Pro-Angiogenic Actions of CMC-Derived Extracellular Vesicles Rely on Selective Packaging of Angiopoietin 1 and 2, but Not FGF-2 and VEGF

  • Marcin WysoczynskiEmail author
  • Asif Pathan
  • Joseph B. MooreIV
  • Talha Farid
  • Jae Kim
  • Marjan Nasr
  • Yi Kang
  • Hong Li
  • Roberto BolliEmail author


While the fundamental mechanism by which cardiac cell therapy mitigates ventricular dysfunction in the post ischemic heart remains poorly defined, donor cell paracrine signaling is presumed to be a chief contributor to the afforded benefits. Of the many bioactive molecules secreted by transplanted cells, extracellular vesicles (EVs) and their proteinaceous, nucleic acid, and lipid rich contents, comprise a heterogeneous assortment of prospective cardiotrophic factors-whose involvement in the activation of endogenous cardiac repair mechanism(s), including reducing fibrosis and promoting angiogenesis, have yet to be fully explained. In the current study we aimed to interrogate potential mechanisms by which cardiac mesenchymal stromal cell (CMC)-derived EVs contribute to the CMC pro-angiogenic paracrine signaling capacity in vitro. Vesicular transmission and biological activity of human CMC-derived EVs was evaluated in in vitro assays for human umbilical vein endothelial cell (HUVEC) function, including EV uptake, cell survival, migration, tube formation, and intracellular pathway activation. HUVECs incubated with EVs exhibited augmented cell migration, tube formation, and survival under peroxide exposure; findings which paralleled enhanced activation of the archetypal pro-survival/pro-angiogenic pathways, STAT3 and PI3K-AKT. Cytokine array analyses revealed preferential enrichment of a subset of prototypical angiogenic factors, Ang-1 and Ang-2, in CMC EVs. Interestingly, pharmacologic inhibition of Tie2 in HUVECs, the cognate receptors of angiopoietins, efficiently attenuated CMC-EV-induced HUVEC migration. Further, in additional assays a Tie2 kinase inhibitor exhibited specificity to inhibit Ang-1-, but not Ang-2-, induced HUVEC migration. Overall, these findings suggest that the pro-angiogenic activities of CMC EVs are principally mediated by Ang-1-Tie2 signaling.


Extracelluar Vesicles Cardiac Mesenchymal Cells Endothelial Cells Angiopoietin Migration Angiogenesis 



This work was supported by NIH Grants P20 GM103492, P01 HL078825 (to RB and MW), R01 HL141191 (to MW), UM1 HL113530 (to RB), and R01 HL141081 (to JBM).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

12015_2019_9891_MOESM1_ESM.pptx (82 kb)
Supplementary Figure 1 Angiogenic protein array. CMC lysates, CMC-conditioned media (CM), and CMC-EVs (EVs) were evaluated for expression of pro- and anti-angiogenic factors with cytokine array membranes (Proteome Profiler Human Angiogenic Array Kit; R&D Systems, Minneapolis, MN). Proteome cytokine array heat map illustrating densitometric quantification or relative pixel density for each cytokine (A). Cytokine array membranes detected using enhanced chemiluminescence (B). (PPTX 81 kb)


  1. 1.
    Frangogiannis, N. G. (2015). Pathophysiology of myocardial infarction. Comprehensive Physiology, 5, 1841–1875.CrossRefGoogle Scholar
  2. 2.
    Chen, B., & Frangogiannis, N. G. (2017). Immune cells in repair of the infarcted myocardium. Microcirculation., 24.Google Scholar
  3. 3.
    Christia, P., & Frangogiannis, N. G. (2013). Targeting inflammatory pathways in myocardial infarction. European Journal of Clinical Investigation, 43, 986–995.CrossRefGoogle Scholar
  4. 4.
    Frangogiannis, N. G. (2015). Inflammation in cardiac injury, repair and regeneration. Current Opinion in Cardiology, 30, 240–245.CrossRefGoogle Scholar
  5. 5.
    Kong, P., Christia, P., & Frangogiannis, N. G. (2014). The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences, 71, 549–574.CrossRefGoogle Scholar
  6. 6.
    Prabhu, S. D., & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119, 91–112.CrossRefGoogle Scholar
  7. 7.
    Khurana, R., Simons, M., Martin, J. F., & Zachary, I. C. (2005). Role of angiogenesis in cardiovascular disease: A critical appraisal. Circulation., 112, 1813–1824.CrossRefGoogle Scholar
  8. 8.
    Evans, I. (2015). In vitro angiogenesis assays. Methods in Molecular Biology, 1332, 143–150.CrossRefGoogle Scholar
  9. 9.
    Kobayashi, K., Maeda, K., Takefuji, M., Kikuchi, R., Morishita, Y., Hirashima, M., & Murohara, T. (2017). Dynamics of angiogenesis in ischemic areas of the infarcted heart. Scientific Reports, 7, 7156.CrossRefGoogle Scholar
  10. 10.
    Tian, X., Pu, W. T., & Zhou, B. (2015). Cellular origin and developmental program of coronary angiogenesis. Circulation Research, 116, 515–530.CrossRefGoogle Scholar
  11. 11.
    Henning, R. J. (2016). Therapeutic angiogenesis: Angiogenic growth factors for ischemic heart disease. Future Cardiology, 12, 585–599.CrossRefGoogle Scholar
  12. 12.
    Banerjee, M. N., Bolli, R., & Hare, J. M. (2018). Clinical studies of cell therapy in cardiovascular medicine: Recent developments and future directions. Circulation Research, 123, 266–287.CrossRefGoogle Scholar
  13. 13.
    Wysoczynski, M., Guo, Y., Moore, J. B., Muthusamy, S., Li, Q., Nasr, M., Li, H., Nong, Y., Wu, W., Tomlin, A. A., Zhu, X., Hunt, G., Gumpert, A. M., Book, M. J., Khan, A., Tang, X. L., & Bolli, R. (2017). Myocardial reparative properties of cardiac mesenchymal cells isolated on the basis of adherence. Journal of the American College of Cardiology, 69, 1824–1838.CrossRefGoogle Scholar
  14. 14.
    Guo, Y., Wysoczynski, M., Nong, Y., Tomlin, A., Zhu, X., Gumpert, A. M., Nasr, M., Muthusamy, S., Li, H., Book, M., Khan, A., Hong, K. U., Li, Q., & Bolli, R. (2017). Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Research in Cardiology, 112, 18.CrossRefGoogle Scholar
  15. 15.
    Hong, K. U., Guo, Y., Li, Q. H., Cao, P., Al-Maqtari, T., Vajravelu, B. N., Du, J., Book, M. J., Zhu, X., Nong, Y., Bhatnagar, A., & Bolli, R. (2014). c-kit+ Cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS One, 9, e96725.CrossRefGoogle Scholar
  16. 16.
    Hong, K. U., Li, Q. H., Guo, Y., Patton, N. S., Moktar, A., Bhatnagar, A., & Bolli, R. (2013). A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Research in Cardiology, 108, 346.CrossRefGoogle Scholar
  17. 17.
    Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103, 1204–1219.CrossRefGoogle Scholar
  18. 18.
    Hodgkinson, C. P., Bareja, A., Gomez, J. A., & Dzau, V. J. (2016). Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circulation Research, 118, 95–107.CrossRefGoogle Scholar
  19. 19.
    Mirotsou, M., Jayawardena, T. M., Schmeckpeper, J., Gnecchi, M., & Dzau, V. J. (2011). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. Journal of Molecular and Cellular Cardiology, 50, 280–289.CrossRefGoogle Scholar
  20. 20.
    Wysoczynski, M., Khan, A., & Bolli, R. (2018). New paradigms in cell therapy: Repeated dosing, intravenous delivery, immunomodulatory actions, and new cell types. Circulation Research, 123, 138–158.CrossRefGoogle Scholar
  21. 21.
    Todorova, D., Simoncini, S., Lacroix, R., Sabatier, F., & Dignat-George, F. (2017). Extracellular vesicles in angiogenesis. Circulation Research, 120, 1658–1673.CrossRefGoogle Scholar
  22. 22.
    Garikipati, V. N. S., Shoja-Taheri, F., Davis, M. E., & Kishore, R. (2018). Extracellular vesicles and the application of system biology and computational modeling in cardiac repair. Circulation Research, 123, 188–204.CrossRefGoogle Scholar
  23. 23.
    Khan, M., & Kishore, R. (2017). Stem cell exosomes: Cell-FreeTherapy for organ repair. Methods in Molecular Biology, 1553, 315–321.CrossRefGoogle Scholar
  24. 24.
    Kishore, R., Garikipati, V. N., & Gumpert, A. (2016). Tiny shuttles for information transfer: Exosomes in cardiac health and disease. Journal of Cardiovascular Translational Research, 9, 169–175.CrossRefGoogle Scholar
  25. 25.
    Kishore, R., & Khan, M. (2016). More than tiny sacks: Stem cell exosomes as cell-free modality for cardiac repair. Circulation Research, 118, 330–343.CrossRefGoogle Scholar
  26. 26.
    Kishore, R., & Khan, M. (2017). Cardiac cell-derived exosomes: Changing face of regenerative biology. European Heart Journal, 38, 212–215.Google Scholar
  27. 27.
    Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: Important and underappreciated mediators of cell-to-cell communication. Leukemia., 20, 1487–1495.CrossRefGoogle Scholar
  28. 28.
    Ribeiro-Rodrigues, T. M., Laundos, T. L., Pereira-Carvalho, R., Batista-Almeida, D., Pereira, R., Coelho-Santos, V., Silva, A. P., Fernandes, R., Zuzarte, M., Enguita, F. J., Costa, M. C., Pinto-do, O. P., Pinto, M. T., Gouveia, P., Ferreira, L., Mason, J. C., Pereira, P., Kwak, B. R., Nascimento, D. S., & Girao, H. (2017). Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovascular Research, 113, 1338–1350.CrossRefGoogle Scholar
  29. 29.
    Sluijter, J. P. G., Davidson, S. M., Boulanger, C. M., Buzas, E. I., de Kleijn, D. P. V., Engel, F. B., Giricz, Z., Hausenloy, D. J., Kishore, R., Lecour, S., Leor, J., Madonna, R., Perrino, C., Prunier, F., Sahoo, S., Schiffelers, R. M., Schulz, R., Van Laake, L. W., Ytrehus, K., & Ferdinandy, P. (2018). Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position paper from the working group on cellular biology of the heart of the European Society of Cardiology. Cardiovascular Research, 114, 19–34.CrossRefGoogle Scholar
  30. 30.
    Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., Mackie, A. R., Vaughan, E., Garikipati, V. N., Benedict, C., Ramirez, V., Lambers, E., Ito, A., Gao, E., Misener, S., Luongo, T., Elrod, J., Qin, G., Houser, S. R., Koch, W. J., & Kishore, R. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117, 52–64.CrossRefGoogle Scholar
  31. 31.
    Zhao, L., Johnson, T., & Liu, D. (2017). Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases. Stem Cell Research & Therapy, 8, 125.CrossRefGoogle Scholar
  32. 32.
    Mackie, A. R., Klyachko, E., Thorne, T., Schultz, K. M., Millay, M., Ito, A., Kamide, C. E., Liu, T., Gupta, R., Sahoo, S., Misener, S., Kishore, R., & Losordo, D. W. (2012). Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circulation Research, 111, 312–321.CrossRefGoogle Scholar
  33. 33.
    Mathiyalagan, P., Liang, Y., Kim, D., Misener, S., Thorne, T., Kamide, C. E., Klyachko, E., Losordo, D. W., Hajjar, R. J., & Sahoo, S. (2017). Angiogenic mechanisms of human CD34(+) stem cell exosomes in the repair of ischemic Hindlimb. Circulation Research, 120, 1466–1476.CrossRefGoogle Scholar
  34. 34.
    Sahoo, S., Klychko, E., Thorne, T., Misener, S., Schultz, K. M., Millay, M., Ito, A., Liu, T., Kamide, C., Agrawal, H., Perlman, H., Qin, G., Kishore, R., & Losordo, D. W. (2011). Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circulation Research, 109, 724–728.CrossRefGoogle Scholar
  35. 35.
    Sahoo, S., & Losordo, D. W. (2014). Exosomes and cardiac repair after myocardial infarction. Circulation Research, 114, 333–344.CrossRefGoogle Scholar
  36. 36.
    Moore, J. B., Zhao, J., Keith, M. C., Amraotkar, A. R., Wysoczynski, M., Hong, K. U., & Bolli, R. (2016). The epigenetic regulator HDAC1 modulates transcription of a Core cardiogenic program in human cardiac mesenchymal stromal cells through a p53-dependent mechanism. Stem Cells, 34, 2916–2929.CrossRefGoogle Scholar
  37. 37.
    Chen, L., Wang, Y., Pan, Y., Zhang, L., Shen, C., Qin, G., Ashraf, M., Weintraub, N., Ma, G., & Tang, Y. (2013). Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 431, 566–571.CrossRefGoogle Scholar
  38. 38.
    Lee, C., Mitsialis, S. A., Aslam, M., Vitali, S. H., Vergadi, E., Konstantinou, G., Sdrimas, K., Fernandez-Gonzalez, A., & Kourembanas, S. (2012). Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation., 126, 2601–2611.CrossRefGoogle Scholar
  39. 39.
    Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., Zhang, X., Qin, G., He, S. H., Zimmerman, A., Liu, Y., Kim, I. M., Weintraub, N. L., & Tang, Y. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 192, 61–69.CrossRefGoogle Scholar
  40. 40.
    Wysoczynski, M., Liu, R., Kucia, M., Drukala, J., & Ratajczak, M. Z. (2010). Thrombin regulates the metastatic potential of human rhabdomyosarcoma cells: Distinct role of PAR1 and PAR3 signaling. Molecular Cancer Research, 8, 677–690.CrossRefGoogle Scholar
  41. 41.
    Wysoczynski, M., & Ratajczak, M. Z. (2009). Lung cancer secreted microvesicles: Underappreciated modulators of microenvironment in expanding tumors. International Journal of Cancer, 125, 1595–1603.CrossRefGoogle Scholar
  42. 42.
    Mayourian, J., Ceholski, D. K., Gorski, P. A., Mathiyalagan, P., Murphy, J. F., Salazar, S. I., Stillitano, F., Hare, J. M., Sahoo, S., Hajjar, R. J., & Costa, K. D. (2018). Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circulation Research, 122, 933–944.CrossRefGoogle Scholar
  43. 43.
    Liebson, P. R. (2015). Stem-cell angiogenesis and regeneration of the heart: Review of a saga of 2 decades. Clinical Cardiology, 38, 309–316.CrossRefGoogle Scholar
  44. 44.
    Liu, C., Fan, Y., Zhou, L., Zhu, H. Y., Song, Y. C., Hu, L., Wang, Y., & Li, Q. P. (2015). Pretreatment of mesenchymal stem cells with angiotensin II enhances paracrine effects, angiogenesis, gap junction formation and therapeutic efficacy for myocardial infarction. International Journal of Cardiology, 188, 22–32.CrossRefGoogle Scholar
  45. 45.
    Moradi, K., Abbasi, M., Aboulhasani, F., Abbasi, N., Babatunde, K. A., Sargolzaeiaval, F., & Dehpour, A. R. (2015). Therapeutic angiogenesis promotes efficacy of human umbilical cord matrix stem cell transplantation in cardiac repair. Iranian Journal Basic Medical Science, 18, 563–570.Google Scholar
  46. 46.
    Moore, J. B., Zhao, J., Fischer, A. G., Keith, M. C. L., Hagan, D., Wysoczynski, M., & Bolli, R. (2017). Histone deacetylase 1 depletion activates human cardiac mesenchymal stromal cell proangiogenic paracrine signaling through a mechanism requiring enhanced basic fibroblast growth factor synthesis and secretion. Journal of the American Heart Association, 6.Google Scholar
  47. 47.
    Baraniak, P. R., & McDevitt, T. C. (2010). Stem cell paracrine actions and tissue regeneration. Regenerative Medicine, 5, 121–143.CrossRefGoogle Scholar
  48. 48.
    Beckermann, B. M., Kallifatidis, G., Groth, A., Frommhold, D., Apel, A., Mattern, J., Salnikov, A. V., Moldenhauer, G., Wagner, W., Diehlmann, A., Saffrich, R., Schubert, M., Ho, A. D., Giese, N., Buchler, M. W., Friess, H., Buchler, P., & Herr, I. (2008). VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. British Journal of Cancer, 99, 622–631.CrossRefGoogle Scholar
  49. 49.
    Suga, H., Glotzbach, J. P., Sorkin, M., Longaker, M. T., & Gurtner, G. C. (2014). Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation. Annals of Plastic Surgery, 72, 234–241.CrossRefGoogle Scholar
  50. 50.
    Shantsila, E., Watson, T., & Lip, G. Y. (2007). Endothelial progenitor cells in cardiovascular disorders. Journal of the American College of Cardiology, 49, 741–752.CrossRefGoogle Scholar
  51. 51.
    Zhao, X., Wu, N., & Huang, L. (2010). Endothelial progenitor cells and spleen: New insights in regeneration medicine. Cytotherapy., 12, 7–16.CrossRefGoogle Scholar
  52. 52.
    Tang, X. L., Rokosh, G., Sanganalmath, S. K., Yuan, F., Sato, H., Mu, J., Dai, S., Li, C., Chen, N., Peng, Y., Dawn, B., Hunt, G., Leri, A., Kajstura, J., Tiwari, S., Shirk, G., Anversa, P., & Bolli, R. (2010). Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation., 121, 293–305.CrossRefGoogle Scholar
  53. 53.
    Janowska-Wieczorek, A., Majka, M., Ratajczak, J., & Ratajczak, M. Z. (2001). Autocrine/paracrine mechanisms in human hematopoiesis. Stem Cells, 19, 99–107.CrossRefGoogle Scholar
  54. 54.
    Ratajczak, M. Z., Kucia, M., Jadczyk, T., Greco, N. J., Wojakowski, W., Tendera, M., & Ratajczak, J. (2012). Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia., 26, 1166–1173.CrossRefGoogle Scholar
  55. 55.
    Ratajczak, J., Kucia, M., Mierzejewska, K., Marlicz, W., Pietrzkowski, Z., Wojakowski, W., Greco, N. J., Tendera, M., & Ratajczak, M. Z. (2013). Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells--implications for stem cell therapies in regenerative medicine. Stem Cells and Development, 22, 422–430.CrossRefGoogle Scholar
  56. 56.
    Beach, A., Zhang, H. G., Ratajczak, M. Z., & Kakar, S. S. (2014). Exosomes: An overview of biogenesis, composition and role in ovarian cancer. Journal of Ovarian Research, 7, 14.CrossRefGoogle Scholar
  57. 57.
    McBride, J. D., Rodriguez-Menocal, L., Guzman, W., Candanedo, A., Garcia-Contreras, M., & Badiavas, E. V. (2017). Bone marrow mesenchymal stem cell-derived CD63(+) exosomes transport Wnt3a exteriorly and enhance dermal fibroblast proliferation, migration, and angiogenesis in vitro. Stem Cells and Development, 26, 1384–1398.CrossRefGoogle Scholar
  58. 58.
    Gray, W. D., French, K. M., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., Platt, M. O., Searles, C. D., & Davis, M. E. (2015). Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circulation Research, 116, 255–263.CrossRefGoogle Scholar
  59. 59.
    Agarwal, U., George, A., Bhutani, S., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., Mehta, Y., Platt, M. O., Liang, Y., Sahoo, S., & Davis, M. E. (2017). Experimental, systems, and computational approaches to understanding the MicroRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circulation Research, 120, 701–712.CrossRefGoogle Scholar
  60. 60.
    Prudovsky, I., Tarantini, F., Landriscina, M., Neivandt, D., Soldi, R., Kirov, A., Small, D., Kathir, K. M., Rajalingam, D., & Kumar, T. K. (2008). Secretion without Golgi. Journal of Cellular Biochemistry, 103, 1327–1343.CrossRefGoogle Scholar
  61. 61.
    Prudovsky, I. (2013). Nonclassically secreted regulators of angiogenesis. Angiology Open Access, 1, 1000101.CrossRefGoogle Scholar
  62. 62.
    Wegehingel, S., Zehe, C., & Nickel, W. (2008). Rerouting of fibroblast growth factor 2 to the classical secretory pathway results in post-translational modifications that block binding to heparan sulfate proteoglycans. FEBS Letters, 582, 2387–2392.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Molecular CardiologyUniversity of Louisville School of MedicineLouisvilleUSA
  2. 2.University of LouisvilleLouisvilleUSA
  3. 3.University of LouisvilleLouisvilleUSA

Personalised recommendations