Advertisement

Cellular Based Strategies for Microvascular Engineering

  • Srinivas V. KoduruEmail author
  • Ashley N. Leberfinger
  • Denis Pasic
  • Anoosha Forghani
  • Shane Lince
  • Daniel J. Hayes
  • Ibrahim T. Ozbolat
  • Dino J. RavnicEmail author
Article
  • 34 Downloads

Abstract

Vascularization is a major hurdle in complex tissue and organ engineering. Tissues greater than 200 μm in diameter cannot rely on simple diffusion to obtain nutrients and remove waste. Therefore, an integrated vascular network is required for clinical translation of engineered tissues. Microvessels have been described as <150 μm in diameter, but clinically they are defined as <1 mm. With new advances in super microsurgery, vessels less than 1 mm can be anastomosed to the recipient circulation. However, this technical advancement still relies on the creation of a stable engineered microcirculation that is amenable to surgical manipulation and is readily perfusable. Microvascular engineering lays on the crossroads of microfabrication, microfluidics, and tissue engineering strategies that utilize various cellular constituents. Early research focused on vascularization by co-culture and cellular interactions, with the addition of angiogenic growth factors to promote vascular growth. Since then, multiple strategies have been utilized taking advantage of innovations in additive manufacturing, biomaterials, and cell biology. However, the anatomy and dynamics of native blood vessels has not been consistently replicated. Inconsistent results can be partially attributed to cell sourcing which remains an enigma for microvascular engineering. Variations of endothelial cells, endothelial progenitor cells, and stem cells have all been used for microvascular network fabrication along with various mural cells. As each source offers advantages and disadvantages, there continues to be a lack of consensus. Furthermore, discord may be attributed to incomplete understanding about cell isolation and characterization without considering the microvascular architecture of the desired tissue/organ.

Keywords

Endothelial progenitor cells EPCs Adipose tissue ADSCs CD34+ Microvessel fragments Angiogenesis Vasculogenesis Vascularization iPSCs Adult stem cells MSCs 

Abbreviations

AdEPC

Adipose derived EPC

ANG

Angiopoietin

AVL

Arteriovenous loop

bFGF

Basic fibroblast growth factor

BM

Bone marrow

Dll4

Delta-like 4

DMVEC

Dermal microvascular endothelial cell

EB

Embryoid body

EC

Endothelial cell

ECFC

Endothelial colony forming cell

ECM

Extracellular membrane

eNOS

Endothelial nitric oxide synthase

EPC

Endothelial progenitor cell

ESC

Embryonic stem cell

FGF

Fibroblast growth factor

FLK-1

Fetal liver kinase-1

HA

Hydroxyapatite

HGF

Hepatocyte growth factor

HIF

Hypoxia-inducible factor

HUVEC

Human umbilical vein umbilical cell

iPSC

Induced pluripotent stem cell

MC

Methylcellulose

MF

Microvessel fragment

MMP

Matrix metalloproteinase

MSC

Mesenchymal stem cell

NHLF

Normal human lung fibroblast

PCL

Polycaprolactone

PDMS

Polydimethylsiloxane

PECAM

Platelet endothelial cell adhesion molecule

PEG

Poly ethylene glycol

PLGA

Poly(lactide-co-glycolide)

PNIPAAm

Poly n-isopropyl acrylamide

SMA

Smooth muscle actin

SVF

Stromal vascular fraction

TCP

Tri-calcium phosphate

TGF

Transforming growth factor

TIMP

Tissue inhibitor of metalloproteinase

VE

Vascular endothelial

VEGF

Vascular endothelial growth factor

VEGFR

Vascular endothelial growth factor receptor

vWF

von Willebrand factor

Notes

Acknowledgements

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under BIRCWH award # K12HD055882 “Career Development Program in Women’s Health Research at Penn State”, the American Association of Plastic Surgeons Research Scholar Award, and a Penn State Junior Faculty Research Scholar Award (PA Tobacco Settlement Fund).

Compliance with ethical standards

Conflict of interests

Authors declare no conflict of interests.

References

  1. 1.
    Chim, H., Amer, H., Mardini, S., & Moran, S. L. (2014). Vascularized composite allotransplant in the realm of regenerative plastic surgery. Mayo Clinic Proceedings, 89, 1009–1020.CrossRefPubMedGoogle Scholar
  2. 2.
    Rouwkema, J., Rivron, N. C., & van Blitterswijk, C. A. (2008). Vascularization in tissue engineering. Trends in Biotechnology, 26, 434–441.CrossRefPubMedGoogle Scholar
  3. 3.
    Shanbhag, S., Pandis, N., Mustafa, K., Nyengaard, J. R., & Stavropoulos, A. (2017). Cell Cotransplantation Strategies for Vascularized Craniofacial Bone Tissue Engineering: A Systematic Review and Meta-Analysis of Preclinical In Vivo Studies. Tissue Engineering Part B: Reviews, 23, 11–117.Google Scholar
  4. 4.
    Phelps, E. A., & García, A. J. (2010). Engineering more than a cell: vascularization strategies in tissue engineering. Current Opinion in Biotechnology, 21, 704–709.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lovett, M., Lee, K., Edwards, A., & Kaplan, D. L. (2009). Vascularization strategies for tissue engineering. Tissue engineering Part B, Reviews, 15, 353–370.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cade, W. T. (2008). Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Physical Therapy, 88, 1322–1335.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Marinescu, M. A., Löffler, A. I., Ouellette, M., Smith, L., Kramer, C. M., & Bourque, J. M. (2015). Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC: Cardiovascular Imaging, 8, 210–220.PubMedGoogle Scholar
  8. 8.
    Weitz, J. I., Byrne, J., Clagett, G. P., et al. (1996). Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation, 94, 3026–3049.CrossRefPubMedGoogle Scholar
  9. 9.
    Freisinger, E., Malyar, N. M., Reinecke, H., & Lawall, H. (2017). Impact of diabetes on outcome in critical limb ischemia with tissue loss: a large-scaled routine data analysis. Cardiovascular Diabetology, 16, 41.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sun, X., Altalhi, W., & Nunes, S. S. (2016). Vascularization strategies of engineered tissues and their application in cardiac regeneration. Advanced Drug Delivery Reviews, 96, 183–194.CrossRefPubMedGoogle Scholar
  11. 11.
    Al-Lamki, R. S., Bradley, J. R., & Pober, J. S. (2008). Endothelial cells in allograft rejection. Transplantation, 86, 1340–1348.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bae, H., Puranik, A. S., Gauvin, R., et al. (2012). Building vascular networks. Science Translational Medicine, 4, 160ps23.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Risau, W., & Lemmon, V. (1988). Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Developmental Biology, 125, 441–450.CrossRefPubMedGoogle Scholar
  14. 14.
    Eichmann A, Bouvrée K, Pardanaud L. Vasculogenesis and Angiogenesis in Development. In: Marmé D, Fusenig N, (Ed) Tumor Angiogenesis: Basic Mechanisms and Cancer Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008:31-45.CrossRefGoogle Scholar
  15. 15.
    Chung, A. S., & Ferrara, N. (2011). Developmental and pathological angiogenesis. Annual Review of Cell and Developmental Biology, 27, 563–584.CrossRefPubMedGoogle Scholar
  16. 16.
    Goldie, L. C., Nix, M. K., & Hirschi, K. K. (2008). Embryonic vasculogenesis and hematopoietic specification. Organogenesis, 4, 257–263.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Patel-Hett, S., & D’Amore, P. A. (2011). Signal transduction in vasculogenesis and developmental angiogenesis. The International Journal of Developmental Biology, 55, 353.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Garcia, M. D., & Larina, I. V. (2014). Vascular development and hemodynamic force in the mouse yolk sac. Frontiers in Physiology, 5, 308.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Gerhardt, H., Golding, M., Fruttiger, M., et al. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of Cell Biology, 161, 1163–1177.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Urbich, C., & Dimmeler, S. (2004). Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research, 95, 343–353.CrossRefGoogle Scholar
  21. 21.
    Lee, S., Chen, T. T., Barber, C. L., et al. (2007). Autocrine VEGF signaling is required for vascular homeostasis. Cell, 130, 691–703.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shibuya, M. (2006). Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis, 9, 225–230.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang, Z., Neiva, K. G., Lingen, M. W., Ellis, L. M., & Nör, J. E. (2010). VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2. Cell Death and Differentiation, 17, 499.CrossRefPubMedGoogle Scholar
  24. 24.
    Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6, 389.CrossRefPubMedGoogle Scholar
  25. 25.
    Sato, T. N., Tozawa, Y., Deutsch, U., et al. (1995). Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature, 376, 70.CrossRefPubMedGoogle Scholar
  26. 26.
    Partanen, J., & Dumont, D. (1999). Functions of Tie1 and Tie2 receptor tyrosine kinases in vascular development. Vascular Growth Factors and Angiogenesis: Springer, 159–172.Google Scholar
  27. 27.
    Savant, S., La Porta, S., Budnik, A., et al. (2015). The orphan receptor Tie1 controls angiogenesis and vascular remodeling by differentially regulating Tie2 in tip and stalk cells. Cell Reports, 12, 1761–1773.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lyden, D., Young, A. Z., Zagzag, D., et al. (1999). Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature, 401, 670.CrossRefPubMedGoogle Scholar
  29. 29.
    Kroll, J., & Waltenberger, J. (1998). VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochemical and Biophysical Research Communications, 252, 743–746.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim, Y.-M., Namkoong, S., Yun, Y.-G., et al. (2007). Water extract of Korean red ginseng stimulates angiogenesis by activating the PI3K/Akt-dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells. Biological and Pharmaceutical Bulletin, 30, 1674–1679.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen, J., Somanath, P. R., Razorenova, O., et al. (2005). Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nature Medicine, 11, 1188.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Somanath, P. R., Razorenova, O. V., Chen, J., & Byzova, T. V. (2006). Akt1 in endothelial cell and angiogenesis. Cell Cycle, 5, 512–518.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kim, H.-M., Kang, D.-K., Kim, H. Y., Kang, S. S., & Chang, S.-I. (2007). Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochemical and Biophysical Research Communications, 352, 509–513.CrossRefPubMedGoogle Scholar
  34. 34.
    DeLisser, H. M., Christofidou-Solomidou, M., Strieter, R. M., et al. (1997). Involvement of endothelial PECAM-1/CD31 in angiogenesis. The American Journal of Pathology, 151, 671.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Jakobsson, L., Franco, C. A., Bentley, K., et al. (2010). Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nature Cell Biology, 12, 943.CrossRefPubMedGoogle Scholar
  36. 36.
    Birdsey, G. M., Dryden, N. H., Amsellem, V., et al. (2008). Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood, 111, 3498–3506.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dejana, E., Orsenigo, F., & Lampugnani, M. G. (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 121, 2115–2122.CrossRefPubMedGoogle Scholar
  38. 38.
    Forghany, Z., Robertson, F., Lundby, A., Olsen, J. V., & Baker, D. A. (2017). Control of endothelial cell tube formation by Notch ligand intracellular domain interactions with activator protein 1 (AP-1). Journal of Biological Chemistry.Google Scholar
  39. 39.
    Leslie, J. D., Ariza-McNaughton, L., Bermange, A. L., McAdow, R., Johnson, S. L., & Lewis, J. (2007). Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development, 134, 839–844.CrossRefPubMedGoogle Scholar
  40. 40.
    Suzuma, K., Naruse, K., Suzuma, I., et al. (2000). Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. Journal of Biological Chemistry, 275, 40725–40731.CrossRefPubMedGoogle Scholar
  41. 41.
    Doughervermazen, M., Hulmes, J. D., Bohlen, P., & Terman, B. I. (1994). Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor. Biochemical and Biophysical Research Communications, 205, 728–738.CrossRefGoogle Scholar
  42. 42.
    Moroianu, J., & Riordan, J. F. (1994). Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proceedings of the National Academy of Sciences, 91, 1677–1681.CrossRefGoogle Scholar
  43. 43.
    Koblizek, T. I., Weiss, C., Yancopoulos, G. D., Deutsch, U., & Risau, W. (1998). Angiopoietin-1 induces sprouting angiogenesis in vitro. Current Biology, 8, 529–532.CrossRefPubMedGoogle Scholar
  44. 44.
    Kishimoto, K., Liu, S., Tsuji, T., Olson, K. A., & Hu, G.-F. (2005). Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene, 24, 445.CrossRefPubMedGoogle Scholar
  45. 45.
    Pavlov, N., Frendo, J.-L., Guibourdenche, J., Degrelle, S. A., Evain-Brion, D., & Badet, J. (2014). Angiogenin expression during early human placental development; association with blood vessel formation. BioMed Research International, 2014.Google Scholar
  46. 46.
    Shibuya, M. (2011). Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes & Cancer, 2, 1097–1105.CrossRefGoogle Scholar
  47. 47.
    Pitulescu, M. E., Schmidt, I., Giaimo, B. D., et al. (2017). Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nature Cell Biology, 19, 915.CrossRefPubMedGoogle Scholar
  48. 48.
    Hellstrom, M., Phng, L. K., Hofmann, J. J., et al. (2007). Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 445, 776–780.CrossRefPubMedGoogle Scholar
  49. 49.
    Eklund, L., Kangas, J., & Saharinen, P. (2017). Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clinical Science (London, England), 131, 87–103.CrossRefGoogle Scholar
  50. 50.
    Jośko, J., & Mazurek, M. (2004). Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis. Medical Science Monitor, 10, RA89–RA98.PubMedGoogle Scholar
  51. 51.
    Craig, M. P., Grajevskaja, V., Liao, H.-K., et al. (2015). Etv2 and Fli1b Function Together as Key Regulators of Vasculogenesis and Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 865–876.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Baltrunaite, K., Craig, M. P., Palencia Desai, S., et al. (2017). ETS transcription factors Etv2 and Fli1b are required for tumor angiogenesis. Angiogenesis, 20, 307–323.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sato, Y., Teruyama, K., Nakano, T., et al. (2006). Role of Transcription Factors in Angiogenesis. Annals of the New York Academy of Sciences, 947, 117–123.CrossRefGoogle Scholar
  54. 54.
    Randi Anna, M., Sperone, A., Dryden Nicola, H., & Birdsey, G. M. (2009). Regulation of angiogenesis by ETS transcription factors. Biochemical Society Transactions, 37, 1248.CrossRefPubMedGoogle Scholar
  55. 55.
    Hashiya, N., Jo, N., Aoki, M., et al. (2004). In vivo evidence of angiogenesis induced by transcription factor Ets-1: Ets-1 is located upstream of angiogenesis cascade. Circulation, 109, 3035–3041.CrossRefPubMedGoogle Scholar
  56. 56.
    McLaughlin, F., Ludbrook, V. J., Cox, J., von Carlowitz, I., Brown, S., & Randi, A. M. (2001). Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation. Blood, 98, 3332–3339.CrossRefPubMedGoogle Scholar
  57. 57.
    Rudders, S., Gaspar, J., Madore, R., et al. (2001). ESE-1 is a novel transcriptional mediator of inflammation that interacts with NF-κB to regulate the inducible nitric-oxide synthase gene. Journal of Biological Chemistry, 276, 3302–3309.CrossRefPubMedGoogle Scholar
  58. 58.
    Christensen, R. A., Fujikawa, K., Madore, R., Oettgen, P., & Varticovski, L. (2002). NERF2, a member of the Ets family of transcription factors, is increased in response to hypoxia and angiopoietin-1: A potential mechanism for Tie2 regulation during hypoxia. Journal of Cellular Biochemistry, 85, 505–515.CrossRefPubMedGoogle Scholar
  59. 59.
    Edel, M. (1999). Analysis of the TEL protein during tumour angiogenesis. Anticancer Research, 19, 2945–2951.PubMedGoogle Scholar
  60. 60.
    Spyropoulos, D. D., Pharr, P. N., Lavenburg, K. R., et al. (2000). Hemorrhage, Impaired Hematopoiesis, and Lethality in Mouse Embryos Carrying a Targeted Disruption of the Fli1Transcription Factor. Molecular and Cellular Biology, 20, 5643–5652.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zheng, H., Wasylyk, C., Ayadi, A., et al. (2003). The transcription factor Net regulates the angiogenic switch. Genes & Development, 17, 2283–2297.CrossRefGoogle Scholar
  62. 62.
    Xu, L., & Komatsu, M. (2009). Promoter Cloning and Characterization of the Anti-vascular Proliferation Gene, R-ras ROLE OF ETS-AND SP-BINDING MOTIFS. Journal of Biological Chemistry, 284, 2706–2718.CrossRefPubMedGoogle Scholar
  63. 63.
    Dube, A., Thai, S., Gaspar, J., et al. (2001). Elf-1 is a transcriptional regulator of the Tie2 gene during vascular development. Circulation Research, 88, 237–244.CrossRefPubMedGoogle Scholar
  64. 64.
    Khachigian, L. M., Resnick, N., Gimbrone, M. A., & Collins, T. (1995). Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. The Journal of Clinical Investigation, 96, 1169–1175.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    De Val, S. (2011). Key transcriptional regulators of early vascular development. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1469–1475.CrossRefPubMedGoogle Scholar
  66. 66.
    Potente, M., Urbich, C., K-i, S., et al. (2005). Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. The Journal of Clinical Investigation, 115, 2382–2392.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Alabdi, L., He, M., Yang, Q., Norvil, A. B., & Gowher, H. (2018). The transcription factor Vezf1 represses the expression of the antiangiogenic factor Cited2 in endothelial cells. Journal of Biological Chemistry.Google Scholar
  68. 68.
    Sacilotto, N., Chouliaras, K. M., Nikitenko, L. L., et al. (2016). MEF2 transcription factors are key regulators of sprouting angiogenesis. Genes & Development, 30, 2297–2309.CrossRefGoogle Scholar
  69. 69.
    Henderson, A. M., Wang, S.-J., Taylor, A. C., Aitkenhead, M., & Hughes, C. C. W. (2001). The Basic Helix-Loop-Helix Transcription Factor HESR1 Regulates Endothelial Cell Tube Formation. Journal of Biological Chemistry, 276, 6169–6176.CrossRefPubMedGoogle Scholar
  70. 70.
    Esser, J. S., Charlet, A., Schmidt, M., et al. (2017). The neuronal transcription factor NPAS4 is a strong inducer of sprouting angiogenesis and tip cell formation. Cardiovascular Research, 113, 222–223.CrossRefPubMedGoogle Scholar
  71. 71.
    Winnik, S., Klinkert, M., Kurz, H., et al. (2009). HoxB5 induces endothelial sprouting in vitro and modifies intussusceptive angiogenesis in vivo involving angiopoietin-2. Cardiovascular Research, 83, 558–565.CrossRefPubMedGoogle Scholar
  72. 72.
    Randi, A. M., Sperone, A., Dryden, N. H., & Birdsey, G. M. (2009). Regulation of angiogenesis by ETS transcription factors. Biochemical Society Transactions, 37, 1248–1253.CrossRefPubMedGoogle Scholar
  73. 73.
    Sakai, E., Miura, Y., Suzuki-Kouyama, E., et al. (2017). A mammalian mirtron miR-1224 promotes tube-formation of human primary endothelial cells by targeting anti-angiogenic factor epsin2. Scientific Reports, 7, 5541.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Qian, Q., Wenkui, S., Wen, Z., et al. (2017). The role of microRNA-93 regulating angiopoietin2 in the formation of malignant pleural effusion. Cancer Medicine, 6, 1036–1048.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yang, Q., Jia, C., Wang, P., et al. (2014). MicroRNA-505 identified from patients with essential hypertension impairs endothelial cell migration and tube formation. International Journal of Cardiology, 177, 925–934.CrossRefPubMedGoogle Scholar
  76. 76.
    Wang, P., Luo, Y., Duan, H., et al. (2013). MicroRNA 329 Suppresses Angiogenesis by Targeting CD146. Molecular and Cellular Biology, 33, 3689–3699.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Wang, S., Aurora, A. B., Johnson, B. A., et al. (2008). The Endothelial-Specific MicroRNA miR-126 Governs Vascular Integrity and Angiogenesis. Developmental Cell, 15, 261–271.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2016). The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. Journal of Molecular and Cellular Cardiology, 97, 47–55.CrossRefPubMedGoogle Scholar
  79. 79.
    Chen, Y., & Gorski, D. H. (2008). Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood, 111, 1217–1226.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Fasanaro, P., D'Alessandra, Y., Di Stefano, V., et al. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of Biological Chemistry, 283, 15878–15883.CrossRefPubMedGoogle Scholar
  81. 81.
    Suárez, Y., Fernández-Hernando, C., Yu, J., et al. (2008). Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings of the National Academy of Sciences, 105, 14082–14087.CrossRefGoogle Scholar
  82. 82.
    Li, Y., Song, Y.-H., Li, F., Yang, T., Lu, Y. W., & Geng, Y.-J. (2009). MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochemical and Biophysical Research Communications, 381, 81–83.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Suárez, Y., Fernández-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells. Circulation Research, 100, 1164.CrossRefPubMedGoogle Scholar
  84. 84.
    Poliseno, L., Tuccoli, A., Mariani, L., et al. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood, 108, 3068.CrossRefPubMedGoogle Scholar
  85. 85.
    Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101, 59–68.CrossRefPubMedGoogle Scholar
  86. 86.
    Otsuka, M., Zheng, M., Hayashi, M., et al. (2008). Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. The Journal of Clinical Investigation, 118, 1944–1954.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Dang, L. T., Lawson, N. D., & Fish, J. E. (2013). MicroRNA control of vascular endothelial growth factor signaling output during vascular development. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 193–200.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Yang, W. J., Yang, D. D., Na, S., Sandusky, G. E., Zhang, Q., & Zhao, G. (2005). Dicer is required for embryonic angiogenesis during mouse development. The Journal of Biological Chemistry, 280, 9330–9335.CrossRefPubMedGoogle Scholar
  89. 89.
    Spinetti, G., Fortunato, O., Caporali, A., et al. (2013). MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circulation Research, 112, 335–346.CrossRefPubMedGoogle Scholar
  90. 90.
    Gori, M., Trombetta, M., Santini, D., & Rainer, A. (2015). Tissue engineering and microRNAs: future perspectives in regenerative medicine. Expert Opinion on Biological Therapy, 15, 1601–1622.CrossRefPubMedGoogle Scholar
  91. 91.
    Haralabopoulos, G. C., Grant, D. S., Kleinman, H. K., & Maragoudakis, M. E. (1997). Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. The American Journal of Physiology, 273, C239–C245.CrossRefPubMedGoogle Scholar
  92. 92.
    Rioja, A. Y., Tiruvannamalai Annamalai, R., Paris, S., Putnam, A. J., & Stegemann, J. P. (2016). Endothelial sprouting and network formation in collagen- and fibrin-based modular microbeads. Acta Biomaterialia, 29, 33–41.CrossRefPubMedGoogle Scholar
  93. 93.
    Jackson, C. J., & Nguyen, M. (1997). Human microvascular endothelial cells differ from macrovascular endothelial cells in their expression of matrix metalloproteinases. Int J Biochem Cell B, 29, 1167–1177.CrossRefGoogle Scholar
  94. 94.
    Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences, 78, 7634–7638.CrossRefGoogle Scholar
  95. 95.
    Donny, H. P., & Sharon, G. (2009). Vascular engineering using human embryonic stem cells. Biotechnology Progress, 25, 2–9.CrossRefGoogle Scholar
  96. 96.
    Yoshioka, N., Gros, E., Li, H. R., et al. (2013). Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell, 13, 246–254.CrossRefPubMedGoogle Scholar
  97. 97.
    Zhou, Y. Y., & Zeng, F. (2013). Integration-free methods for generating induced pluripotent stem cells. Genomics, Proteomics & Bioinformatics, 11, 284–287.CrossRefGoogle Scholar
  98. 98.
    Ikuno, T., Masumoto, H., Yamamizu, K., et al. (2017). Efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLoS One, 12, e0173271.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Ribatti, D. (2007). The discovery of endothelial progenitor cells. An historical review. Leukemia Research, 31, 439–444.CrossRefPubMedGoogle Scholar
  100. 100.
    Reid, E., Guduric-Fuchs, J., O'Neill, C. L., et al. (2018). Preclinical Evaluation and Optimization of a Cell Therapy Using Human Cord Blood-Derived Endothelial Colony-Forming Cells for Ischemic Retinopathies. Stem Cells Translational Medicine, 7, 59–67.CrossRefPubMedGoogle Scholar
  101. 101.
    Hager, G., Holnthoner, W., Wolbank, S., et al. (2013). Three specific antigens to isolate endothelial progenitor cells from human liposuction material. Cytotherapy, 15, 1426–1435.CrossRefPubMedGoogle Scholar
  102. 102.
    Levy, B., Ambrosio, G., Pries, A., & Struijker-Boudier, H. (2001). Microcirculation in hypertension: a new target for treatment? Circulation, 104, 735–740.CrossRefPubMedGoogle Scholar
  103. 103.
    Armulik, A., Genove, G., & Betsholtz, C. (2011). Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21, 193–215.CrossRefPubMedGoogle Scholar
  104. 104.
    Wilgus, T. A. (2012). Growth Factor-Extracellular Matrix Interactions Regulate Wound Repair. Adv Wound Care (New Rochelle), 1, 249–254.CrossRefPubMedCentralGoogle Scholar
  105. 105.
    Sottile, J. (1654). Regulation of angiogenesis by extracellular matrix. Biochimica et Biophysica Acta, 2004, 13–22.Google Scholar
  106. 106.
    Neve, A., Cantatore, F. P., Maruotti, N., Corrado, A., & Ribatti, D. (2014). Extracellular matrix modulates angiogenesis in physiological and pathological conditions. BioMed Research International, 2014, 756078.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Ghajar, C. M., George, S. C., & Putnam, A. J. (2008). Matrix metalloproteinase control of capillary morphogenesis. Critical Reviews in Eukaryotic Gene Expression, 18, 251–278.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Grant, D. S., & Kleinman, H. K. (1997). Regulation of capillary formation by laminin and other components of the extracellular matrix. EXS, 79, 317–333.PubMedGoogle Scholar
  109. 109.
    Shepro D. Microvascular research: biology and pathology: Elsevier; 2005.Google Scholar
  110. 110.
    Jansson, L. (1994). The regulation of pancreatic islet blood flow. Diabetes/Metabolism Reviews, 10, 407–416.CrossRefPubMedGoogle Scholar
  111. 111.
    Stratman, A. N., Pezoa, S. A., Farrelly, O. M., et al. (2017). Interactions between mural cells and endothelial cells stabilize the developing zebrafish dorsal aorta. Development, 144, 115–127.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Costa-Almeida, R., Granja, P. L., Soares, R., & Guerreiro, S. G. (2014). Cellular strategies to promote vascularisation in tissue engineering applications. European Cells & Materials, 28, 51–66 discussion -7.CrossRefGoogle Scholar
  113. 113.
    Cines, D. B., Pollak, E. S., Buck, C. A., et al. (1998). Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood, 91, 3527–3561.PubMedGoogle Scholar
  114. 114.
    Hubbell, J. A., Massia, S. P., Desai, N. P., & Drumheller, P. D. (1991). Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology (N Y), 9, 568–572.Google Scholar
  115. 115.
    Hiob, M. A., She, S., Muiznieks, L. D., & Weiss, A. S. (2017). Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomaterials Science & Engineering, 3, 712–723.CrossRefGoogle Scholar
  116. 116.
    Fang, Y., & Eglen, R. M. (2017). Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov, 22, 456–472.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Nakatsu, M. N., Davis, J., & Hughes, C. C. (2007). Optimized fibrin gel bead assay for the study of angiogenesis. Journal of Visualized Experiments, 186.Google Scholar
  118. 118.
    Zanotelli, M. R., Ardalani, H., Zhang, J., et al. (2016). Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels. Acta Biomaterialia, 35, 32–41.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Laschke, M. W., Kleer, S., Scheuer, C., et al. (2012). Vascularisation of porous scaffolds is improved by incorporation of adipose tissue-derived microvascular fragments. European Cells & Materials, 24, 266–277.CrossRefGoogle Scholar
  120. 120.
    Baranski, J. D., Chaturvedi, R. R., Stevens, K. R., et al. (2013). Geometric control of vascular networks to enhance engineered tissue integration and function. Proceedings of the National Academy of Sciences of the United States of America, 110, 7586–7591.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Unger, R. E., Sartoris, A., Peters, K., et al. (2007). Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials, 28, 3965–3976.CrossRefPubMedGoogle Scholar
  122. 122.
    Nor, J. E., Peters, M. C., Christensen, J. B., et al. (2001). Engineering and characterization of functional human microvessels in immunodeficient mice. Laboratory Investigation, 81, 453–463.CrossRefPubMedGoogle Scholar
  123. 123.
    Sieveking, D. P., Buckle, A., Celermajer, D. S., & Ng, M. K. (2008). Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. Journal of the American College of Cardiology, 51, 660–668.CrossRefPubMedGoogle Scholar
  124. 124.
    Novosel, E. C., Kleinhans, C., & Kluger, P. J. (2011). Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews, 63, 300–311.CrossRefPubMedGoogle Scholar
  125. 125.
    Kim, S., & Von Recum, H. (2008). Endothelial stem cells and precursors for tissue engineering: Cell source, differentiation, selection, and application. Tissue Engineering Part B-Reviews, 14, 133–147.CrossRefPubMedGoogle Scholar
  126. 126.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRefPubMedGoogle Scholar
  127. 127.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.CrossRefPubMedGoogle Scholar
  128. 128.
    Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., & Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 4391–4396.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Levenberg, S., Rouwkema, J., Macdonald, M., et al. (2005). Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 23, 879–884.CrossRefPubMedGoogle Scholar
  130. 130.
    Young, R. A. (2011). Control of the embryonic stem cell state. Cell, 144, 940–954.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Rodolfa, K. T., & Eggan, K. (2006). A transcriptional logic for nuclear reprogramming. Cell, 126, 652–655.CrossRefPubMedGoogle Scholar
  132. 132.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.CrossRefPubMedGoogle Scholar
  133. 133.
    Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.CrossRefPubMedGoogle Scholar
  134. 134.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.CrossRefPubMedGoogle Scholar
  135. 135.
    Shao, L., & Wu, W. S. (2010). Gene-delivery systems for iPS cell generation. Expert Opinion on Biological Therapy, 10, 231–242.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Bezenah, J. R., Kong, Y. P., & Putnam, A. J. (2018). Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Scientific Reports, 8, 2671.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Song, H.-H. G., Rumma, R. T., Ozaki, C. K., Edelman, E. R., & Chen, C. S. (2018). Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell, 22, 340–354.CrossRefPubMedGoogle Scholar
  138. 138.
    Kurokawa, Y. K., Yin, R. T., Shang, M. R., Shirure, V. S., Moya, M. L., & George, S. C. (2017). Human Induced Pluripotent Stem Cell-Derived Endothelial Cells for Three-Dimensional Microphysiological Systems. Tissue Engineering Part C: Methods, 23, 474–484.CrossRefGoogle Scholar
  139. 139.
    Khakoo, A. Y., & Finkel, T. (2005). Endothelial progenitor cells. Annual Review of Medicine, 56, 79–101.CrossRefPubMedGoogle Scholar
  140. 140.
    Asahara, T., Murohara, T., Sullivan, A., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.CrossRefGoogle Scholar
  141. 141.
    Pearson, J. D. (2009). Endothelial progenitor cells - hype or hope? Journal of Thrombosis and Haemostasis, 7, 255–262.CrossRefPubMedGoogle Scholar
  142. 142.
    Pearson, J. D. (2010). Endothelial progenitor cells--an evolving story. Microvascular Research, 79, 162–168.CrossRefPubMedGoogle Scholar
  143. 143.
    Asahara, T., Kawamoto, A., & Masuda, H. (2011). Concise review: Circulating endothelial progenitor cells for vascular medicine. Stem Cells, 29, 1650–1655.CrossRefPubMedGoogle Scholar
  144. 144.
    Long, D. A., Norman, J. T., & Fine, L. G. (2012). Restoring the renal microvasculature to treat chronic kidney disease. Nature Reviews. Nephrology, 8, 244–250.CrossRefPubMedGoogle Scholar
  145. 145.
    Weiss, D. J. (2014). Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells, 32, 16–25.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Menegazzo, L., Albiero, M., Avogaro, A., & Fadini, G. P. (2012). Endothelial progenitor cells in diabetes mellitus. Biofactors, 38, 194–202.CrossRefPubMedGoogle Scholar
  147. 147.
    Wu, X., Rabkin-Aikawa, E., Guleserian, K. J., et al. (2004). Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. American Journal of Physiology. Heart and Circulatory Physiology, 287, H480–H487.CrossRefPubMedGoogle Scholar
  148. 148.
    Asahara, T., & Kawamoto, A. (2004). Endothelial progenitor cells for postnatal vasculogenesis. American Journal of Physiology. Cell Physiology, 287, C572–C579.CrossRefPubMedGoogle Scholar
  149. 149.
    Young, P. P., Vaughan, D. E., & Hatzopoulos, A. K. (2007). Biologic properties of endothelial progenitor cells and their potential for cell therapy. Progress in Cardiovascular Diseases, 49, 421–429.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Critser, P. J., Voytik-Harbin, S. L., & Yoder, M. C. (2011). Isolating and defining cells to engineer human blood vessels. Cell Proliferation, 44(Suppl 1), 15–21.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Yoder, M. C. (2012). Human endothelial progenitor cells. Cold Spring Harbor Perspectives in Medicine, 2, a006692.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Peters, E. B., Christoforou, N., Leong, K. W., Truskey, G. A., & West, J. L. (2016). Poly(ethylene glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells. Cellular and Molecular Bioengineering, 9, 38–54.CrossRefPubMedGoogle Scholar
  153. 153.
    Chong, M. S., Ng, W. K., & Chan, J. K. (2016). Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges. Stem Cells Translational Medicine, 5, 530–538.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Peters, E. B. (2017). Endothelial Progenitor Cells for the Vascularization of Engineered Tissues. Tissue Engineering. Part B, Reviews.Google Scholar
  155. 155.
    Medina, R. J., Barber, C. L., Sabatier, F., et al. (2017). Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Translational Medicine, 6, 1316–1320.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Gehling, U. M., Ergun, S., Schumacher, U., et al. (2000). In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood, 95, 3106–3112.PubMedGoogle Scholar
  157. 157.
    Peichev, M., Naiyer, A. J., Pereira, D., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95, 952–958.PubMedGoogle Scholar
  158. 158.
    Romagnani, P., Annunziato, F., Liotta, F., et al. (2005). CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circulation Research, 97, 314–322.CrossRefPubMedGoogle Scholar
  159. 159.
    Liang, T. Z., Zhu, L., Gao, W. L., et al. (2017). Coculture of endothelial progenitor cells and mesenchymal stem cells enhanced their proliferation and angiogenesis through PDGF and Notch signaling. FEBS Open Bio, 7, 1722–1736.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Liu, H., Zhou, W., Ren, N., et al. (2017). Cell Sheets of Co-cultured Endothelial Progenitor Cells and Mesenchymal Stromal Cells Promote Osseointegration in Irradiated Rat Bone. Science Reporter, 7, 3038.CrossRefGoogle Scholar
  161. 161.
    Au, P., Daheron, L. M., Duda, D. G., et al. (2008). Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood, 111, 1302–1305.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Melero-Martin, J. M., De Obaldia, M. E., Kang, S. Y., et al. (2008). Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation Research, 103, 194–202.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Xu, J., Gong, T., Heng, B. C., & Zhang, C. F. (2017). A systematic review: differentiation of stem cells into functional pericytes. FASEB Journal, 31, 1775–1786.CrossRefPubMedGoogle Scholar
  164. 164.
    Planat-Benard, V., Silvestre, J.-S., Cousin, B., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 109, 656–663.CrossRefPubMedGoogle Scholar
  165. 165.
    Zhou, L., Xia, J., Qiu, X., et al. (2015). In vitro evaluation of endothelial progenitor cells from adipose tissue as potential angiogenic cell sources for bladder angiogenesis. PLoS One, 10, e0117644.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Hsueh, Y.-Y., Chang, Y.-J., Huang, C.-W., et al. (2015). Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury. Scientific Reports, 5, 14985.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Kondo, K., Shintani, S., Shibata, R., et al. (2009). Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 61–66.CrossRefPubMedGoogle Scholar
  168. 168.
    Amerion, M., Valojerdi, M. R., Abroun, S., & Totonchi, M. (2017). Long term culture and differentiation of endothelial progenitor like cells from rat adipose derived stem cells. Cytotechnology, 1–17.Google Scholar
  169. 169.
    Hur, J., Yoon, C.-H., Kim, H.-S., et al. (2004). Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 288–293.CrossRefPubMedGoogle Scholar
  170. 170.
    Kusuma, S., Zhao, S., & Gerecht, S. (2012). The extracellular matrix is a novel attribute of endothelial progenitors and of hypoxic mature endothelial cells. The FASEB Journal, 26, 4925–4936.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Gokcinar-Yagci, B., Uckan-Cetinkaya, D., & Celebi-Saltik, B. (2015). Pericytes: Properties, Functions and Applications in Tissue Engineering. Stem Cell Reviews, 11, 549–559.CrossRefPubMedGoogle Scholar
  172. 172.
    Walshe, T. E., Saint-Geniez, M., Maharaj, A. S., Sekiyama, E., Maldonado, A. E., & D'Amore, P. A. (2009). TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS One, 4, e5149.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.CrossRefPubMedGoogle Scholar
  174. 174.
    Mravic, M., Asatrian, G., Soo, C., et al. (2014). From pericytes to perivascular tumours: correlation between pathology, stem cell biology, and tissue engineering. International Orthopaedics, 38, 1819–1824.CrossRefPubMedGoogle Scholar
  175. 175.
    Morin, K. T., Smith, A. O., Davis, G. E., & Tranquillo, R. T. (2013). Aligned human microvessels formed in 3D fibrin gel by constraint of gel contraction. Microvascular Research, 90, 12–22.CrossRefPubMedGoogle Scholar
  176. 176.
    Chen, C. W., Okada, M., Proto, J. D., et al. (2013). Human pericytes for ischemic heart repair. Stem Cells, 31, 305–316.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Liu, H., Chen, B., & Lilly, B. (2008). Fibroblasts potentiate blood vessel formation partially through secreted factor TIMP-1. Angiogenesis, 11, 223–234.CrossRefPubMedGoogle Scholar
  178. 178.
    Chen, X., Aledia, A. S., Popson, S. A., Him, L., Hughes, C. C., & George, S. C. (2010). Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Engineering. Part A, 16, 585–594.CrossRefPubMedGoogle Scholar
  179. 179.
    Costa-Almeida, R., Gomez-Lazaro, M., Ramalho, C., Granja, P. L., Soares, R., & Guerreiro, S. G. (2014). Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Engineering Part A, 21, 1055–1065.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Newman, A. C., Nakatsu, M. N., Chou, W., Gershon, P. D., & Hughes, C. C. (2011). The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Molecular Biology of the Cell, 22, 3791–3800.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Berthod, F., Germain, L., Tremblay, N., & Auger, F. A. (2006). Extracellular matrix deposition by fibroblasts is necessary to promote capillary-like tube formation in vitro. Journal of Cellular Physiology, 207, 491–498.CrossRefPubMedGoogle Scholar
  182. 182.
    Kunz-Schughart, L. A., Schroeder, J. A., Wondrak, M., et al. (2006). Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. American Journal of Physiology-Cell Physiology, 290, C1385–C1C98.CrossRefPubMedGoogle Scholar
  183. 183.
    Hirschi, K. K., Burt, J. M., Hirschi, K. D., & Dai, C. (2003). Gap junction communication mediates transforming growth factor-β activation and endothelial-induced mural cell differentiation. Circulation Research, 93, 429–437.CrossRefPubMedGoogle Scholar
  184. 184.
    Grainger, S. J., & Putnam, A. J. (2011). Assessing the permeability of engineered capillary networks in a 3D culture. PLoS One, 6, e22086.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Pill, K., Hofmann, S., Redl, H., & Holnthoner, W. (2015). Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison. Cell Regeneration, 4, 8.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Verseijden, F., Sluijs, S. J. P.-V., Farrell, E., et al. (2010). Prevascular structures promote vascularization in engineered human adipose tissue constructs upon implantation. Cell Transplantation, 19, 1007–1020.CrossRefPubMedGoogle Scholar
  187. 187.
    Rao, R. R., Peterson, A. W., Ceccarelli, J., Putnam, A. J., & Stegemann, J. P. (2012). Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis, 15, 253–264.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Duttenhoefer, F., Lara de Freitas, R., Meury, T., et al. (2013). 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. European Cells & Materials ECM, 26, 64–65.Google Scholar
  189. 189.
    Ghajar, C. M., Kachgal, S., Kniazeva, E., et al. (2010). Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Experimental Cell Research, 316, 813–825.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Kachgal, S., Carrion, B., Janson, I. A., & Putnam, A. J. (2012). Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1-MMP. Journal of Cellular Physiology, 227, 3546–3555.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Rohringer, S., Hofbauer, P., Schneider, K. H., et al. (2014). Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis, 17, 921–933.CrossRefPubMedGoogle Scholar
  192. 192.
    Holnthoner, W., Hohenegger, K., Husa, A. M., et al. (2015). Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix. Journal of Tissue Engineering and Regenerative Medicine, 9, 127–136.CrossRefPubMedGoogle Scholar
  193. 193.
    Merfeld-Clauss, S., Gollahalli, N., March, K. L., & Traktuev, D. O. (2010). Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Engineering Part A, 16, 2953–2966.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Hoying, J. B., Boswell, C. A., & Williams, S. K. (1996). Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cellular & Developmental Biology. Animal, 32, 409–419.CrossRefGoogle Scholar
  195. 195.
    Sun, X., Altalhi, W., & Nunes, S. S. (2016). Vascularization strategies of engineered tissues and their application in cardiac regeneration. Advanced Drug Delivery Reviews, 96, 183–194.CrossRefPubMedGoogle Scholar
  196. 196.
    Frueh, F. S., & Spater, T. (2017). Scheuer C. Laschke MW. Isolation of Murine Adipose Tissue-derived Microvascular Fragments as Vascularization Units for Tissue Engineering. J Vis Exp: Menger MD.Google Scholar
  197. 197.
    Nunes, S. S., Krishnan, L., Gerard, C. S., et al. (2010). Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation, 17, 557–567.PubMedPubMedCentralGoogle Scholar
  198. 198.
    Shepherd, B. R., Hoying, J. B., & Williams, S. K. (2007). Microvascular transplantation after acute myocardial infarction. Tissue Engineering, 13, 2871–2879.CrossRefPubMedGoogle Scholar
  199. 199.
    Nunes, S. S., Rekapally, H., Chang, C. C., & Hoying, J. B. (2011). Vessel arterial-venous plasticity in adult neovascularization. PLoS One, 6, e27332.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Chang, C. C., & Hoying, J. B. (2006). Directed three-dimensional growth of microvascular cells and isolated microvessel fragments. Cell Transplantation, 15, 533–540.CrossRefPubMedGoogle Scholar
  201. 201.
    Fish JE, Srivastava D. MicroRNAs: opening a new vein in angiogenesis research. Sci Signal 2009;2:pe1.Google Scholar
  202. 202.
    Matsuda, N., Shimizu, T., Yamato, M., & Okano, T. (2007). Tissue Engineering Based on Cell Sheet Technology. Advanced Materials, 19, 3089–3099.CrossRefGoogle Scholar
  203. 203.
    Chao, C. Y., & Cheing, G. L. (2009). Microvascular dysfunction in diabetic foot disease and ulceration. Diabetes/Metabolism Research and Reviews, 25, 604–614.CrossRefPubMedGoogle Scholar
  204. 204.
    Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 17(Suppl 4), 467–479.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6, 105–121.CrossRefPubMedGoogle Scholar
  206. 206.
    Caliari, S. R., & Burdick, J. A. (2016). A practical guide to hydrogels for cell culture. Nature Methods, 13, 405–414.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Chan, E. C., Kuo, S. M., Kong, A. M., et al. (2016). Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications. PLoS One, 11, e0149799.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Rayner, S. G., & Zheng, Y. (2016). Engineered Microvessels for the Study of Human Disease. Journal of Biomechanical Engineering, 138.Google Scholar
  209. 209.
    Tung, Y. T., Chang, C. C., Ju, J. C., & Wang, G. J. (2017). Fabrication of a reticular poly(lactide-co-glycolide) cylindrical scaffold for the in vitro development of microvascular networks. Science and Technology of Advanced Materials, 18, 163–171.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Koike, N., Fukumura, D., Gralla, O., Au, P., Schechner, J. S., & Jain, R. K. (2004). Tissue engineering: creation of long-lasting blood vessels. Nature, 428, 138–139.CrossRefPubMedGoogle Scholar
  211. 211.
    Ma, D., Ren, L., Liu, Y., et al. (2010). Engineering scaffold-free bone tissue using bone marrow stromal cell sheets. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 28, 697–n/a.Google Scholar
  212. 212.
    Akahane, M., Shigematsu, H., Tadokoro, M., et al. (2010). Scaffold-free cell sheet injection results in bone formation. Journal of Tissue Engineering and Regenerative Medicine, 4, 404–411.CrossRefPubMedGoogle Scholar
  213. 213.
    Elloumi-Hannachi, I., Yamato, M., & Okano, T. (2010). Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. Journal of Internal Medicine, 267, 54.CrossRefPubMedGoogle Scholar
  214. 214.
    Shimizu, T., Sekine, H., Yang, J., et al. (2006). Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. The FASEB Journal, 20, 708–710.CrossRefPubMedGoogle Scholar
  215. 215.
    Sekiya, S., Shimizu, T., & Okano, T. (2013). Vascularization in 3D tissue using cell sheet technology. Regenerative Medicine, 8, 371–377.CrossRefPubMedGoogle Scholar
  216. 216.
    Asakawa, N., Shimizu, T., Tsuda, Y., et al. (2010). Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials, 31, 3903–3909.CrossRefPubMedGoogle Scholar
  217. 217.
    Sasagawa, T., Shimizu, T., Sekiya, S., et al. (2010). Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials, 31, 1646–1654.CrossRefPubMedGoogle Scholar
  218. 218.
    Ravnic, D. J., Leberfinger, A. N., Koduru, S. V., et al. (2017). Transplantation of Bioprinted Tissues and Organs: Technical and Clinical Challenges and Future Perspectives. Annals of Surgery, 266, 48–58.CrossRefPubMedGoogle Scholar
  219. 219.
    Cui, X., & Boland, T. (2009). Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 30, 6221–6227.CrossRefPubMedGoogle Scholar
  220. 220.
    Datta, P., Ayan, B., & Ozbolat, I. T. (2017). Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomaterialia, 51, 1–20.CrossRefPubMedGoogle Scholar
  221. 221.
    Zhang, Y. S., Yue, K., Aleman, J., et al. (2017). 3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 45, 148–163.CrossRefPubMedGoogle Scholar
  222. 222.
    Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A., & Lewis, J. A. (2016). Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 113, 3179–3184.CrossRefGoogle Scholar
  223. 223.
    Byambaa, B., Annabi, N., Yue, K., et al. (2017). Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue. Advanced Healthcare Materials, 6, n/a–n/a.CrossRefGoogle Scholar
  224. 224.
    Yahui, Z., Yin, Y., Howard, C., & Ibrahim TO. (2013). Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication, 5, 025004.CrossRefGoogle Scholar
  225. 225.
    Zhang, Y., Yu, Y., Akkouch, A., Dababneh, A., Dolati, F., & Ozbolat, I. T. (2015). In vitro study of directly bioprinted perfusable vasculature conduits. Biomaterials Science, 3, 134–143.CrossRefPubMedGoogle Scholar
  226. 226.
    Yu, Y., Zhang, Y., Martin, J. A., & Ozbolat, I. T. (2013). Evaluation of Cell Viability and Functionality in Vessel-like Bioprintable Cell-Laden Tubular Channels. Journal of Biomechanical Engineering, 135, 091011–091019.CrossRefGoogle Scholar
  227. 227.
    Yu, Y., Zhang, Y., & Ozbolat, I. T. (2014). A hybrid bioprinting approach for scale-up tissue fabrication. Journal of Manufacturing Science and Engineering, 136, 061013.CrossRefGoogle Scholar
  228. 228.
    Mishra, R., Roux, B. M., Posukonis, M., et al. (2015). Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials, 77, 255–266.CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Rouwkema, J., & Khademhosseini, A. (2016). Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks. Trends in Biotechnology, 34, 733–745.CrossRefPubMedGoogle Scholar
  230. 230.
    Poldervaart, M. T., Gremmels, H., van Deventer, K., et al. (2014). Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. Journal of Controlled Release, 184, 58–66.CrossRefPubMedGoogle Scholar
  231. 231.
    Campagnolo, P., Gormley, A. J., Chow, L. W., et al. (2016). Pericyte Seeded Dual Peptide Scaffold with Improved Endothelialization for Vascular Graft Tissue Engineering. Advanced Healthcare Materials, 5, 3046–3055.CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Koepple, C., Kneser, U., & Schmidt, V. J. (2017). Microsurgical Approaches for In Vivo Prevascularization. In W. Holnthoner, A. Banfi, J. Kirkpatrick, & H. Redl (Eds.), Vascularization for Tissue Engineering and Regenerative Medicine (pp. 1–18). Cham: Springer International Publishing.Google Scholar
  233. 233.
    Erol, O. O., & Sira, M. (1980). New capillary bed formation with a surgically constructed arteriovenous fistula. Plastic and Reconstructive Surgery, 66, 109–115.CrossRefPubMedGoogle Scholar
  234. 234.
    Mambally, S. R. T., & Santha, K. K. (2015). Utility of arteriovenous loops before free tissue transfer for post-traumatic leg defects. Indian Journal of Plastic Surgery: Official Publication of the Association of Plastic Surgeons of India, 48, 38.CrossRefGoogle Scholar
  235. 235.
    Taub, P. J., Chun, J. K., Zhang, W. X., Pham, N. D., Weinberg, H., & Silver, L. (1999). Staging arteriovenous fistula loops for lengthening of free-flap pedicles. Journal of Reconstructive Microsurgery, 15, 123–125.CrossRefPubMedGoogle Scholar
  236. 236.
    Lin, C.-H., Mardini, S., Lin, Y.-T., Yeh, J.-T., Wei, F.-C., & Chen, H.-C. (2004). Sixty-five clinical cases of free tissue transfer using long arteriovenous fistulas or vein grafts. Journal of Trauma and Acute Care Surgery, 56, 1107–1117.CrossRefGoogle Scholar
  237. 237.
    Atiyeh, B. S., Sfeir, R. E., Hussein, M. M., & Husami, T. (1995). Preliminary arteriovenous fistula for free-flap reconstruction in the diabetic foot. Plastic and Reconstructive Surgery, 95, 1062–1069.CrossRefPubMedGoogle Scholar
  238. 238.
    Arkudas, A., Tjiawi, J., Bleiziffer, O., et al. (2007). Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV loop model. Molecular Medicine, 13, 480–487.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Arkudas, A., Balzer, A., Buehrer, G., et al. (2013). Evaluation of Angiogenesis of Bioactive Glass in the Arteriovenous Loop Model. Tissue Engineering Part C: Methods, 19, 479–486.CrossRefGoogle Scholar
  240. 240.
    Beier, J. P., Horch, R. E., Hess, A., et al. (2010). Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. Journal of Tissue Engineering and Regenerative Medicine, 4, 216–223.CrossRefPubMedGoogle Scholar
  241. 241.
    Zhang, B., Montgomery, M., Chamberlain, M. D., et al. (2016). Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials, 15, 669–678.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Irvin S. Zubar Plastic Surgery Research LaboratoryPenn State College of MedicineHersheyUSA
  2. 2.Department of Surgery, Division of Plastic SurgeryPenn State Health Milton S. Hershey Medical CenterHersheyUSA
  3. 3.Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of Life SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations