Stem Cell Reviews and Reports

, Volume 15, Issue 5, pp 730–742 | Cite as

Characterization and Isolation of Very Small Embryonic-like (VSEL) Stem Cells Obtained from Various Human Hematopoietic Cell Sources

  • Serap Erdem Kuruca
  • Dolay Damla Çelik
  • Dilşad ÖzerkanEmail author
  • Gökçe Erdemir


Stem cell transplantation is one of the available treatments for leukemia, lymphoma, hereditary blood diseases and bone marrow failure. Bone marrow (BM), peripheral blood progenitor cells (PBPC), and cord blood (CB) are the predominant sources of stem cells. Recently a new type of stem cell with a pluripotent potential has been identified. These cells were named “very small embryonic like stem cells (VSELs)”. It is claimed that VSEL stem cells can be found in adult BM, peripheral blood (PB), CB and other body tissues. This study is designed to characterize and isolate VSEL stem cells from different human hematopoietic sources; CB, PB and apheresis material (PBPC). VSEL stem cells were isolated from MNC and erythrocyte layers for all materials by using centrifugation and ficoll gradient method. We determined embryonic markers by flow cytometry, immunofluorescence and western blotting methods. Results from western blotting and immunofluorescence show high level of NANOG and OCT4 protein expression in PB, apheresis material and CB. Immunofluorescence images showed cytoplasmic and nuclear presence of these proteins. Flow cytometry results exhibited a higher expression of VSELs markers on debris area than CD45- population and higher expression on CB than PB. As a result, these findings have shown that it is necessary to investigate the function of pluripotent stem cell markers in differentiated adult cells. We further conclude that erythrocyte lysis method had the highest cell recovery amount among erythrocyte lysis and ficoll gradient methods. Consequently, this study gives us new information and viewpoints about expression of pluripotent stem cell (PSC) markers in adult tissues.


Very small embryonic-like (VSEL) stem cells Apheresis Cord blood Peripheral blood Pluripotent stem cell markers 



This work supported by Scientific Research Projects Coordination Unit of Istanbul University. Project number 35553.

Compliance with Ethical Standards

Conflict of Interest

All authors declare no conflicts of interest.


  1. 1.
    Perseghin, P. (2012). Stem cell therapy, regenerative medicine and hematopoietic stem cell transplantation: Recent achievements. Transfusion and Apheresis Science, 47(2), 191–192.CrossRefGoogle Scholar
  2. 2.
    Lu, H., Xie, C., Zhao, Y. M., & Chen, F. M. (2013). Translational research and therapeutic applications of stem cell transplantation in periodontal regenerative medicine. Cell Transplantation, 22(2), 205–229.CrossRefGoogle Scholar
  3. 3.
    Mamidi, M. K., Dutta, S., Bhonde, R., Das, A. K., & Pal, R. (2014). Allogeneic and autologous mode of stem cell transplantation in regenerative medicine: Which way to go? Medical Hypotheses, 83(6), 787–791.CrossRefGoogle Scholar
  4. 4.
    Chivu-Economescu, M., & Rubach, M. (2017). Hematopoietic stem cells therapies. Current Stem Cell Research & Therapy, 12(2), 124–133.CrossRefGoogle Scholar
  5. 5.
    Barriga, F., Ramirez, P., Wietstruck, A., & Rojas, N. (2012). Hematopoietic stem cell transplantation: Clinical use and perspectives. Biological Research, 45, 307–316.CrossRefGoogle Scholar
  6. 6.
    Kaufman, D. S. (2009). Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells. Blood, 114(17), 3513–3521.CrossRefGoogle Scholar
  7. 7.
    Perutelli, P., Catellani, S., Scarso, L., Cornaglia-Ferraris, P., & Dini, G. (1999). Processing of human cord blood by three different procedures for red blood cell depletion and mononuclear cell recovery. Vox Sanguinis, 76, 237–240.CrossRefGoogle Scholar
  8. 8.
    Rocha, V., Gluckman, E., & Eurocord and European Blood and Marrow Transplant Group. (2006). Clinical use of umbilical cord blood hematopoietic stem cells. Biology of Blood and Marrow Transplantation, 12, 34–41.CrossRefGoogle Scholar
  9. 9.
    Kucia, M., Reca, R., Campbell, F. R., Zuba-Surma, E., Majka, M., Ratajcsak, J., et al. (2006). A population of very embryonic-like (VSEL) CXCR4+ SSEA-1+ OCT 4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–869.CrossRefGoogle Scholar
  10. 10.
    Kucia, M., Halasa, M., Wysoczynski, M., Baskiewicz-Masiuk, M., Moldenhawer, S., Zuba-Surma, E., Czajka, R., Wojakowski, W., Machalinski, B., & Ratajczak, M. Z. (2007). Morphological and molecular characterization of novel population of CXCR4+/SSEA-4+/Oct-4+ very small embryonic-like cells purified from human cord blood – Preliminary report. Leukemia, 21, 297–303.CrossRefGoogle Scholar
  11. 11.
    Zuba-Surma, E. K., Kucia, M., Ratajczak, J., & Patajczak, M. Z. (2009). “Small stem cells” in adult tissues: Very small embryonic-like stem cells (VSELs) stand up. Cytometry, 75(1), 4–13.CrossRefGoogle Scholar
  12. 12.
    Ratajczak, M. Z., Zuba-Surma, E., Wojaskowski, W., Suszynzka, M., Liu, R., Ratajczak, J., et al. (2014). Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: Recent pros and cons in the midst of a lively debate. Leukemia, 28, 473–484.CrossRefGoogle Scholar
  13. 13.
    Parker, G. C. (2014). Very small embryonic-like stem cells: A scientific debate? Stem Cells and Development, 23(7), 687–688.CrossRefGoogle Scholar
  14. 14.
    Szade, K., Bukowska-Strakova, K., Nowak, W. N., Szade, A., Kachamakova-Trojanowska, N., Zukowska, M., Jozkowicz, A., & Dulak, J. (2013). Murine bone marrow Lin-Sca-1+CD45- very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. PLoS One, 8(5), e63329.CrossRefGoogle Scholar
  15. 15.
    Kucia, M., Wysoczynski, M., Wu, W., Zuba-Surma, E. K., Ratajczak, J., & Ratajczak, M. Z. (2008). Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells, 26, 2083–2092.CrossRefGoogle Scholar
  16. 16.
    Sovalat, H., Scrofani, M., Eidenschenk, A., Pasquet, S., Rimelen, V., & Henon, P. (2011). Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34+/CD133+/CXCR4+/ Lin-CD45- cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Experimental Hematology, 39, 495–505.Google Scholar
  17. 17.
    Halasa, M., Baskiewicz-Masiuk, M., Dabrkomska, E., & Machalinski, B. (2008). An efficient two-step method to purify very small embryonic-like (VSEL) stem cells from umbilical cord blood. Folia Histochemical Cytobiology, 46(2), 239–243.Google Scholar
  18. 18.
    Loos, H., Blok-Schut, B., Van Doorn, R., Hoksbergen, R., Riviere, A. B., & Meerhof, L. (1976). A method for the recognition and separation of human blood monocytes on density gradient. Blood, 48, 731–742.Google Scholar
  19. 19.
    Bhartiya, D., Shaikh, A., Nagvenkar, P., Kasiviswananthan, S., Pethe, P., Pawani, H., et al. (2012). Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cell and Development, 21(1).Google Scholar
  20. 20.
    Chang, Y., Tien, K., Wen, C., Hsieh, T., & Hwang, S. (2014). Recovery of CD45(−)/Lin(−)/SSEA-4(+) very small embryonic-like stem cells by cord blood bank standard operating procedures. Cytotherapy, 0, 1–6.Google Scholar
  21. 21.
    Sovalat, H., Scrofani, M., Eidenschenk, A., Pasquet, S., Rimelen, V., & Henon, P. (2011). Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34+/CD133+/CXCR4+/ Lin-CD45- cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Experimental Hematology, 39, 495–505.Google Scholar
  22. 22.
    Ratajczak, M. Z., Zuba-Surma, E., Wojakowski, W., Kucia, M., & Ratajczak, J. (2008). Bone marrow – Home of versatile stem cells. Transfusion Medicine and Hemotherapy, 35, 248–259.CrossRefGoogle Scholar
  23. 23.
    Kucia, M., Reca, R., Jala, V. R., Dawn, B., Ratajczak, J., & Ratajczak, M. Z. (2005). Bone marrow as a home of heterogenous population of nonhematopoietic stem cells. Leukemia, 19, 1118–1127.CrossRefGoogle Scholar
  24. 24.
    Kucia, M., Ratajczak, J., & Ratajczak, M. Z. (2005). Are bone marrow stem cells plastic or heterogenous – That is the question. Experimental Hematology, 33, 613–623.CrossRefGoogle Scholar
  25. 25.
    Lee, J., Kim, H. K., Rho, J., Han, Y., & Kim, J. (2006). Human Oct4 isoforms differ in their ability to confer self-renewal. The Journal of Biological Chemistry, 281, 33554–33565.CrossRefGoogle Scholar
  26. 26.
    Zangrossi, S., Marabese, M., Broggini, M., Giordano, R., D’Erasmo, M., Montelatici, E., et al. (2007). Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells, 25, 1675–1680.CrossRefGoogle Scholar
  27. 27.
    Warthemann, R., Eildermann, K., Debowski, K., & Behr, R. (2012). False-positive antibody signals for the pluripotency factor OCT4A (POU5F1) in testis-derived cells may lead to erroneous data and misinterpretations. Molecular Human Reproduction, 18(12), 605–612.Google Scholar
  28. 28.
    Wang, Y., & Teng, J. S. (2016). Increased multi-drug resistance and reduced apoptosis in osteosarcoma side population cells are crucial factors for tumor recurrence. Experimental and Therapeutic Medicine, 12(1), 81–86.CrossRefGoogle Scholar
  29. 29.
    Fang, F., Angulo, B., Xia, N., Sukhwani, M., Wang, Z., Carey, C. C., Mazurie, A., Cui, J., Wilkinson, R., Wiedenheft, B., Irie, N., Surani, M. A., Orwig, K. E., & Reijo Pera, R. A. (2018). PAX5-OCT4-PRDM1 developmental switch specifies human primordial germ cells. Nature Cell Biology, 20(6), 655–665.CrossRefGoogle Scholar
  30. 30.
    Ambady, S., Malcuit, C., Kashpur, O., Kole, D., Holmes, W. F., Hedblom, E., Page, R. L., & Dominko, T. (2010). Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells. The Int of Develop Biol., 54, 1743–1754.CrossRefGoogle Scholar
  31. 31.
    Booth, H. A. F., & Holland, P. W. H. (2004). Eleven daughters of NANOG. Genomics, 84, 229–238.CrossRefGoogle Scholar
  32. 32.
    Levasseur, D. N., & Das, S. v. J. (2011). Alternative splicing produces nanog protein variants with different capacities for self-renewal and pluripotency in embriyonic stem cells. The Journal of Biological Chemistry, 286, 42690–42703.CrossRefGoogle Scholar
  33. 33.
    Gu, T., Liu, S., & Zheng, P. (2012). Cytoplasmic NANOG- positive stromal cells promote human cervical cancer progression. The American Journal of Pathology, 181(2), 652–660.CrossRefGoogle Scholar
  34. 34.
    Ezeh, U. I., Turek, P. J., Reijo, R. A., & Clark, A. T. (2005). Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer, 104, 2255–2265.CrossRefGoogle Scholar
  35. 35.
    Page, R., Ambady, S., Holmes, W. F., Vilner, L., Kole, D., Kashpur, O., et al. (2009). Induction of stem cell gene expression in adult human fibroblasts without transgenes. Cloning and Stem Cells, 11(3), 417–425.CrossRefGoogle Scholar
  36. 36.
    Alvarez, A., Hossain, M., Dantuma, E., Merchant, S., & Sugaya, K. (2010). Nanog overexpression allows human mesenchymal stem cells to differentiate into neural cells. Neuroscience and Medicine, 1, 1–13.CrossRefGoogle Scholar
  37. 37.
    Eberle, I., Pless, B., Braun, M., Dingermann, T., & Marschalek, R. (2010). Transcriptional properties of human NANOG1 and NANOG2 in acute leukemic cells. Nucleic Acids Research, 38(16), 5384–5395.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Serap Erdem Kuruca
    • 1
  • Dolay Damla Çelik
    • 1
  • Dilşad Özerkan
    • 2
    Email author
  • Gökçe Erdemir
    • 3
  1. 1.Deparment of Physiology, Istanbul Medical FacultyIstanbul UniversityIstanbulTurkey
  2. 2.Department of Genetic and Bioengineering, Faculty of Engineering and ArchitectureKastamonu UniversityKastamonuTurkey
  3. 3.Deparment of Molecular Medicine, The Institute of Experimental MedicineIstanbul UniversityIstanbulTurkey

Personalised recommendations