal-vascular cells isolated from canine adipose tissues in primary culture. The Journal of Veterinary Medical Science, 63, 17–23.Google Scholar
  48. 48.
    Tholpady, S. S., Katz, A. J., & Ogle, R. C. (2003). Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. The Anatomical Record, 272(1), 398–402.  https://doi.org/10.1002/ar.a.10039.Google Scholar
  49. 49.
    Peptan, I. A., Hong, L., & Mao, J. J. (2006). Comparison of osteogenic potentials of visceral and subcutaneous adipose-derived cells of rabbits. Plastic and Reconstructive Surgery, 117(5), 1462–1470.  https://doi.org/10.1097/01.prs.0000206319.80719.74.Google Scholar
  50. 50.
    Qu, C. Q., Zhang, G. H., Zhang, L. J., & Yang, G. S. (2007). Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells. In Vitro Cellular & Developmental Biology. Animal, 43(2), 95–100.  https://doi.org/10.1007/s11626-006-9008-y.Google Scholar
  51. 51.
    Vidal, M. A., Kilroy, E., Lopez, M. J., Johnson, J. R., Moore, R. M., & Gimble, J. M. (2007). Characterization of equine adipose tissue-derived stromal cells: Adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary Surgery, 36, 613–622.  https://doi.org/10.1111/j.1532-950X.2007.00313.x.Google Scholar
  52. 52.
    Neupane, M., Chang, C. C., Kiupel, M., & Yuzbasiyan-Gurkan, V. (2008). Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Engineering Part A, 14(6), 1007–1015.  https://doi.org/10.1089/ten.tea.2007.0207.Google Scholar
  53. 53.
    Williams, K. J., Picou, A. A., Kish, S. L., Giraldo, A. M., Godke, R. A., & Bondioli, K. R. (2008). Isolation and characterization of porcine adipose tissue-derived adult stem cells. Cells, Tissues, Organs, 188(3), 251–258.  https://doi.org/10.1159/000121431.Google Scholar
  54. 54.
    Fadel, L., Viana, B. R., Feitosa, M. L. T., Ercolin, A. C. M., Roballo, K. C. S., Casals, J. B., Pieri, N. C. G., Meirelles, F. V., Martins, D. S., Miglino, M. A., & Ambrósio, C. E. (2011). Protocols for obtainment and isolation of two mesenchymal stem cell sources in sheep. Acta Cirúrgica Brasileira, 26(4), 267–273.Google Scholar
  55. 55.
    Gagliardi, C., & Bunnell, B. A. (2011). Isolation and culture of rhesus adipose-derived stem cells. Methods in Molecular Biology, 702, 3–16.  https://doi.org/10.1007/978-1-61737-960-4_1.Google Scholar
  56. 56.
    Quimby, J. M., Webb, T. L., Gibbons, D. S., & Dow, S. W. (2011). Evaluation of intrarenal mesenchymal stem cell injection for treatment of chronic kidney disease in cats: A pilot study. Journal of Feline Medicine and Surgery, 13, 418–426.  https://doi.org/10.1016/j.jfms.2011.01.005.Google Scholar
  57. 57.
    Webb, T. L., Quimby, J. M., & Dow, S. W. (2012). In vitro comparison of feline bone marrow-derived and adipose tissue-derived mesenchymal stem cells. Journal of Feline Medicine and Surgery, 14(2), 165–168.  https://doi.org/10.1177/1098612X11429224.Google Scholar
  58. 58.
    Kono, S., Kazama, T., Kano, K., Harada, K., Uechi, M., & Matsumoto, T. (2014). Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells. Veterinary Journal, 199(1), 88–96.  https://doi.org/10.1016/j.tvjl.2013.10.033.Google Scholar
  59. 59.
    Csaki, C., Matis, U., Mobasheri, A., Ye, H., & Shakibaei, M. (2007). Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: A biochemical, morphological and ultrastructural study. Histochemistry and Cell Biology, 128(6), 507–520.  https://doi.org/10.1007/s00418-007-0337-z.Google Scholar
  60. 60.
    Guercio, A., Di Marco, P., Casella, S., et al. (2012). Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biology International, 36(2), 189–194.  https://doi.org/10.1042/CBI20110304.Google Scholar
  61. 61.
    Bearden, R. N., Huggins, S. S., Cummings, K. J., Smith, R., Gregory, C. A., & Saunders, W. B. (2017). In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: A donor-matched comparative study. Stem Cell Research & Therapy, 8(1), 218.  https://doi.org/10.1186/s13287-017-0639-6.Google Scholar
  62. 62.
    Reich, C. M., Raabe, O., Wenisch, S., Bridger, P. S., Kramer, M., & Arnhold, S. (2012). Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells - a comparative study. Veterinary Research Communications, 36(2), 139–148.  https://doi.org/10.1007/s11259-012-9523-0.Google Scholar
  63. 63.
    Guercio, A., Bella, S., Casella, S., Di Marco, P., Russo, C., & Piccione, G. (2013). Canine mesenchymal stem cells (MSCs): Characterization in relation to donor age and adipose tissue-harvesting site. Cell Biology International, 37(8), 789–798.  https://doi.org/10.1002/cbin.10090.Google Scholar
  64. 64.
    Bertolo, A., Steffen, F., Malonzo-Marty, C., & Stoyanov, J. (2015). Canine mesenchymal stem cell potential and the importance of dog breed: Implication for cell-based therapies. Cell Transplantation, 24(14), 1969–1980.  https://doi.org/10.3727/096368914X685294.Google Scholar
  65. 65.
    Russell, K. A., Gibson, T. W. G., Chong, A., Co, C., & Koch, T. G. (2015). Canine platelet lysate is inferior to fetal bovine serum for the isolation and propagation of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells. PLoS One, 10(9), e0136621.  https://doi.org/10.1371/journal.pone.0136621.Google Scholar
  66. 66.
    Kang, J. W., Kang, K.-S., Koo, H. C., Park, J. R., Choi, E. W., & Park, Y. H. (2008). Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells. Stem Cells and Development, 17, 681–694.  https://doi.org/10.1089/scd.2007.0153.Google Scholar
  67. 67.
    Park, S. A., Reilly, C. M., Wood, J. A., Chung, D. J., Carrade, D. D., Deremer, S. L., Seraphin, R. L., Clark, K. C., Zwingenberger, A. L., Borjesson, D. L., Hayashi, K., Russell, P., & Murphy, C. J. (2013). Safety and immunomodulatory effects of allogeneic canine adipose-derived mesenchymal stromal cells transplanted into the region of the lacrimal gland, the gland of the third eyelid and the knee joint. Cytotherapy, 15, 1498–1510.  https://doi.org/10.1016/j.jcyt.2013.06.009.Google Scholar
  68. 68.
    Screven, R., Kenyon, E., Myers, M. J., Yancy, H. F., Skasko, M., Boxer, L., Bigley, E. C., III, Borjesson, D. L., & Zhu, M. (2014). Immunophenotype and gene expression profile of mesenchymal stem cells derived from canine adipose tissue and bone marrow. Veterinary Immunology and Immunopathology, 161, 21–31.  https://doi.org/10.1016/j.vetimm.2014.06.002.Google Scholar
  69. 69.
    Sullivan, M. O., Gordon-Evans, W. J., Fredericks, L. P., Kiefer, K., Conzemius, M. G., & Griffon, D. J. (2016). Comparison of mesenchymal stem cell surface markers from bone marrow aspirates and adipose stromal vascular fraction sites. Frontier Veterinary Science, 2, 82.  https://doi.org/10.3389/fvets.2015.00082.Google Scholar
  70. 70.
    Chae, H. K., Song, W. J., Ahn, J. O., Li, Q., Lee, B. Y., Kweon, K., Park, S. C., & Youn, H. Y. (2017). Immunomodulatory effects of soluble factors secreted by feline adipose tissue-derived mesenchymal stem cells. Veterinary Immunology and Immunopathology, 191, 22–29.  https://doi.org/10.1016/j.vetimm.2017.07.013.Google Scholar
  71. 71.
    Chow, L., Johnson, V., Coy, J., Regan, D., & Dow, S. (2017). Mechanisms of immune suppression utilized by canine adipose and bone marrow-derived mesenchymal stem cells. Stem Cells and Development, 26, 374–389.  https://doi.org/10.1089/scd.2016.0207.Google Scholar
  72. 72.
    James, A. W., Zhang, X., Crisan, M., Hardy, W. R., Liang, P., Meyers, C. A., Lobo, S., Lagishetty, V., Childers, M. K., Asatrian, G., Ding, C., Yen, Y. H., Zou, E., Ting, K., Peault, B., & Soo, C. (2017). Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering. PLoS One, 12(5), e0177308.  https://doi.org/10.1371/journal.pone.0177308.Google Scholar
  73. 73.
    Song, W. J., Li, Q., Ryu, M. O., Ahn, J. O., Bhang, D. H., Jung, Y. C., & Youn, H. Y. (2018). TSG-6 released from intraperitoneally injected canine adipose tissue-derived mesenchymal stem cells ameliorate inflammatory bowel disease by inducing M2 macrophage switch in mice. Stem Cell Research & Therapy, 9(1), 91.  https://doi.org/10.1186/s13287-018-0841-1.Google Scholar
  74. 74.
    Cyranoski, D. (2013). Stem cells boom in vet clinics. Nature, 496(7444), 148–149.  https://doi.org/10.1038/496148a.Google Scholar
  75. 75.
    Hoffman, A. M., & Dow, S. W. (2016). Concise review: Stem cell trials using companion animal disease models. Stem Cells, 34, 1709–1729.  https://doi.org/10.1002/stem.2377.Google Scholar
  76. 76.
    Franklin, S. P., Pozzi, A., & Frank, E. (2018). Biological therapies in canine sports medicine. In M. C. Zink & J. B. Van Dyke (Eds.), Canine Sports Medicine and Rehabilitation (2nd ed., pp. 404–424). Chichester: Wiley-Blackwell.  https://doi.org/10.1002/9781119380627.Google Scholar
  77. 77.
    MAPA. (2009). Ministério da Agricultura, Pecuária e Abastecimento. Guia I: boas práticas clínicas (BPC). São Paulo: Apamvet, 2009. Available from: https://www.apamvet.com/manual.pdf. Accessed 20 Nov 2018.
  78. 78.
    Dominici, M., Nichols, K., Srivastava, A., et al. (2015). Positioning a Scientific Community on Unproven Cellular Therapies: The 2015 International Society for Cellular Therapy Perspective. Cytotherapy, 17(12), 1663–1666.  https://doi.org/10.1016/j.jcyt.2015.10.007.Google Scholar
  79. 79.
    Marks, P., & Gottlieb, S. (2018). Balancing safety and innovation for cell-based regenerative medicine. The New England Journal of Medicine, 378(10), 954–959.  https://doi.org/10.1056/NEJMsr1715626.Google Scholar
  80. 80.
    Vilar, J. M., Morales, M., Santana, A., Spinella, G., Rubio, M., Cuervo, B., Cugat, R., & Carrillo, J. M. (2013). Controlled, blinded force platform analysis of the effect of intra-articular injection of autologous adipose-derived mesenchymal stem cells associated to PRGF-Endoret in osteoarthritic dogs. BMC Veterinary Research, 9, 131.  https://doi.org/10.1186/1746-6148-9-131.Google Scholar
  81. 81.
    Vilar, J. M., Batista, M., Morales, M., Santana, A., Cuervo, B., Rubio, M., Cugat, R., Sopena, J., & Carrillo, J. M. (2014). Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Veterinary Research, 10, 143.  https://doi.org/10.1186/1746-6148-10-143.Google Scholar
  82. 82.
    Cuervo, B., Rubio, M., Sopena, J., Dominguez, J., Vilar, J., Morales, M., Cugat, R., & Carrillo, J. (2014). Hip osteoarthritis in dogs: A randomized study using mesenchymal stem cells from adipose tissue and plasma rich in growth factors. International Journal of Molecular Sciences, 15(8), 13437–13460.  https://doi.org/10.3390/ijms150813437.Google Scholar
  83. 83.
    Marx, C., Silveira, M. D., Selbach, I., da Silva, A. S., Braga, L. M. G. M., Camassola, M., & Nardi, N. B. (2014). Acupoint injection of autologous stromal vascular fraction and allogeneic adipose-derived stem cells to treat hip dysplasia in dogs. Stem Cells International, 2014, 391274.  https://doi.org/10.1155/2014/391274.Google Scholar
  84. 84.
    Black, L. L., Gaynor, J., Adams, C., Dhupa, S., Sams, A. E., Taylor, R., Harman, S., Gingerich, D. A., & Harman, R. (2008). Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Veterinary Therapeutics, 9(3), 192–200.Google Scholar
  85. 85.
    Kriston-Pál, É., Czibula, Á., Gyuris, Z., Balka, G., Seregi, A., Sükösd, F., Süth, M., Kiss-Tóth, E., Haracska, L., Uher, F., & Monostori, É. (2017). Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis. Canadian Journal of Veterinary Research, 81(1), 73–78.Google Scholar
  86. 86.
    Harman, R., Carlson, K., Gaynor, J., Gustafson, S., Dhupa, S., Clement, K., Hoelzler, M., McCarthy, T., Schwartz, P., & Adams, C. (2016). A prospective, randomized, masked, and placebo-controlled efficacy study of intraarticular allogeneic adipose stem cells for the treatment of osteoarthritis in dogs. Frontier Veterinary Science, 3, 81.  https://doi.org/10.3389/fvets.2016.00081.Google Scholar
  87. 87.
    Shah, K., Drury, T., Roic, I., Hansen, P., Malin, M., Boyd, R., Sumer, H., & Ferguson, R. (2018). Outcome of allogeneic adult stem cell therapy in dogs suffering from osteoarthritis and other joint defects. Stem Cells International, 2018, 7309201.  https://doi.org/10.1155/2018/7309201.Google Scholar
  88. 88.
    Kim, Y., Lee, S. H., Kim, W. H., & Kweon, O. K. (2016). Transplantation of adipose derived mesenchymal stem cells for acute thoracolumbar disc disease with no deep pain perception in dogs. Journal of Veterinary Science, 17(1), 123–126.  https://doi.org/10.4142/jvs.2016.17.1.123.Google Scholar
  89. 89.
    Escalhão, C. C. M., Ramos, I. P., Hochman-Mendez, C., Brunswick, T. H. K., Souza, S. A. L., Gutfilen, B., dos Santos Goldenberg, R. C., & Coelho-Sampaio, T. (2017). Safety of allogeneic canine adipose tissue-derived mesenchymal stem cell Intraspinal transplantation in dogs with chronic spinal cord injury. Stem Cells International, 2017, 3053759.  https://doi.org/10.1155/2017/3053759.Google Scholar
  90. 90.
    Villatoro, A. J., Fernández, V., Claros, S., Rico-Llanos, G. A., Becerra, J., & Andrades, J. A. (2015). Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. BioMed Research International, 2015, 527926.  https://doi.org/10.1155/2015/527926.Google Scholar
  91. 91.
    Bittencourt, M. K., Barros, M. A., Martins, J. F., et al. (2016). Allogeneic mesenchymal stem cell transplantation in dogs with Keratoconjunctivitis sicca. Cell Medicine, 8(3), 63–77.  https://doi.org/10.3727/215517916X693366.Google Scholar
  92. 92.
    Hall, M. N., Rosenkrantz, W. S., Hong, J. H., Griffin, C. E., & Mendelsohn, C. M. (2010). Evaluation of the potential use of adipose-derived mesenchymal stromal cells in the treatment of canine atopic dermatitis: A pilot study. Veterinary Therapeutics, 11(2), E1–E14.Google Scholar
  93. 93.
    Villatoro, A. J., Hermida-Prieto, M., Fernández, V., Fariñas, F., Alcoholado, C., Rodríguez-García, M. I., Mariñas-Pardo, L., & Becerra, J. (2018). Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with refractory atopic dermatitis: Clinical efficacy and safety. The Veterinary Record, 183(21), 654.  https://doi.org/10.1136/vr.104867.Google Scholar
  94. 94.
    Pogue, B., Estrada, A. H., Sosa-Samper, I., Maisenbacher, H. W., Lamb, K. E., Mincey, B. D., Erger, K. E., & Conlon, T. J. (2013). Stem-cell therapy for dilated cardiomyopathy: A pilot study evaluating retrograde coronary venous delivery. The Journal of Small Animal Practice, 54(7), 361–366.  https://doi.org/10.1111/jsap.12098.Google Scholar
  95. 95.
    Perez-Merino, E. M., Uson-Casaus, J. M., Zaragoza-Bayle, C., et al. (2015). Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Clinical and laboratory outcomes. Veterinary Journal, 206(3), 385–390.  https://doi.org/10.1016/j.tvjl.2015.08.003.Google Scholar
  96. 96.
    Villatoro, A. J., Claros, S., Fernández, V., Alcoholado, C., Fariñas, F., Moreno, A., Becerra, J., & Andrades, J. A. (2018). Safety and efficacy of the mesenchymal stem cell in feline eosinophilic keratitis treatment. BMC Veterinary Research, 14(1), 116.  https://doi.org/10.1186/s12917-018-1413-4.Google Scholar
  97. 97.
    Arzi, B., Mills-Ko, E., Verstraete, F. J., et al. (2016). Therapeutic efficacy of fresh, autologous mesenchymal stem cells for severe refractory gingivostomatitis in cats. Stem Cells Translational Medicine, 5(1), 75–86.  https://doi.org/10.5966/sctm.2015-0127.Google Scholar
  98. 98.
    Arzi, B., Clark, K. C., Sundaram, A., Spriet, M., Verstraete, F. J. M., Walker, N. J., Loscar, M. R., Fazel, N., Murphy, W. J., Vapniarsky, N., & Borjesson, D. L. (2017). Therapeutic efficacy of fresh, allogeneic mesenchymal stem cells for severe refractory feline chronic gingivostomatitis. Stem Cells Translational Medicine, 6(8), 1710–1722.  https://doi.org/10.1002/sctm.17-0035.Google Scholar
  99. 99.
    Webb, T. L., & Webb, C. B. (2015). Stem cell therapy in cats with chronic enteropathy: A proof-of-concept study. Journal of Feline Medicine and Surgery, 17(10), 901–908.  https://doi.org/10.1177/1098612X14561105.Google Scholar
  100. 100.
    Quimby, J. M., Webb, T. L., Randall, E., Marolf, A., Valdes-Martinez, A., & Dow, S. W. (2016). Assessment of intravenous adipose-derived allogeneic mesenchymal stem cells for the treatment of feline chronic kidney disease: A randomized, placebo-controlled clinical trial in eight cats. Journal of Feline Medicine and Surgery, 18(2), 165–171.  https://doi.org/10.1177/1098612X15576980.Google Scholar
  101. 101.
    Borges, M. (2013). Clinical Trials in Medications. Portuguese Journal of Surgery, (24), 57–63.Google Scholar
  102. 102.
    Marodin, G., & Goldim, J. R. (2009). Confusions and ambiguities in classification of adverse events in the clinical research. Revista da Escola de Enfermagem da U.S.P., 43(3), 690–696.Google Scholar
  103. 103.
    Kol, A., Arzi, B., Athanasiou, K. A., Farmer, D. L., Nolta, J. A., Rebhun, R. B., Chen, X., Griffiths, L. G., Verstraete, F. J. M., Murphy, C. J., & Borjesson, D. L. (2015). Companion animals: Translational scientist's new best friends. Science Translational Medicine, 7(308), 308ps21.  https://doi.org/10.1126/scitranslmed.aaa9116.Google Scholar
  104. 104.
    Mota, L. M. H., Cruz, B. A., Brenol, C. V., et al. (2015). Safety of the use of biological therapies for the treatment of rheumatoid arthritis and spondyloarthritis. Revista Brasileira de Reumatologia, 55(3), 281–309.  https://doi.org/10.1016/j.rbr.2014.06.006.Google Scholar
  105. 105.
    Brown, D. C., Boston, R. C., Coyne, J. C., & Farrar, J. T. (2008). Ability of the canine brief pain inventory to detect response to treatment in dogs with osteoarthritis. Journal of the American Veterinary Medical Association, 233(8), 1278–1283.Google Scholar
  106. 106.
    Vela, D. C., Silva, G. V., Assad, J. A., et al. (2009). Histopathological study of healing after allogenic mesenchymal stem cell delivery in myocardial infarction in dogs. The Journal of Histochemistry and Cytochemistry, 57(2), 167–176.  https://doi.org/10.1369/jhc.2008.952507.Google Scholar
  107. 107.
    Hulley, S. B., Newman, T. B., & Cummings, S. R. (2015). Outlining clinical research (4th ed.p. 371). Porto Alegre: ArtMed.Google Scholar
  108. 108.
    Hematti, P. (2016). Characterization of mesenchymal stromal cells: Potency assay development. Transfusion, 56(4), 32S–35S.  https://doi.org/10.1111/trf.13569.Google Scholar
  109. 109.
    Keating, A. (2012). Mesenchymal stromal cells: New directions. Cell Stem Cell, 10(6), 709–716.  https://doi.org/10.1016/j.stem.2012.05.015.Google Scholar
  110. 110.
    Chinnadurai, R., Rajan, D., Qayed, M., et al. (2018). Potency Analysis of Mesenchymal Stromal Cells Using a Combinatorial Assay Matrix Approach. Cell Reports, 22(9), 2504–2517.  https://doi.org/10.1016/j.celrep.2018.02.013.Google Scholar
  111. 111.
    Christopher, M. M. (2015). One health, one literature: Weaving together veterinary and medical research. Science Translational Medicine, 7(303), 303fs36.  https://doi.org/10.1126/scitranslmed.aab0215.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Animal Health and ProductionFederal Rural University of AmazôniaBelémBrazil

Personalised recommendations