Stem Cell Reviews and Reports

, Volume 15, Issue 5, pp 664–679 | Cite as

Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering

  • Shining Xiao
  • Tengfei Zhao
  • Jingkai Wang
  • Chenggui Wang
  • Jiangnan Du
  • Liwei Ying
  • Jiangtao Lin
  • Caihua Zhang
  • Wanglu Hu
  • Linlin WangEmail author
  • Kan XuEmail author


Gelatin methacrylate (GelMA)-based hydrogels are gaining a great deal of attention as potentially implantable materials in tissue engineering applications because of their biofunctionality and mechanical tenability. Since different natural tissues respond differently to mechanical stresses, an ideal implanted material would closely match the mechanical properties of the target tissue. In this regard, applications employing GelMA hydrogels are currently limited by the low mechanical strength and biocompatibility of GelMA. Therefore, this review focuses on modifications made to GelMA hydrogels to make them more suitable for tissue engineering applications. A large number of reports detail rational synthetic processes for GelMA or describe the incorporation of various biomaterials into GelMA hydrogels to tune their various properties, e.g., physical strength, chemical properties, conductivity, and porosity, and to promote cell loading and accelerate tissue repair. A novel strategy for repairing tissue injuries, based on the transplantation of cell-loaded GelMA scaffolds, is examined and its advantages and challenges are summarized. GelMA-cell combinations play a critical and pioneering role in this process and could potentially accelerate the development of clinically relevant applications.


GelMA hydrogel Synthetic process of regulation Incorporation of biomaterials Cell-loaded GelMA scaffold transplantation Tissue repair 



This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 81401011, 81572229, 81673777), the Natural Science Foundation of Zhejiang, China (Grant No.LY15H060004).

Compliance with Ethical Standards

Conflict of Interest

There are no conflicts to declare.


  1. 1.
    Dey, J., Xu, H., Shen, J., Thevenot, P., Gondi, S., Nguyen, K., et al. (2008). Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials, 29, 4637–4649.Google Scholar
  2. 2.
    Guan, J., & Wagner, W. (2005). Synthesis, characterization and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity. Biomacromolecules, 6, 2833–2842.Google Scholar
  3. 3.
    Bruggeman, J., de Bruin, B., Bettinger, C., & Langer, R. (2008). Biodegradable poly(polyol sebacate) polymers. Biomaterials, 29, 4726–4735.Google Scholar
  4. 4.
    Bettinger, C., Bruggeman, J., Borenstein, J., & Langer, R. (2008). Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials, 29, 2315–2325.Google Scholar
  5. 5.
    Van Vlierberghe, S., Dubruel, P., & Schacht, E. (2011). Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules, 12, 1387–1408.Google Scholar
  6. 6.
    Wichterle, O., & LÍM, D. (1960). Hydrophilic gels for biological use. Nature, 185, 117–118.Google Scholar
  7. 7.
    Serafim, A., Tucureanu, C., Petre, D.-G., Dragusin, D.-M., Salageanu, A., Van Vlierberghe, S., et al. (2014). One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design. New Journal of Chemistry, 38, 3112–3126.Google Scholar
  8. 8.
    Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for Tissue Engineering. Chemical Reviews, 101, 1869–1880.Google Scholar
  9. 9.
    Khademhosseini, A., Vacanti, J. P., & Langer, R. (2009). Progress in tissue engineering. Scientific American, 300, 64–71.Google Scholar
  10. 10.
    Annabi, N., Nichol, J., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., et al. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering. Part B, Reviews, 16, 371–383.Google Scholar
  11. 11.
    Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chemical Society Reviews, 41, 2193–2221.Google Scholar
  12. 12.
    Pérez, R., Won, J., Knowles, J., & Kim, H. (2013). Naturally and synthetic smart composite biomaterials for tissue regeneration. Advanced Drug Delivery Reviews, 65, 471–496.Google Scholar
  13. 13.
    Van Den Bulcke, A., Bogdanov, B., De Rooze, N., Schacht, E., Cornelissen, M., & Berghmans, H. (2000). Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 1, 31–38.Google Scholar
  14. 14.
    Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L., & San Antonio, J. D. (2002). Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. The Journal of Biological Chemistry, 277, 4223–4231.Google Scholar
  15. 15.
    Rahali, K., Ben Messaoud, G., Kahn, C., Sanchez-Gonzalez, L., Kaci, M., Cleymand, F., Fleutot, S., Linder, M., Desobry, S., & Arab-Tehrany, E. (2017). Synthesis and characterization of Nanofunctionalized gelatin methacrylate hydrogels. International Journal of Molecular Sciences, 18.Google Scholar
  16. 16.
    Lynn, A. K., Yannas, I. V., & Bonfield, W. (2004). Antigenicity and immunogenicity of collagen. Journal of biomedical materials research Part B, Applied biomaterials, 71, 343–354.Google Scholar
  17. 17.
    Shirahama, H., Lee, B., Tan, L., & Cho, N. (2016). Precise tuning of facile one-Pot gelatin Methacryloyl (GelMA) synthesis. Scientific Reports, 6, 31036.Google Scholar
  18. 18.
    Galis, Z., & Khatri, J. (2002). Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circulation Research, 90, 251–262.Google Scholar
  19. 19.
    Nichol, J., Koshy, S., Bae, H., Hwang, C., Yamanlar, S., & Khademhosseini, A. (2010). Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 31, 5536–5544.Google Scholar
  20. 20.
    Van den Steen, P., Dubois, B., Nelissen, I., Rudd, P., Dwek, R., & Opdenakker, G. (2002). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Critical Reviews in Biochemistry and Molecular Biology, 37, 375–536.Google Scholar
  21. 21.
    Liu, Y., & Chan-Park, M. (2010). A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials, 31, 1158–1170.Google Scholar
  22. 22.
    Yue, K., Trujillo-de Santiago, G., Alvarez, M., Tamayol, A., Annabi, N., & Khademhosseini, A. (2015). Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73, 254–271.Google Scholar
  23. 23.
    Powell, M. (1987). Stability of lidocaine in aqueous solution: Effect of temperature, pH, buffer, and metal ions on amide hydrolysis. Pharmaceutical Research, 4, 42–45.Google Scholar
  24. 24.
    Ratcliffe, J., Hunneyball, I., Smith, A., Wilson, C., & Davis, S. (1984). Preparation and evaluation of biodegradable polymeric systems for the intra-articular delivery of drugs. The Journal of Pharmacy and Pharmacology, 36, 431–436.Google Scholar
  25. 25.
    Knopf-Marques, H., Barthes, J., Wolfova, L., Vidal, B., Koenig, G., Bacharouche, J., Francius, G., Sadam, H., Liivas, U., Lavalle, P., & Vrana, N. E. (2017). Auxiliary biomembranes as a directional delivery system to control biological events in cell-laden tissue-engineering scaffolds. ACS Omega, 2, 918–929.Google Scholar
  26. 26.
    Ahadian, S., Ramón-Azcón, J., Ostrovidov, S., Camci-Unal, G., Hosseini, V., Kaji, H., Ino, K., Shiku, H., Khademhosseini, A., & Matsue, T. (2012). Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue. Lab on a Chip, 12, 3491–3503.Google Scholar
  27. 27.
    Billiet, T., Vandenhaute, M., Schelfhout, J., Van Vlierberghe, S., & Dubruel, P. (2012). A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 33, 6020–6041.Google Scholar
  28. 28.
    Murtuza, B., Nichol, J., & Khademhosseini, A. (2009). Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication. Tissue Engineering. Part B, Reviews, 15, 443–454.Google Scholar
  29. 29.
    Aubin, H., Nichol, J., Hutson, C., Bae, H., Sieminski, A., Cropek, D., et al. (2010). Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 31, 6941–6951.Google Scholar
  30. 30.
    Klotz, B., Gawlitta, D., Rosenberg, A., Malda, J., & Melchels, F. (2016). Gelatin-Methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends in Biotechnology, 34, 394–407.Google Scholar
  31. 31.
    Celikkin, N., Mastrogiacomo, S., Jaroszewicz, J., Walboomers, X., & Swieszkowski, W. (2018). Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Journal of Biomedical Materials Research. Part A, 106, 201–209.Google Scholar
  32. 32.
    Schuurman, W., Levett, P., Pot, M., van Weeren, P., Dhert, W., Hutmacher, D., et al. (2013). Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromolecular Bioscience, 13, 551–561.Google Scholar
  33. 33.
    Monteiro, N., Thrivikraman, G., Athirasala, A., Tahayeri, A., França, C., Ferracane, J., et al. (2018). Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Dental Materials, 34, 389–399.Google Scholar
  34. 34.
    Shin, H., Nichol, J., & Khademhosseini, A. (2011). Cell-adhesive and mechanically tunable glucose-based biodegradable hydrogels. Acta Biomaterialia, 7, 106–114.Google Scholar
  35. 35.
    Coutinho, D., Sant, S., Shin, H., Oliveira, J., Gomes, M., Neves, N., et al. (2010). Modified Gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials, 31, 7494–7502.Google Scholar
  36. 36.
    Assmann, A., Vegh, A., Ghasemi-Rad, M., Bagherifard, S., Cheng, G., Sani, E., et al. (2017). A highly adhesive and naturally derived sealant. Biomaterials, 140, 115–127.Google Scholar
  37. 37.
    Lee, Y., Lee, J., Bae, P., Chung, I., Chung, B., & Chung, B. (2015). Photo-crosslinkable hydrogel-based 3D microfluidic culture device. Electrophoresis, 36, 994–1001.Google Scholar
  38. 38.
    Wang, Z., Kumar, H., Tian, Z., Jin, X., Holzman, J., Menard, F., et al. (2018). Visible light Photoinitiation of cell-adhesive gelatin Methacryloyl hydrogels for Stereolithography 3D bioprinting. ACS Applied Materials & Interfaces, 10, 26859–26869.Google Scholar
  39. 39.
    Bartnikowski, M., Bartnikowski, N., Woodruff, M., Schrobback, K., & Klein, T. (2015). Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems. Acta Biomaterialia, 27, 66–76.Google Scholar
  40. 40.
    Chen, Y., Lin, R., Qi, H., Yang, Y., Bae, H., Melero-Martin, J., et al. (2012). Functional human vascular network generated in Photocrosslinkable gelatin methacrylate hydrogels. Advanced Functional Materials, 22, 2027–2039.Google Scholar
  41. 41.
    Lee, B., Lum, N., Seow, L., Lim, P., & Tan, L. (2016). Synthesis and characterization of types a and B gelatin Methacryloyl for bioink applications. Materials (Basel), 9.Google Scholar
  42. 42.
    Nikkhah, M., Eshak, N., Zorlutuna, P., Annabi, N., Castello, M., Kim, K., Dolatshahi-Pirouz, A., Edalat, F., Bae, H., Yang, Y., & Khademhosseini, A. (2012). Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 33, 9009–9018.Google Scholar
  43. 43.
    Lin, C., Su, J., Lee, S., & Lin, Y. (2018). Stiffness modification of Photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine.Google Scholar
  44. 44.
    Eke, G., Mangir, N., Hasirci, N., MacNeil, S., & Hasirci, V. (2017). Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials, 129, 188–198.Google Scholar
  45. 45.
    Gao, G., Schilling, A., Hubbell, K., Yonezawa, T., Truong, D., Hong, Y., et al. (2015). Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnology Letters, 37, 2349–2355.Google Scholar
  46. 46.
    Bae, J., Lee, J., & Chung, B. (2016). Hydrogel-encapsulated 3D microwell array for neuronal differentiation. Biomedical Materials, 11, 015019.Google Scholar
  47. 47.
    Zheng, J., Zhao, F., Zhang, W., Mo, Y., Zeng, L., Li, X., & Chen, X. (2018). Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 89, 119–127.Google Scholar
  48. 48.
    Li, H., Tan, Y., Liu, S., & Li, L. (2018). Three-dimensional bioprinting of oppositely charged hydrogels with super strong Interface bonding. ACS Applied Materials & Interfaces, 10, 11164–11174.Google Scholar
  49. 49.
    DeForest, C., & Anseth, K. (2012). Advances in bioactive hydrogels to probe and direct cell fate. Annu Rev Chem Biomol Eng, 3, 421–444.Google Scholar
  50. 50.
    Malda, J., Visser, J., Melchels, F., Jüngst, T., Hennink, W., Dhert, W., et al. (2013). 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater Weinheim, 25, 5011–5028.Google Scholar
  51. 51.
    Liu, Y., & Chan-Park, M. (2009). Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials, 30, 196–207.Google Scholar
  52. 52.
    Suri, S., & Schmidt, C. (2009). Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomaterialia, 5, 2385–2397.Google Scholar
  53. 53.
    Ramón-Azcón, J., Ahadian, S., Estili, M., Liang, X., Ostrovidov, S., Kaji, H., Shiku, H., Ramalingam, M., Nakajima, K., Sakka, Y., Khademhosseini, A., & Matsue, T. (2013). Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater Weinheim, 25, 4028–4034.Google Scholar
  54. 54.
    Ahadian, S., Yamada, S., Ramón-Azcón, J., Estili, M., Liang, X., Nakajima, K., Shiku, H., Khademhosseini, A., & Matsue, T. (2016). Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomaterialia, 31, 134–143.Google Scholar
  55. 55.
    Stratesteffen, H., Köpf, M., Kreimendahl, F., Blaeser, A., Jockenhoevel, S., & Fischer, H. (2017). GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Biofabrication, 9, 045002.Google Scholar
  56. 56.
    Xiao, W., He, J., Nichol, J., Wang, L., Hutson, C., Wang, B., et al. (2011). Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomaterialia, 7, 2384–2393.Google Scholar
  57. 57.
    Pacelli, S., Rampetsreiter, K., Modaresi, S., Subham, S., Chakravarti, A., Lohfeld, S., et al. (2018). Fabrication of a double-cross-linked interpenetrating polymeric network (IPN) hydrogel surface modified with Polydopamine to modulate the osteogenic differentiation of adipose-derived stem cells. ACS Applied Materials & Interfaces, 10, 24955–24962.Google Scholar
  58. 58.
    Zuo, Y., Liu, X., Wei, D., Sun, J., Xiao, W., Zhao, H., Guo, L., Wei, Q., Fan, H., & Zhang, X. (2015). Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon. ACS Applied Materials & Interfaces, 7, 10386–10394.Google Scholar
  59. 59.
    Suo, H., Xu, K., & Zheng, X. (2015). Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds. Journal of Biomaterials Applications, 29, 977–987.Google Scholar
  60. 60.
    Soucy, J., Shirzaei Sani, E., Portillo Lara, R., Diaz, D., Dias, F., Weiss, A., et al. (2018). Photocrosslinkable gelatin/Tropoelastin hydrogel adhesives for peripheral nerve repair. Tissue Engineering. Part A, 24, 1393–1405.Google Scholar
  61. 61.
    Wang, H., Zhou, L., Liao, J., Tan, Y., Ouyang, K., Ning, C., Ni, G., & Tan, G. (2014). Cell-laden photocrosslinked GelMA-DexMA copolymer hydrogels with tunable mechanical properties for tissue engineering. Journal of Materials Science. Materials in Medicine, 25, 2173–2183.Google Scholar
  62. 62.
    Cha, C., Oh, J., Kim, K., Qiu, Y., Joh, M., Shin, S., et al. (2014). Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs. Biomacromolecules, 15, 283–290.Google Scholar
  63. 63.
    Daniele, M., Adams, A., Naciri, J., North, S., & Ligler, F. (2014). Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials, 35, 1845–1856.Google Scholar
  64. 64.
    Visser, J., Melchels, F., Jeon, J., van Bussel, E., Kimpton, L., Byrne, H., et al. (2015). Reinforcement of hydrogels using three-dimensionally printed microfibres. Nature Communications, 6, 6933.Google Scholar
  65. 65.
    Luan, C., Wang, H., Han, Q., Ma, X., Zhang, D., Xu, Y., Chen, B., Li, M., & Zhao, Y. (2018). Folic acid-functionalized hybrid photonic barcodes for capture and release of circulating tumor cells. ACS Applied Materials & Interfaces, 10, 21206–21212.Google Scholar
  66. 66.
    Miri, A., Nieto, D., Iglesias, L., Goodarzi Hosseinabadi, H., Maharjan, S., Ruiz-Esparza, G., et al. (2018). Microfluidics-enabled multimaterial Maskless stereolithographic bioprinting. Adv Mater Weinheim, 30, e1800242.Google Scholar
  67. 67.
    Shin, S., Bae, H., Cha, J., Mun, J., Chen, Y., Tekin, H., et al. (2012). Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano, 6, 362–372.Google Scholar
  68. 68.
    Shin, S., Jung, S., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S., et al. (2013). Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano, 7, 2369–2380.Google Scholar
  69. 69.
    Ahadian, S., Ramón-Azcón, J., Estili, M., Liang, X., Ostrovidov, S., Shiku, H., et al. (2014). Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication. Scientific Reports, 4, 4271.Google Scholar
  70. 70.
    Sun, H., Tang, J., Mou, Y., Zhou, J., Qu, L., Duval, K., Huang, Z., Lin, N., Dai, R., Liang, C., Chen, Z., Tang, L., & Tian, F. (2017). Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA pathway. Acta Biomaterialia, 48, 88–99.Google Scholar
  71. 71.
    Paul, A., Hasan, A., Kindi, H., Gaharwar, A., Rao, V., Nikkhah, M., et al. (2014). Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano, 8, 8050–8062.Google Scholar
  72. 72.
    Cha, C., Shin, S., Gao, X., Annabi, N., Dokmeci, M., Tang, X., et al. (2014). Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small, 10, 514–523.Google Scholar
  73. 73.
    Shin, S., Zihlmann, C., Akbari, M., Assawes, P., Cheung, L., Zhang, K., et al. (2016). Reduced graphene oxide-GelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small, 12, 3677–3689.Google Scholar
  74. 74.
    Vashist, S., Zheng, D., Al-Rubeaan, K., Luong, J., & Sheu, F. (2011). Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnology Advances, 29, 169–188.Google Scholar
  75. 75.
    Fabbro, C., Ali-Boucetta, H., Da Ros, T., Kostarelos, K., Bianco, A., & Prato, M. (2012). Targeting carbon nanotubes against cancer. Chem Commun (Camb), 48, 3911–3926.Google Scholar
  76. 76.
    Shim, J., Grosberg, A., Nawroth, J. C., Parker, K. K., & Bertoldi, K. (2012). Modeling of cardiac muscle thin films: Pre-stretch, passive and active behavior. Journal of Biomechanics, 45, 832–841.Google Scholar
  77. 77.
    Liu, W., Zhong, Z., Hu, N., Zhou, Y., Maggio, L., Miri, A., et al. (2018). Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication, 10, 024102.Google Scholar
  78. 78.
    Levett, P., Melchels, F., Schrobback, K., Hutmacher, D., Malda, J., & Klein, T. (2014). A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomaterialia, 10, 214–223.Google Scholar
  79. 79.
    Boere, K., Visser, J., Seyednejad, H., Rahimian, S., Gawlitta, D., van Steenbergen, M., et al. (2014). Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomaterialia, 10, 2602–2611.Google Scholar
  80. 80.
    Gauvin, R., Chen, Y., Lee, J., Soman, P., Zorlutuna, P., Nichol, J., et al. (2012). Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 33, 3824–3834.Google Scholar
  81. 81.
    Wang, J., Li, H., Yao, Y., Zhao, T., Chen, Y., Shen, Y., Wang, L. L., & Zhu, Y. (2018). Stem cell-derived mitochondria transplantation: A novel strategy and the challenges for the treatment of tissue injury. Stem Cell Research & Therapy, 9, 106.Google Scholar
  82. 82.
    Bianco, P., & Robey, P. (2001). Stem cells in tissue engineering. Nature, 414, 118–121.Google Scholar
  83. 83.
    Liu, S., Schackel, T., Weidner, N., & Puttagunta, R. (2017). Biomaterial-supported cell transplantation treatments for spinal cord injury: Challenges and perspectives. Frontiers in Cellular Neuroscience, 11, 430.Google Scholar
  84. 84.
    West, J. (2011). Protein-patterned hydrogels: Customized cell microenvironments. Nature Materials, 10, 727–729.Google Scholar
  85. 85.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.Google Scholar
  86. 86.
    Yamanaka, S. (2012). Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell, 10, 678–684.Google Scholar
  87. 87.
    DeBrot, A., & Yao, L. (2018). The combination of induced pluripotent stem cells and bioscaffolds holds promise for spinal cord regeneration. Neural Regeneration Research, 13, 1677–1684.Google Scholar
  88. 88.
    Fan, L., Liu, C., Chen, X., Zou, Y., Zhou, Z., Lin, C., Tan, G., Zhou, L., Ning, C., & Wang, Q. (2018). Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Applied Materials & Interfaces, 10, 17742–17755.Google Scholar
  89. 89.
    Cízková, D., Rosocha, J., Vanický, I., Jergová, S., & Cízek, M. (2006). Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cellular and Molecular Neurobiology, 26, 1167–1180.Google Scholar
  90. 90.
    Shao, N., Guo, J., Guan, Y., Zhang, H., Li, X., Chen, X., Zhou, D., & Huang, Y. (2018). Development of organic/inorganic compatible and sustainably bioactive composites for effective bone regeneration. Biomacromolecules, 19, 3637–3648.Google Scholar
  91. 91.
    Visser, J., Gawlitta, D., Benders, K., Toma, S., Pouran, B., van Weeren, P., et al. (2015). Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles. Biomaterials, 37, 174–182.Google Scholar
  92. 92.
    Chen, X., Katakowski, M., Li, Y., Lu, D., Wang, L., Zhang, L., Chen, J., Xu, Y., Gautam, S., Mahmood, A., & Chopp, M. (2002). Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: Growth factor production. Journal of Neuroscience Research, 69, 687–691.Google Scholar
  93. 93.
    Mendonça, M., Larocca, T., de Freitas Souza, B., Villarreal, C., Silva, L., Matos, A., et al. (2014). Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Research & Therapy, 5, 126.Google Scholar
  94. 94.
    Su, P., Tian, Y., Yang, C., Ma, X., Wang, X., Pei, J., & Qian, A. (2018). Mesenchymal stem cell migration during bone formation and bone diseases therapy. International Journal of Molecular Sciences, 19.Google Scholar
  95. 95.
    Hu, M., Borrelli, M., Lorenz, H., Longaker, M., & Wan, D. (2018). Mesenchymal stromal cells and cutaneous wound healing: A comprehensive review of the background, role, and therapeutic potential. Stem Cells International, 2018, 1–13.Google Scholar
  96. 96.
    Sheehy, E., Mesallati, T., Kelly, L., Vinardell, T., Buckley, C., & Kelly, D. (2015). Tissue engineering whole bones through endochondral ossification: Regenerating the distal phalanx. Biores Open Access, 4, 229–241.Google Scholar
  97. 97.
    Mesallati, T., Sheehy, E., Vinardell, T., Buckley, C., & Kelly, D. (2015). Tissue engineering scaled-up, anatomically shaped osteochondral constructs for joint resurfacing. European Cells & Materials, 30, 163–185; discussion 85-6.Google Scholar
  98. 98.
    Daly, A., Pitacco, P., Nulty, J., Cunniffe, G., & Kelly, D. (2018). 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials, 162, 34–46.Google Scholar
  99. 99.
    Erkoc, P., Seker, F., Bagci-Onder, T., & Kizilel, S. (2018). Gelatin Methacryloyl hydrogels in the absence of a Crosslinker as 3D glioblastoma Multiforme (GBM)-mimetic microenvironment. Macromolecular Bioscience, 18.Google Scholar
  100. 100.
    Lin, R., Chen, Y., Moreno-Luna, R., Khademhosseini, A., & Melero-Martin, J. (2013). Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials, 34, 6785–6796.Google Scholar
  101. 101.
    McKay, R. (1997). Stem cells in the central nervous system. Science, 276, 66–71.Google Scholar
  102. 102.
    Han, S., Kang, D., Mujtaba, T., Rao, M., & Fischer, I. (2002). Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Experimental Neurology, 177, 360–375.Google Scholar
  103. 103.
    Huang, L., & Wang, G. (2017). The effects of different factors on the behavior of neural stem cells. Stem Cells International, 2017, 9497325.Google Scholar
  104. 104.
    Zhou, X., Cui, H., Nowicki, M., Miao, S., Lee, S. J., Masood, F., Harris, B.T., Zhang, L.G. (2018). Three-dimensional-bioprinted dopamine-based matrix for promoting neural regeneration. ACS Applied Materials & Interfaces, 10(10), 8993-9001.Google Scholar
  105. 105.
    Gronthos, S., Franklin, D., Leddy, H., Robey, P., Storms, R., & Gimble, J. (2001). Surface protein characterization of human adipose tissue-derived stromal cells. Journal of Cellular Physiology, 189, 54–63.Google Scholar
  106. 106.
    Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W., & Ho, A. D. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 33, 1402–1416.Google Scholar
  107. 107.
    Fraser, J., Wulur, I., Alfonso, Z., & Hedrick, M. (2006). Fat tissue: An underappreciated source of stem cells for biotechnology. Trends in Biotechnology, 24, 150–154.Google Scholar
  108. 108.
    Onofrillo, C., Duchi, S., O'Connell, C., Blanchard, R., O'Connor, A., Scott, M., et al. (2018). Biofabrication of human articular cartilage: A path towards the development of a clinical treatment. Biofabrication, 10, 045006.Google Scholar
  109. 109.
    McKay, R. (2000). Stem cells — Hype and hope. Nature, 406, 361–364.Google Scholar
  110. 110.
    Ahadian, S., Yamada, S., Ramón-Azcón, J., Ino, K., Shiku, H., Khademhosseini, A., & Matsue, T. (2014). Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique. Lab on a Chip, 14, 3690–3694.Google Scholar
  111. 111.
    Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634–7638.Google Scholar
  112. 112.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.Google Scholar
  113. 113.
    Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., & Daley, G. Q. (2008). Disease-specific induced pluripotent stem cells. Cell, 134, 877–886.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Orthopedic Surgery, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Zhejiang University-University of Edinburgh InstituteZhejiang UniversityZhejiangChina
  3. 3.Department of Basic Medicine Sciences, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations