Advertisement

Stem Cell Reviews and Reports

, Volume 15, Issue 4, pp 590–600 | Cite as

Human Endothelial Colony Forming Cells Express Intracellular CD133 that Modulates their Vasculogenic Properties

  • Elisa Rossi
  • Sonia Poirault-Chassac
  • Ivan Bieche
  • Richard Chocron
  • Anne Schnitzler
  • Anna Lokajczyk
  • Pierre Bourdoncle
  • Blandine Dizier
  • Nour C. Bacha
  • Nicolas Gendron
  • Adeline Blandinieres
  • Coralie L. Guerin
  • Pascale Gaussem
  • David M. SmadjaEmail author
Article

Abstract

Stem cells at the origin of endothelial progenitor cells and in particular endothelial colony forming cells (ECFCs) subtype have been largely supposed to be positive for the CD133 antigen, even though no clear correlation has been established between its expression and function in ECFCs. We postulated that CD133 in ECFCs might be expressed intracellularly, and could participate to vasculogenic properties. ECFCs extracted from cord blood were used either fresh (n = 4) or frozen (n = 4), at culture days <30, to investigate the intracellular presence of CD133 by flow cytometry and confocal analysis. Comparison with HUVEC and HAEC mature endothelial cells was carried out. Then, CD133 was silenced in ECFCs using specific siRNA (siCD133-ECFCs) or scramble siRNA (siCtrl-ECFCs). siCD133-ECFCs (n = 12), siCtrl-ECFCs (n = 12) or PBS (n = 12) were injected in a hind-limb ischemia nude mouse model and vascularization was quantified at day 14 with H&E staining and immunohistochemistry for CD31. Results of flow cytometry and confocal microscopy evidenced the positivity of CD133 in ECFCs after permeabilization compared with not permeabilized ECFCs (p < 0.001) and mature endothelial cells (p < 0.03). In the model of mouse hind-limb ischemia, silencing of CD133 in ECFCs significantly abolished post-ischemic revascularization induced by siCtrl-ECFCs; indeed, a significant reduction in cutaneous blood flows (p = 0.03), capillary density (CD31) (p = 0.01) and myofiber regeneration (p = 0.04) was observed. Also, a significant necrosis (p = 0.02) was observed in mice receiving siCD133-ECFCs compared to those treated with siCtrl-ECFCs. In conclusion, our work describes for the first time the intracellular expression of the stemness marker CD133 in ECFCs. This feature could resume the discrepancies found in the literature concerning CD133 positivity and ontogeny in endothelial progenitors.

Keywords

Endothelial progenitor Endothelial colony forming cells ECFC CD133 Prominin-1 Stem cells Stemness Angiogenesis 

Notes

Acknowledgments

This work was supported by grants from the PROMEX STIFTUNG FUR DIE FORSCHUNG foundation that we deeply thank. We thank all people involved in Animal Platform, CRP2 - UMS 3612 CNRS - US25 Inserm-IRD – Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.

Author Contributions

ER performed the experiments, acquired and analysed the data; and prepared manuscript. SCP, AS, AL, PB, BD, NCB, NG, AB performed the experiments and acquired the data. RC analysed data and performed statistical analysis. IB, CLG and PG participated to coordination and edited the manuscript. DMS analysed the data, conceived the study, participated in its coordination and wrote the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of Interest

Authors declare no conflict of interest related to this work.

Supplementary material

12015_2019_9881_MOESM1_ESM.mp4 (1.3 mb)
ESM 1 (MP4 1330 kb)
12015_2019_9881_MOESM2_ESM.mp4 (4.7 mb)
ESM 2 (MP4 4832 kb)

References

  1. 1.
    Silvestre, J. S., Smadja, D. M., & Levy, B. I. (2013 Oct). Postischemic revascularization: From cellular and molecular mechanisms to clinical applications. Physiological Reviews, 93(4), 1743–1802.PubMedGoogle Scholar
  2. 2.
    Leal V, Ribeiro CF, Oliveiros B, Antonio N, Silva S. Intrinsic vascular repair by endothelial progenitor cells in acute coronary syndromes: An update overview. Stem Cell Reviews 2018 Oct 22.Google Scholar
  3. 3.
    Pysna A, Bem R, Nemcova A, Fejfarova V, Jirkovska A, Hazdrova J, et al. Endothelial progenitor cells biology in diabetes mellitus and peripheral arterial disease and their therapeutic potential. Stem Cell Reviews 2018 Nov 9.Google Scholar
  4. 4.
    Diez, M., Musri, M. M., Ferrer, E., Barbera, J. A., & Peinado, V. I. (2010 Dec 1). Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFbetaRI. Cardiovascular Research, 88(3), 502–511.PubMedGoogle Scholar
  5. 5.
    Smadja, D. M., Bieche, I., Silvestre, J. S., Germain, S., Cornet, A., Laurendeau, I., et al. (2008 Dec). Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(12), 2137–2143.PubMedGoogle Scholar
  6. 6.
    Guillevic, O., Ferratge, S., Pascaud, J., Driancourt, C., Boyer-Di-Ponio, J., & Uzan, G. (2016). A novel molecular and functional Stemness signature assessing human cord blood-derived endothelial progenitor cell immaturity. PLoS One, 11(4), e0152993.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gehling, U. M., Ergun, S., Schumacher, U., Wagener, C., Pantel, K., Otte, M., et al. (2000 May 15). In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood., 95(10), 3106–3112.PubMedGoogle Scholar
  8. 8.
    Corbeil, D., Roper, K., Fargeas, C. A., Joester, A., & Huttner, W. B. (2001 Feb). Prominin: A story of cholesterol, plasma membrane protrusions and human pathology. Traffic., 2(2), 82–91.PubMedGoogle Scholar
  9. 9.
    Yin, A. H., Miraglia, S., Zanjani, E. D., Almeida-Porada, G., Ogawa, M., Leary, A. G., et al. (1997 Dec 15). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood., 90(12), 5002–5012.Google Scholar
  10. 10.
    Glumac, P. M., & LeBeau, A. M. (2018 Jul 9). The role of CD133 in cancer: A concise review. Clinical and Translational Medicine, 7(1), 18.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Guerin, C. L., Loyer, X., Vilar, J., Cras, A., Mirault, T., Gaussem, P., Silvestre, J. S., & Smadja, D. M. (2015 May). Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: Evidence of vasculogenic potential. Thrombosis and Haemostasis, 113(5), 1084–1094.PubMedGoogle Scholar
  12. 12.
    Smadja, D. M. (2017 Apr). Bone marrow very small embryonic-like stem cells: New generation of autologous cell therapy soon ready for prime time? Stem Cell Reviews, 13(2), 198–201.Google Scholar
  13. 13.
    Smadja, D. M., Guerin, C. L., Boscolo, E., Bieche, I., Mulliken, J. B., & Bischoff, J. (2014 Mar). alpha6-integrin is required for the adhesion and vasculogenic potential of hemangioma stem cells. Stem Cells, 32(3), 684–693.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Smadja, D. M., & Mulliken, J. B. (2012 Dec). Bischoff J. E-selectin mediates stem cell adhesion and formation of blood vessels in a murine model of infantile hemangioma. The American Journal of Pathology, 181(6), 2239–2247.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Bacha, N. C., Blandinieres, A., Rossi, E., Gendron, N., Nevo, N., Lecourt, S., et al. (2017 Apr). Endothelial microparticles are associated to pathogenesis of idiopathic pulmonary fibrosis. Stem Cell Reviews, 14(2), 223–235.Google Scholar
  16. 16.
    Blandinieres, A., Gille, T., Sadoine, J., Bieche, I., Slimani, L., Dizier, B., et al. (2018 Dec). Endothelial Colony-forming cells do not participate to Fibrogenesis in a bleomycin-induced pulmonary fibrosis model in nude mice. Stem Cell Reviews, 14(6), 812–822.Google Scholar
  17. 17.
    d'Audigier, C., Susen, S., Blandinieres, A., Mattot, V., Saubamea, B., Rossi, E., et al. (2018 Feb). Egfl7 represses the Vasculogenic potential of human endothelial progenitor cells. Stem Cell Reviews, 14(1), 82–91.Google Scholar
  18. 18.
    Smadja, D. M., Bieche, I., Helley, D., Laurendeau, I., Simonin, G., Muller, L., et al. (2007 Sep-Oct). Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). Journal of Cellular and Molecular Medicine, 11(5), 1149–1161.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Cochain, C., Rodero, M. P., Vilar, J., Recalde, A., Richart, A. L., Loinard, C., Zouggari, Y., Guerin, C., Duriez, M., Combadiere, B., Poupel, L., Levy, B. I., Mallat, Z., Combadiere, C., & Silvestre, J. S. (2010 Oct 1). Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization. Cardiovascular Research, 88(1), 186–195.PubMedGoogle Scholar
  20. 20.
    Rossi, E., Goyard, C., Cras, A., Dizier, B., Bacha, N., Lokajczyk, A., Guerin, C., Gendron, N., Planquette, B., Mignon, V., Bernabeu, C., Sanchez, O., & Smadja, D. (2017 Oct 5). Co-injection of mesenchymal stem cells with endothelial progenitor cells accelerates muscle recovery in hind limb ischemia through an endoglin-dependent mechanism. Thrombosis and Haemostasis, 117(10), 1908–1918.PubMedGoogle Scholar
  21. 21.
    Willett, C. G., Schiller, A. L., Suit, H. D., Mankin, H. J., & Rosenberg, A. (1987 Oct 01). The histologic response of soft tissue sarcoma to radiation therapy. Cancer., 60(7), 1500–1504.PubMedGoogle Scholar
  22. 22.
    Bompais, H., Chagraoui, J., Canron, X., Crisan, M., Liu, X. H., Anjo, A., et al. (2004 Apr 1). Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood., 103(7), 2577–2584.PubMedGoogle Scholar
  23. 23.
    Smadja, D. M., Bieche, I., Uzan, G., Bompais, H., Muller, L., Boisson-Vidal, C., et al. (2005 Nov). PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(11), 2321–2327.PubMedGoogle Scholar
  24. 24.
    Kanayasu-Toyoda, T., Tanaka, T., Kikuchi, Y., Uchida, E., Matsuyama, A., & Yamaguchi, T. (2016 May). Cell-surface MMP-9 protein is a novel functional marker to identify and separate proangiogenic cells from early endothelial progenitor cells derived from CD133(+) cells. Stem Cells, 34(5), 1251–1262.PubMedGoogle Scholar
  25. 25.
    Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., Crystal, R. G., Besmer, P., Lyden, D., Moore, M. A. S., Werb, Z., & Rafii, S. (2002 May 31). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell., 109(5), 625–637.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Li, W. D., Li, N. P., Song, D. D., Rong, J. J., Qian, A. M., & Li, X. Q. (2017 May). Metformin inhibits endothelial progenitor cell migration by decreasing matrix metalloproteinases, MMP-2 and MMP-9, via the AMPK/mTOR/autophagy pathway. International Journal of Molecular Medicine, 39(5), 1262–1268.PubMedGoogle Scholar
  27. 27.
    van Hinsbergh, V. W., Engelse, M. A., & Quax, P. H. (2006 Apr). Pericellular proteases in angiogenesis and vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(4), 716–728.PubMedGoogle Scholar
  28. 28.
    Hur, J., Yoon, C. H., Kim, H. S., Choi, J. H., Kang, H. J., Hwang, K. K., Oh, B. H., Lee, M. M., & Park, Y. B. (2004 Feb). Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(2), 288–293.PubMedGoogle Scholar
  29. 29.
    Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., Li, T., Isner, J. M., & Asahara, T. (2000 Mar 28). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3422–3427.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Urbich, C., Heeschen, C., Aicher, A., Sasaki, K., Bruhl, T., Farhadi, M. R., Vajkoczy, P., Hofmann, W. K., Peters, C., Pennacchio, L. A., Abolmaali, N. D., Chavakis, E., Reinheckel, T., Zeiher, A. M., & Dimmeler, S. (2005 Feb). Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nature Medicine, 11(2), 206–213.PubMedGoogle Scholar
  31. 31.
    Ingram, D. A., Mead, L. E., Tanaka, H., Meade, V., Fenoglio, A., Mortell, K., et al. (2004 Nov 1). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 104(9), 2752–2760.PubMedGoogle Scholar
  32. 32.
    Smadja, D. M., Bieche, I., Emmerich, J., Aiach, M., & Gaussem, P. (2006 Dec). PAR-1 activation has different effects on the angiogenic activity of endothelial progenitor cells derived from human adult and cord blood. Journal of Thrombosis and Haemostasis, 4(12), 2729–2731.PubMedGoogle Scholar
  33. 33.
    He, T., Peterson, T. E., Holmuhamedov, E. L., Terzic, A., Caplice, N. M., Oberley, L. W., & Katusic, Z. S. (2004 Nov). Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(11), 2021–2027.PubMedGoogle Scholar
  34. 34.
    Case, J., Mead, L. E., Bessler, W. K., Prater, D., White, H. A., Saadatzadeh, M. R., Bhavsar, J. R., Yoder, M. C., Haneline, L. S., & Ingram, D. A. (2007 Jul). Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Experimental Hematology, 35(7), 1109–1118.PubMedGoogle Scholar
  35. 35.
    Timmermans, F., Van Hauwermeiren, F., De Smedt, M., Raedt, R., Plasschaert, F., De Buyzere, M. L., et al. (2007 Jul). Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(7), 1572–1579.PubMedGoogle Scholar
  36. 36.
    Tasev, D., Konijnenberg, L. S., Amado-Azevedo, J., van Wijhe, M. H., Koolwijk, P., & van Hinsbergh, V. W. (2016 Jul). CD34 expression modulates tube-forming capacity and barrier properties of peripheral blood-derived endothelial colony-forming cells (ECFCs). Angiogenesis, 19(3), 325–338.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Ferreras, C., Cole, C. L., Urban, K., Jayson, G. C., & Avizienyte, E. (2015 Jan). Segregation of late outgrowth endothelial cells into functional endothelial CD34- and progenitor-like CD34+ cell populations. Angiogenesis., 18(1), 47–68.PubMedGoogle Scholar
  38. 38.
    Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., et al. (2000 Feb 1). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood., 95(3), 952–958.PubMedGoogle Scholar
  39. 39.
    Shi, M., Ishikawa, M., Kamei, N., Nakasa, T., Adachi, N., Deie, M., Asahara, T., & Ochi, M. (2009 Apr). Acceleration of skeletal muscle regeneration in a rat skeletal muscle injury model by local injection of human peripheral blood-derived CD133-positive cells. Stem Cells, 27(4), 949–960.PubMedGoogle Scholar
  40. 40.
    Wojakowski, W., Jadczyk, T., Michalewska-Wludarczyk, A., Parma, Z., Markiewicz, M., Rychlik, W., et al. (2017 Feb 17). Effects of Transendocardial delivery of bone marrow-derived CD133(+) cells on left ventricle perfusion and function in patients with refractory angina: Final results of randomized, double-blinded, placebo-controlled REGENT-VSEL trial. Circulation Research, 120(4), 670–680.PubMedGoogle Scholar
  41. 41.
    Jadczyk, T., Ciosek, J., Michalewska-Wludarczyk, A., Szot, W., Parma, Z., Ochala, B., Markiewicz, M., Rychlik, W., Kostkiewicz, M., Gruszczynska, K., Blach, A., Dzierzak-Mietla, M., Rzeszutko, L., Partyka, L., Zasada, W., Smolka, G., Pawlowski, T., Jedrzejek, M., Starek, Z., Plens, K., Ochala, A., Tendera, M., & Wojakowski, W. (2018). Effects of trans-endocardial delivery of bone marrow-derived CD133+ cells on angina and quality of life in patients with refractory angina: A sub-analysis of the REGENT-VSEL trial. Cardiology Journal, 25(4), 521–529.PubMedGoogle Scholar
  42. 42.
    Adler, D. S., Lazarus, H., Nair, R., Goldberg, J. L., Greco, N. J., Lassar, T., et al. (2011 Jan 1). Safety and efficacy of bone marrow-derived autologous CD133+ stem cell therapy. Frontiers in Bioscience (Elite Edition), 3, 506–514.Google Scholar
  43. 43.
    Steinhoff, G., Nesteruk, J., Wolfien, M., Kundt, G., Borgermann, J., David, R., et al. (2017 Aug). Cardiac function improvement and bone marrow response -: Outcome analysis of the randomized PERFECT phase III clinical trial of Intramyocardial CD133(+) application after myocardial infarction. EBioMedicine., 22, 208–224.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Boscolo, E., & Bischoff, J. (2009). Vasculogenesis in infantile hemangioma. Angiogenesis., 12(2), 197–207.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Ratajczak, M. Z., Ratajczak, J., Suszynska, M., Miller, D. M., Kucia, M., & Shin, D. M. (2017 Jan 06). A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circulation Research, 120(1), 166–178.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Guerin, C. L., Rossi, E., Saubamea, B., Cras, A., Mignon, V., Silvestre, J. S., & Smadja, D. M. (2017 Aug). Human very small embryonic-like cells support vascular maturation and therapeutic revascularization induced by endothelial progenitor cells. Stem Cell Reviews, 13(4), 552–560.Google Scholar
  47. 47.
    Zhang, S., Zhao, L., Wang, J., Chen, N., Yan, J., & Pan, X. (2017 Jan 12). HIF-2alpha and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts. Cell Death & Disease, 8(1), e2548.Google Scholar
  48. 48.
    Bruno, S., Bussolati, B., Grange, C., Collino, F., Graziano, M. E., Ferrando, U., & Camussi, G. (2006 Dec). CD133+ renal progenitor cells contribute to tumor angiogenesis. The American Journal of Pathology, 169(6), 2223–2235.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Adini, A., Adini, I., Ghosh, K., Benny, O., Pravda, E., Hu, R., Luyindula, D., & D’Amato, R. J. (2013 Apr). The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action. Angiogenesis., 16(2), 405–416.PubMedGoogle Scholar
  50. 50.
    Corbeil, D., Roper, K., Hellwig, A., Tavian, M., Miraglia, S., Watt, S. M., et al. (2000 Feb 25). The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. The Journal of Biological Chemistry, 275(8), 5512–5520.PubMedGoogle Scholar
  51. 51.
    Mauge, L., Sabatier, F., Boutouyrie, P., D'Audigier, C., Peyrard, S., Bozec, E., Blanchard, A., Azizi, M., Dizier, B., Dignat-George, F., Gaussem, P., & Smadja, D. M. (2014 Feb). Forearm ischemia decreases endothelial colony-forming cell angiogenic potential. Cytotherapy, 16(2), 213–224.PubMedGoogle Scholar
  52. 52.
    Smadja, D. M., Mauge, L., Nunes, H., d'Audigier, C., Juvin, K., Borie, R., et al. (2013 Jan). Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis, 16(1), 147–157.PubMedGoogle Scholar
  53. 53.
    Smadja, D. M., Mauge, L., Gaussem, P., d'Audigier, C., Israel-Biet, D., Celermajer, D. S., et al. (2011 Mar). Treprostinil increases the number and angiogenic potential of endothelial progenitor cells in children with pulmonary hypertension. Angiogenesis, 14(1), 17–27.PubMedGoogle Scholar
  54. 54.
    Nagano, M., Yamashita, T., Hamada, H., Ohneda, K., Kimura, K., Nakagawa, T., Shibuya, M., Yoshikawa, H., & Ohneda, O. (2007 Jul 1). Identification of functional endothelial progenitor cells suitable for the treatment of ischemic tissue using human umbilical cord blood. Blood, 110(1), 151–160.PubMedGoogle Scholar
  55. 55.
    Smadja, D. M., d'Audigier, C., Bieche, I., Evrard, S., Mauge, L., Dias, J. V., et al. (2011 Mar). Thrombospondin-1 is a plasmatic marker of peripheral arterial disease that modulates endothelial progenitor cell angiogenic properties. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(3), 551–559.PubMedGoogle Scholar
  56. 56.
    Kang M, Kim S, Ko J. Roles of CD133 in microvesicle formation and oncoprotein trafficking in colon cancer. The FASEB Journal 2018 Dec 6:fj201802018R.Google Scholar
  57. 57.
    Singer, D., Thamm, K., Zhuang, H., Karbanova, J., Gao, Y., Walker, J. V., et al. (2018 Dec 6). Prominin-1 controls stem cell activation by orchestrating ciliary dynamics. The EMBO Journal.Google Scholar
  58. 58.
    Thamm, K., Simaite, D., Karbanova, J., Bermudez, V., Reichert, D., Morgenstern, A., et al. (2019 Jan). Prominin-1 (CD133) modulates the architecture and dynamics of microvilli. Traffic, 20(1), 39–60.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elisa Rossi
    • 1
    • 2
  • Sonia Poirault-Chassac
    • 1
    • 2
  • Ivan Bieche
    • 1
    • 3
  • Richard Chocron
    • 1
    • 4
    • 5
  • Anne Schnitzler
    • 3
  • Anna Lokajczyk
    • 1
    • 2
  • Pierre Bourdoncle
    • 6
  • Blandine Dizier
    • 1
    • 2
  • Nour C. Bacha
    • 1
    • 2
  • Nicolas Gendron
    • 1
    • 2
    • 7
  • Adeline Blandinieres
    • 1
    • 2
    • 7
  • Coralie L. Guerin
    • 1
    • 2
    • 8
  • Pascale Gaussem
    • 1
    • 2
    • 7
  • David M. Smadja
    • 1
    • 2
    • 7
    • 9
    Email author
  1. 1.Sorbonne Paris CitéUniversité Paris DescartesParisFrance
  2. 2.Inserm UMR-S1140ParisFrance
  3. 3.Department of genetics, Pharmacogenomics UnitInstitut CurieParisFrance
  4. 4.Inserm UMR-S970ParisFrance
  5. 5.AP-HP, Emergency Medicine DepartmentHôpital Européen Georges PompidouParisFrance
  6. 6.Plate-forme IMAG’IC Institut Cochin Inserm U1016-CNRS UMR8104Université Paris DescartesParisFrance
  7. 7.AP-HP, Hematology DepartmentHôpital Européen Georges PompidouParisFrance
  8. 8.Cytometry UnitInstitut CurieParisFrance
  9. 9.Laboratory of Biosurgical Research, Carpentier FoundationHôpital Européen Georges PompidouParisFrance

Personalised recommendations