Advertisement

Stem Cell Reviews and Reports

, Volume 15, Issue 4, pp 543–557 | Cite as

Female Age Affects the Mesenchymal Stem Cell Characteristics of Aspirated Follicular Cells in the In Vitro Fertilization Programme

  • Irma Virant-KlunEmail author
  • S. Omejec
  • M. Stimpfel
  • P. Skerl
  • S. Novakovic
  • N. Jancar
  • E. Vrtacnik-Bokal
Article
  • 166 Downloads

Abstract

Aspirated follicular cells (AFCs) from the in vitro fertilization program can express various stem cell markers and are even able to differentiate into different types of cells in vitro. The female reproductive potential decreases with increasing age due to lowered ovarian reserve and oocyte quality, but data on the effect of female age on stem cell characteristics of AFCs are scarce. Therefore, the aim of this study was to elucidate whether female age affects the mesenchymal stem cell (MSC) characteristics of AFCs. Follicular aspirates were collected from 12 patients included in the in vitro fertilization programme with a normal ovarian reserve. Patients were divided into four age groups: Group A ≤ 30 years, Group B 31–35 years, Group C 36–39 years and Group D ≥ 40 years. After removal of the oocytes, AFCs were collected from follicular aspirates using hypo-osmotic technique and cultured in vitro, and their stemness was compared according to female age. The cultured AFCs were analysed for gene expression using the Human Mesenchymal Stem Cell RT2 Profiler™ PCR Array, for their potential for differentiation into adipogenic and osteogenic lineage, and for their expression of MSC-related markers using immunocytochemistry. We found that female age can significantly influence their stemness: expression of pluripotency and MSC-related genes, and their differentiation potential. Despite the relatively high expression of MSC-related genes, the AFCs of the oldest patients had the lowest potential to differentiate into osteogenic and adipogenic lineages in vitro, which may be related to their age and the changed ovarian function.

Keywords

Aspirated follicular cells Granulosa cells Mesenchymal stem cells Female age Stem cells Differentiation 

Notes

Acknowledgements

The authors thank all of our colleagues at the Reproductive Unit, Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana for their collaboration and support and all of the patients who kindly donated their follicular fluid for this research.

Authors’ Contributions

IVK designed the experiments, organized the genetic analysis, interpreted the results, wrote the manuscript, and financially supported the work by her research project; SO performed the experimental work, collected the data and wrote the manuscript; MS performed the experimental work and wrote the manuscript; EVB and NJ performed the ultrasound-guided aspiration of follicular fluid and discussed the clinical part of the work; PS and SN performed the genetic analysis of AFCs, discussed the interpretation of genetic data, and read and corrected the manuscript.

Funding

The research was funded by the research grant J3–4195 offered to Prof. Irma Virant-Klun by the Slovenian Research Agency (ARRS).

Compliance with Ethical Standards

Conflict of Interest

The authors have no financial or other conflicts of interests about this work to declare.

Supplementary material

12015_2019_9889_MOESM1_ESM.doc (158 kb)
ESM 1 (DOC 158 kb)

References

  1. 1.
    Velazquez, A., Reyes, A., Chargoy, J., & Rosado, A. (1977). Amino acid and protein concentrations of human follicular fluid. Fertility Sterility, 28(1), 96–100.Google Scholar
  2. 2.
    Duijkers, I. J., Willemsen, W. N., Hollanders, H. M., Hamilton, C. J., Thomas, C. M., & Vemer, H. M. (1997). Follicular fluid hormone concentrations after ovarian stimulation using gonadotropin preparations with different FSH/LH ratios. II. Comparison of hMG and recombinant FSH. International Journal of Fertility and Women’s Medicine, 42(6), 431–435.Google Scholar
  3. 3.
    Mendoza, C., Ruiz-Requena, E., Ortega, E., Cremades, N., Martinez, F., Bernabeu, R., et al. (2002). Follicular fluid markers of oocyte developmental potential. Human Reproduction, 17(4), 1017–1022.Google Scholar
  4. 4.
    Ulug, U., Turan, E., Tosun, S. B., Erden, H. F., & Bahceci, M. (2007). Comparison of preovulatory follicular concentrations of epidermal growth factor, insulin-like growth factor-I, and inhibins A and B in women undergoing assisted conception treatment with gonadotropin-releasing hormone (GnRH) agonists and GnRH antagonists. Fertility Sterility, 87(4), 995–998.Google Scholar
  5. 5.
    Lai, D., Xu, M., Zhang, Q., Chen, Y., Li, T., Wang, Q., Gao, Y., & Wei, C. (2015). Identification and characterization of epithelial cells derived from human ovarian follicular fluid. Stem Cell Research & Therapy, 6, 13.Google Scholar
  6. 6.
    Antczak, M., & Van Blerkom, J. (2000). The vascular character of ovarian follicular granulosa cells: Phenotypic and functional evidence for an endothelial-like cell population. Human Reproduction, 15(11), 2306–2318.Google Scholar
  7. 7.
    Gougeon, A. (1986). Dynamics of follicular growth in the human: A model from preliminary results. Human Reproduction, 1(2), 81–87.Google Scholar
  8. 8.
    Kossowska-Tomaszczuk, K., De Geyter, C., De Geyter, M., Martin, I., Holzgreve, W., Scherberich, A., et al. (2009). The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells, 27(1), 210–219.Google Scholar
  9. 9.
    Bruckova, L., Soukup, T., Visek, B., Moos, J., Moosova, M., Pavelkova, J., Rezabek, K., Kucerova, L., Micuda, S., Brcakova, E., & Mokry, J. (2011). Proliferative potential and phenotypic analysis of long-term cultivated human granulosa cells initiated by addition of follicular fluid. Journal of Assisted Reproduction and Genetics, 28(10), 939–950.Google Scholar
  10. 10.
    Mattioli, M., Gloria, A., Turriani, M., Berardinelli, P., Russo, V., Nardinocchi, D., Curini, V., Baratta, M., Martignani, E., & Barboni, B. (2012). Osteo-regenerative potential of ovarian granulosa cells: An in vitro and in vivo study. Theriogenology, 77(7), 1425–1437.Google Scholar
  11. 11.
    Varras, M., Griva, T., Kalles, V., Akrivis, C., & Paparisteidis, N. (2012). Markers of stem cells in human ovarian granulosa cells: Is there a clinical significance in ART? Journal of Ovarian Research, 5, 36.Google Scholar
  12. 12.
    Dzafic, E., Stimpfel, M., Novakovic, S., Cerkovnik, P., & Virant-Klun, I. (2014). Expression of mesenchymal stem cells-related genes and plasticity of aspirated follicular cells obtained from infertile women. BioMed Research International, 2014, 508216.Google Scholar
  13. 13.
    Lange-Consiglio, A., Romaldini, A., Correani, A., Corradetti, B., Esposti, P., Cannatà, M. F., Perrini, C., Marini, M. G., Bizzaro, D., & Cremonesi, F. (2016). Does the bovine pre-ovulatory follicle harbor progenitor stem cells? Cellular Reprogramming, 18(2), 116–126.Google Scholar
  14. 14.
    Yousefi, S., Soleimanirad, J., Hamdi, K., Farzadi, L., Ghasemzadeh, A., Kazemi, M., Mahdipour, M., Rahbarghazi, R., & Nouri, M. (2018). Distinct effect of fetal bovine serum versus follicular fluid on multipotentiality of human granulosa cells in in vitro condition. Biologicals, 52, 44–48.Google Scholar
  15. 15.
    Iliodromiti, S., Iglesias Sanchez, C., Messow, C. M., Cruz, M., Garcia Velasco, J., & Nelson, S. M. (2016). Excessive age-related decline in functional ovarian reserve in infertile women: prospective cohort of 15,500 women. Journal of Clinical Endocrinology and Metabolism, 101(9), 3548–3554.Google Scholar
  16. 16.
    Meczekalski, B., Czyzyk, A., Kunicki, M., Podfigurna-Stopa, A., Plociennik, L., Jakiel, G., Maciejewska-Jeske, M., & Lukaszuk, K. (2016). Fertility in women of late reproductive age: The role of serum -Müllerian hormone (AMH) levels in its assessment. Journal of Endocrinological Investigation, 39(11), 1259–1265.Google Scholar
  17. 17.
    Munné, S., Alikani, M., Tomkin, G., Grifo, J., & Cohen, J. (1995). Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities. Fertility Sterility, 64(2), 382–391.Google Scholar
  18. 18.
    Battaglia, D. E., Goodwin, P., Klein, N. A., & Soules, M. R. (1996). Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Human Reproduction, 11(10), 2217–2222.Google Scholar
  19. 19.
    Alt, E. U., Senst, C., Murthy, S. N., Slakey, D. P., Dupin, C. L., Chaffin, A. E., Kadowitz, P. J., & Izadpanah, R. (2012). Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Research, 8(2), 215–225.Google Scholar
  20. 20.
    Zaim, M., Karaman, S., Cetin, G., & Isik, S. (2012). Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Annals of Hematology, 91(8), 1175–1186.Google Scholar
  21. 21.
    Choudhery, M. S., Badowski, M., Muise, A., Pierce, J., & Harris, D. T. (2014). Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. Journal of Translational Medicine, 12, 8.Google Scholar
  22. 22.
    Alves, H., van Ginkel, J., Groen, N., Hulsman, M., Mentink, A., Reinders, M., van Blitterswijk, C., & de Boer, J. (2012). A mesenchymal stromal cell gene signature for donor age. PLoS One, 7, e42908.Google Scholar
  23. 23.
    Lobb, D. K., & Younglai, E. V. (2006). A simplified method for preparing IVF granulosa cells for culture. Journal of Assisted Reproduction and Genetics, 23(2), 93–95.Google Scholar
  24. 24.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.Google Scholar
  25. 25.
    Stimpfel, M., Skutella, T., Kubista, M., Malicev, E., Conrad, S., & Virant-Klun, I. (2012). Potential stemness of frozen-thawed testicular biopsies without sperm in infertile men included into the in vitro fertilization programme. Journal of Biomedicine and Biotechnology, 2012, 291038.Google Scholar
  26. 26.
    Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., & Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.Google Scholar
  27. 27.
    Aghadavod, E., Zarghami, N., Farzadi, L., Zare, M., Barzegari, A., Movassaghpour, A. A., et al. (2015). Isolation of granulosa cells from follicular fluid; applications in biomedical and molecular biology experiments. Advanced Biomedical Ressearch, 4, 250.Google Scholar
  28. 28.
    Chilvers, R. A., Bodenburg, Y. H., Denner, L. A., & Urban, R. J. (2012). Development of a novel protocol for isolation and purification of human granulosa cells. Journal of Assisted Reproduction and Genetics, 29(6), 547–556.Google Scholar
  29. 29.
    Ferrero, H., Delgado-Rosas, F., Garcia-Pascual, C. M., Monterde, M., Zimmermann, R. C., Simón, C., et al. (2012). Efficiency and purity provided by the existing methods for the isolation of luteinized granulosa cells: A comparative study. Human Reproduction, 27(6), 1781–1789.Google Scholar
  30. 30.
    Fehrer, C., & Lepperdinger, G. (2005). Mesenchymal stem cell aging. Experimental Gerontology, 40(12), 926–930.Google Scholar
  31. 31.
    Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A., & Nikbin, B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biology, 7, 14.Google Scholar
  32. 32.
    Wang, Y., Zhang, Z., Chi, Y., Zhang, Q., Xu, F., Yang, Z., Meng, L., Yang, S., Yan, S., Mao, A., Zhang, J., Yang, Y., Wang, S., Cui, J., Liang, L., Ji, Y., Han, Z. B., Fang, X., & Han, Z. C. (2013). Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death & Disease, 4, e950.Google Scholar
  33. 33.
    Otte, A., Bucan, V., Reimers, K., & Hass, R. (2013). Mesenchymal stem cells maintain long-term in vitro stemness during explant culture. Tissue Engineering Part C: Methods, 19(12), 937–948.Google Scholar
  34. 34.
    Okolicsanyi, R. K., Camilleri, E. T., Oikari, L. E., Yu, C., Cool, S. M., & van Wijnen, A. (2015). Human mesenchymal stem cells retain multilineage differentiation capacity including neural marker expression after extended in vitro expansion. PLoS One, 10, e0137255.Google Scholar
  35. 35.
    Lin, G., Liu, G., Banie, L., Wang, G., Ning, H., Lue, T. F., & Lin, C. S. (2011). Tissue distribution of mesenchymal stem cell marker Stro-1. Stem Cells and Development, 20(10), 1747–1752.Google Scholar
  36. 36.
    Faghih, H., Javeri, A., & Taha, M. F. (2017). Impact of early subcultures on stemness, migration and angiogenic potential of adipose tissue-derived stem cells and their resistance to in vitro ischemic condition. Cytotechnology, 69(6), 885–900.Google Scholar
  37. 37.
    Katsiani, E., Garas, A., Skentou, C., Tsezou, A., Messini, C. I., Dafopoulos, K., Daponte, A., & Messinis, I. E. (2016). Chorionic villi derived mesenchymal like stem cells and expression of embryonic stem cells markers during long-term culturing. Cell and Tissue Banking, 17(3), 517–529.Google Scholar
  38. 38.
    Bhartiya, D., Shaikh, A., Anand, S., Patel, H., Kapoor, S., Sriraman, K., Parte, S., & Unni, S. (2016). Endogenous, very small embryonic-like stem cells: Critical review, therapeutic potential and a look ahead. Human Reproduction Update, 23(1), 41–76.Google Scholar
  39. 39.
    Roche, S., Delorme, B., Oostendorp, R. A., Barbet, R., Caton, D., Noel, D., et al. (2009). Comparative proteomic analysis of human mesenchymal and embryonic stem cells: Towards the definition of a mesenchymal stem cell proteomic signature. Proteomics, 9(2), 223–232.Google Scholar
  40. 40.
    Maleki, M., Ghanbarvand, F., Reza Behvarz, M., Ejtemaei, M., & Ghadirkhomi, E. (2014). Comparison of mesenchymal stem cell markers in multiple human adult stem cells. International Journal of Stem Cells, 7(2), 118–126.Google Scholar
  41. 41.
    Kadakia, R., Arraztoa, J. A., Bondy, C., & Zhou, J. (2001). Granulosa cell proliferation is impaired in the Igf1 null ovary. Growth Hormone & IGF Research, 11(4), 220–224.Google Scholar
  42. 42.
    Brankin, V., Quinn, R. L., Webb, R., & Hunter, M. G. (2005). BMP-2 and -6 modulate porcine theca cell function alone and co-cultured with granulosa cells. Domest Animal Endocrinology, 29(4), 593–604.Google Scholar
  43. 43.
    Wang, C., Lv, X., Jiang, C., Cordes, C. M., Fu, L., Lele, S. M., & Davis, J. S. (2012). Transforming growth factor alpha (TGFα) regulates granulosa cell tumor (GCT) cell proliferation and migration through activation of multiple pathways. PLoS One, 7, e48299.Google Scholar
  44. 44.
    Stapp, A. D., Gómez, B. I., Gifford, C. A., Hallford, D. M., & Hernandez Gifford, J. A. (2014). Canonical WNT signaling inhibits follicle stimulating hormone mediated steroidogenesis in primary cultures of rat granulosa cells. PLoS One, 9, e86432.Google Scholar
  45. 45.
    Liu, C., Tsai, A. L., Li, P. C., Huang, C. W., & Wu, C. C. (2017). Endothelial differentiation of bone marrow mesenchyme stem cells applicable to hypoxia and increased migration through Akt and NFκB signals. Stem Cell Research & Therapy, 8(1), 29.Google Scholar
  46. 46.
    Song, B. Q., Chi, Y., Li, X., Du, W. J., Han, Z. B., Tian, J. J., et al. (2015). Inhibition of Notch signaling promotes the Adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/AKT/mTOR pathway. Cellular Physiology and Biochemistry, 36(5), 1991–2002.Google Scholar
  47. 47.
    Zheng, S., Zhou, H., Chen, Z., Li, Y., Zhou, T., Lian, C., et al. (2018). Type III transforming growth factor-β receptor RNA interference enhances transforming growth factor β3-induced chondrogenesis signaling in human mesenchymal stem cells. Stem Cells International, 2018, 4180857.Google Scholar
  48. 48.
    Rivera-Cruz, C. M., Shearer, J. J., Figueiredo Neto, M., & Figueiredo, M. L. (2017). The immunomodulatory effects of mesenchymal stem cell polarization within the tumor microenvironment niche. Stem Cells International, 2017, 4015039.Google Scholar
  49. 49.
    Yang, Y. K., Ogando, C. R., Wang See, C., Chang, T. Y., & Barabino, G. A. (2018). Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Research & Therapy, 9(1), 131.Google Scholar
  50. 50.
    Riva, F., Omes, C., Bassani, R., Nappi, R. E., Mazzini, G., Icaro Cornaglia, A., & Casasco, A. (2014). In-vitro culture system for mesenchymal progenitor cells derived from waste human ovarian follicular fluid. Reproductive Biomedicine Online, 29(4), 457–469.Google Scholar
  51. 51.
    Shan, T., Liu, J., Wu, W., Xu, Z., & Wang, Y. (2017). Roles of Notch signaling in adipocyte progenitor cells and mature adipocytes. Journal of Cellular Physiology, 232(6), 1258–1261.Google Scholar
  52. 52.
    Siersbaek, R., Nielsen, R., & Mandrup, S. (2010). PPARgamma in adipocyte differentiation and metabolism--novel insights from genome-wide studies. FEBS Letters, 584(15), 3242–3249.Google Scholar
  53. 53.
    Ge, C., Cawthorn, W. P., Li, Y., Zhao, G., Macdougald, O. A., & Franceschi, R. T. (2016). Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP kinase phosphorylation of runx2 and PPARγ transcription factors. Journal of Cellular Physiology, 231(3), 587–596.Google Scholar
  54. 54.
    de Girolamo, L., Lopa, S., Arrigoni, E., Sartori, M. F., Baruffaldi Preis, F. W., & Brini, A. T. (2009). Human adipose-derived stem cells isolated from young and elderly women: Their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy, 11(6), 793–803.Google Scholar
  55. 55.
    Choi, J. S., Lee, B. J., Park, H. Y., Song, J. S., Shin, S. C., Lee, J. C., Wang, S. G., & Jung, J. S. (2015). Effects of donor age, long-term passage culture, and cryopreservation on tonsil-derived mesenchymal stem cells. Cellular Physiology and Biochemistry, 36(1), 85–99.Google Scholar
  56. 56.
    Prager, P., Kunz, M., Ebert, R., Klein-Hitpass, L., Sieker, J., Barthel, T., Jakob, F., Konrads, C., & Steinert, A. (2018). Mesenchymal stem cells isolated from the anterior cruciate ligament: Characterization and comparison of cells from young and old donors. Knee Surgery & Related Research, 30(3), 193–205.Google Scholar
  57. 57.
    Markovic, B. S., Kanjevac, T., Harrell, C. R., Gazdic, M., Fellabaum, C., Arsenijevic, N., & Volarevic, V. (2018). Molecular and cellular mechanisms involved in mesenchymal stem cell-based therapy of inflammatory bowel diseases. Stem Cell Reviews and Reports, 14(2), 153–165.Google Scholar
  58. 58.
    Čamernik, K., Barlič, A., Drobnič, M., Marc, J., Jeras, M., & Zupan, J. (2018). Mesenchymal stem cells in the musculoskeletal system: From animal models to human tissue regeneration? Stem Cell Reviews and Reports, 14(3), 346–369.Google Scholar
  59. 59.
    Mahmoud, M., Abu-Shahba, N., Azmy, O., & El-Badri, N. (2019). Impact of diabetes mellitus on human mesenchymal stromal cell biology and functionality: Implications for autologous transplantation. Stem Cell Reviews and Reports, 15(2), 194–217.Google Scholar
  60. 60.
    Bhartiya, D. (2017). Letter to the editor: Rejuvenate eggs or regenerate ovary? Molecular and Cellular Endocrinology, 446, 111–113.Google Scholar
  61. 61.
    Bhartiya, D., Anand, S., Patel, H., & Parte, S. (2017). Making gametes from alternate sources of stem cells: Past, present and future. Reproductive Biology and Endocrinology, 15(1), 89.Google Scholar
  62. 62.
    Fazeli, Z., Abedindo, A., Omrani, M. D., & Ghaderian, S. M. H. (2018). Mesenchymal stem cells (MSCs) therapy for recovery of fertility: A systematic review. Stem Cell Reviews and Reports, 14(1), 1–12.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Irma Virant-Klun
    • 1
    Email author
  • S. Omejec
    • 2
  • M. Stimpfel
    • 1
  • P. Skerl
    • 3
  • S. Novakovic
    • 3
  • N. Jancar
    • 1
  • E. Vrtacnik-Bokal
    • 1
  1. 1.Department of Obstetrics and GynaecologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
  2. 2.Blood Transfusion Centre of SloveniaLjubljanaSlovenia
  3. 3.Department of Molecular DiagnosticsInstitute of Oncology LjubljanaLjubljanaSlovenia

Personalised recommendations