Stem Cell Reviews and Reports

, Volume 15, Issue 4, pp 601–611 | Cite as

Targeting of Lung Cancer Stem Cell Self-Renewal Pathway by a Small Molecule Verrucarin J

  • Karen Udoh
  • Seema Parte
  • Kelsey Carter
  • Aaron Mack
  • Sham S. KakarEmail author


Despite considerable advances made in understanding of lung cancer biology, there has been meek improvement in lung cancer treatment outcome with 4% to 5% increase in 5-year survival rates in the last four decades. Underlying problem of lung cancer recurrence and poor prognosis is attributed to the presence of cancer stem cells (CSCs) which possess the potential to differentiate, proliferate and trigger chemo-resistance, tumor progression and metastasis, despite initial elimination of the tumor. To address specific targeting of CSCs, we investigated the effects of a small molecule Verrucarin J (VJ) on lung cancer cell lines A549 and H1793. VJ significantly inhibited cell proliferation of both cell lines, with IC50 values of approximately 10 nM for A549 and 20 nM for H1793 respectively after 48 h of treatment. A549 cell line when treated with VJ, induced cell apoptosis with concomitant down regulation of key CSC specific genes- ALDH1, LGR5, OCT4 and CD133 in a dose-dependent manner. To delineate the molecular mechanism by which VJ targets lung cancer cells and CSCs, we determined the effects of VJ on CSC self-renewal pathways Wnt1/β-catenin and Notch1. Treatment of A549 cell line with VJ inhibited significantly both the signalling pathways, suggesting inhibition of expression of CSC genes by VJ through the inhibition of CSC self-renewal signalling pathways. Taken together, our results suggest that VJ may serve as a potent anticancer drug to target cancer cells and CSCs.


Lung cancer Lung cancer stem cells Verrucarin J Cancer stem cell self-renewal Anti-cancer drug 



This study was funded by a grant from NIH/NCI UO1CA2177798 (subcontract, SSK).

Compliance with Ethical Standards

Competing Interests

The Authors declare that they have no competing interest.


  1. 1.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: a Cancer Journal for Clinicians, 67, 7–30.Google Scholar
  2. 2.
    Xu, B., Chen, Q., Yue, C., et al. (2018). Prognostic value of IL-6R mRNA in lung adenocarcinoma and squamous cell carcinoma. Oncology Letters, 16(3), 2935–2948.Google Scholar
  3. 3.
    Tsvetkova, E., & Goss, G. D. (2012). Drug resistance and its significance for treatment decisions in non-small-cell lung cancer. Current Oncology, 19(Suppl 1), S45–S51.Google Scholar
  4. 4.
    Johnson, D. H., Schiller, J. H., & Bunn, P. A., Jr. (2014). Recent clinical advances in lung cancer management. Journal of Clinical Oncology, 32(10), 973–982.Google Scholar
  5. 5.
    National Cancer Institute. Types of Cancer. Available at: Accessed 13 Aug 2018.
  6. 6.
    MacDonagh, L., Gray, S. G., Breen, E., Cuffe, S., Finn, S. P., O'Byrne, K. J., & Barr, M. P. (2016). Lung cancer stem cells: the root of resistance. Cancer Letters, 372(2), 147–156.Google Scholar
  7. 7.
    Shanker, M., Willcutts, D., Roth, J. A., & Ramesh, R. (2010). Drug resistance in lung cancer. Lung Cancer (Auckland, N.Z.), 1, 23–36.Google Scholar
  8. 8.
    Arriagada, R., Bergman, B., Dunant, A., Le Chevalier, T., Pignon, J. P., Vansteenkiste, J., & International Adjuvant Lung Cancer Trial Collaborative Group. (2004). CISPLATIN-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. The New England Journal of Medicine, 350(4), 351–360.Google Scholar
  9. 9.
    Christen, R. D., Isonishi, S., Jones, J. A., Jekunen, A. P., Hom, D. K., Kröning, R., Gately, D. P., Thiebaut, F. B., Los, G., & Howell, S. B. (1994). Signaling and drug sensitivity. Cancer Metastasis Reviews, 13(2), 175–189.Google Scholar
  10. 10.
    Lathia, J. D., Venere, M., Rao, M. S., & Rich, J. N. (2011). Seeing is believing: are cancer stem cells the Loch Ness monster of tumor biology? Stem Cell Reviews and Reports, 7(2), 227–237.Google Scholar
  11. 11.
    Prabavathy, D., Swarnalatha, Y., & Ramadoss, N. (2018). Lung cancer stem cells-origin, characteristics and therapy. Stem Cell Investigation, 5, 6.Google Scholar
  12. 12.
    Leung, E. L., Fiscus, R. R., Tung, J. W., Tin, V. P., Cheng, L. C., Sihoe, A. D., Fink, L. M., Ma, Y., et al. (2010). Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One, 5(11), e14062.Google Scholar
  13. 13.
    Wang, P., Gao, Q., Suo, Z., Munthe, E., Solberg, S., Ma, L., Wang, M., Westerdaal, N. A., Kvalheim, G., & Gaudernack, G. (2013). Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One, 8(3), e57020.Google Scholar
  14. 14.
    Hardavella, G., George, R., & Sethi, T. (2016). Lung cancer stem cells-characteristics, phenotype. Translational Lung Cancer Research, 5(3), 272–279.Google Scholar
  15. 15.
    Li, Y., & Laterra, J. (2012). Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Research, 72(3), 576–580.Google Scholar
  16. 16.
    Sellers, Z. P., Schneider, G., Bujko, K., Suszynska, M., & Pedziwiatr, D. (2017). Do cancer cell lines have fixed or fluctuating stem cell phenotypes? – Studies with the NTera2 cell line. Stem Cell Reviews and Reports, 13(5), 603–610.Google Scholar
  17. 17.
    Gunjal, P., Pedziwiatr, D., Ismail, A. A., Kakar, S. S., & Ratajczak, M. Z. (2015). An emerging question about putative cancer stem cells in established cell lines-are they true stem cells or a fluctuating cell phenotype? Journal of Cancer Stem Cell Research, 3, e1004.Google Scholar
  18. 18.
    Sell, S. (2007). Cancer and stem cell signalling: a guide to preventive and therapeutic strategies for cancer stem cells. Stem Cell Reviews, 3(1), 1–6.Google Scholar
  19. 19.
    Maiuthed, A., Chantarawong, W., & Chanvorachote, P. (2018). Lung Cancer stem cells and cancer stem cell-targeting natural compounds. Anticancer Research, 38(7), 3797–3809.Google Scholar
  20. 20.
    Carter, K., Rameshwar, P., Ratajczak, M. Z., & Kakar, S. S. (2017). Verrucarin J inhibits ovarian cancer and targets cancer stem cells. Oncotarget, 8(54), 92743–92756.Google Scholar
  21. 21.
    Krishnamurthy, N., & Kurzrock, R. (2018). Targeting the Wnt/β-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treatment Reviews, 62, 50–60.Google Scholar
  22. 22.
    Mohammad, R. M., Muqbil, I., Lowe, L., et al. (2015). Broad targeting of resistance to apoptosis in cancer. Seminars in Cancer Biology, 35(Suppl(0)), S78–S103.Google Scholar
  23. 23.
    Koduru, S., Kumar, R., Srinivasan, S., Evers, M. B., & Damodaran, C. (2010). Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Molecular Cancer Therapeutics, 9(1), 202–210.Google Scholar
  24. 24.
    Reya, T., & Clevers, H. (2005). Wnt signaling in stem cells and cancer. Nature, 434(7035), 843.Google Scholar
  25. 25.
    Liu, S., Dontu, G., Mantle, I. D., Patel, S., Ahn, N. S., Jackson, K. W., Suri, P., & Wicha, M. S. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells.Cancer Research, 66(12), 6063–6071.Google Scholar
  26. 26.
    Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M., & Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6, 605–615.Google Scholar
  27. 27.
    Giles, R. H., van Es, J. H., & Clevers, H. (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochimica et Biophysica Acta, 1653, 1–24.Google Scholar
  28. 28.
    Abubaker, K., Luwor, R. B., Zhu, H., McNally, O., Quinn, M. A., Burns, C. J., Thompson, E. W., Findlay, J. K., & Ahmed, N. (2014). Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem celllike characteristics and a reduced tumor burden. BMC Cancer, 14, 317.Google Scholar
  29. 29.
    Chefetz, I., Holmberg, J. C., Alvero, A. B., Visintin, I., & Mor, G. (2011). Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFĸB pathway. Cell Cycle (Georgetown, Texas), 10(13), 2206–2214.Google Scholar
  30. 30.
    Wang, Z., Li, B., Zhou, L., Yu, S., Su, Z., Song, J., Sun, Q., Sha, O., Wang, X., Jiang, W., Willert, K., Wei, L., Carson, D. A., et al. (2016). Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 113(46), 13150–13155.Google Scholar
  31. 31.
    MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Developmental Cell, 17(1), 9–26.Google Scholar
  32. 32.
    Bello, J. O., Nieva, L. O., Paredes, A. C., Gonzalez, A. M., Zavaleta, L. R., & Lizano, M. (2015). Regulation of the Wnt/β-catenin signaling pathway by human papillomavirus E6 and E7 Oncoproteins. Viruses, 7(8), 4734–4755.Google Scholar
  33. 33.
    Patel, S., & Woodgett, J. (2008). Glycogen synthase kinase-3 and cancer: good cop, bad cop? Cancer Cell, 14(5), 351–353.Google Scholar
  34. 34.
    Suman, S., Das, T. P., & Damodaran, C. (2013). Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. British Journal of Cancer, 109, 2587–2596.Google Scholar
  35. 35.
    Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M., & Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research : BCR, 6(6), R605–R615.Google Scholar
  36. 36.
    Wang, M., Wang, J., Wang, L., Wu, L., & Xin, X. (2010). Notch1 expression correlates with tumor differentiation status in ovarian carcinoma. Medical Oncology, 27, 1329–1335.Google Scholar
  37. 37.
    Hori, K., Sen, A., & Artavanis-Tsakonas, S. (2013). Notch signaling at a glance. Journal of Cell Science, 26, 2135–2140.Google Scholar
  38. 38.
    Hopfer, O., Zwahlen, D., Fey, M. F., & Aebi, S. (2005). The Notch pathway in ovarian carcinomas and adenomas. British Journal of Cancer, 93, 709–718.Google Scholar
  39. 39.
    Gao, Y., Rankin, G. O., Tu, Y., & Chen, Y. C. (2015). Theaflavin-3, 3′-digallate decreases human ovarian carcinoma OVCAR-3 cell-induced angiogenesis via Akt and Notch-1 pathways, not via MAPK pathways. International Journal of Oncology, 48(1), 281–292.Google Scholar
  40. 40.
    Yabuuchi, S., Pai, S. G., Campbell, N. R., de Wilde, R. F., De Oliveira, E., Korangath, P., Streppel, M. M., Rasheed, Z. A., Hidalgo, M., Maitra, A., et al. (2013). Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Letters, 335(1), 41–51.Google Scholar
  41. 41.
    Zhang, L., Sha, J., Yang, G., Huang, X., Bo, J., & Huang, Y. (2017). Activation of Notch pathway is linked with epithelial-mesenchymal transition in prostate cancer cells. Cell Cycle (Georgetown, Texas), 16(10), 999–1007.Google Scholar
  42. 42.
    Kong, D., Banerjee, S., Ahmad, A., et al. (2010). Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One, 5, e12445.Google Scholar
  43. 43.
    Yuan, X., Wu, H., Han, N., et al. (2014). Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. Journal of Hematology & Oncology, 7, 87.Google Scholar
  44. 44.
    Ma, I., & Allan, A. L. (2011). The role of human aldehyde dehydrogenase in Normal and Cancer stem cells. Stem Cell Reviews and Reports, 7, 292.Google Scholar
  45. 45.
    Marquardt, S., Solanki, M., Spitschak, A., Vera, J., & Pützer, B. M. (2018). Emerging functional markers for cancer stem cell-based therapies: understanding signaling networks for targeting metastasis. Seminars in Cancer Biology, 53, 90–109.Google Scholar
  46. 46.
    Moustakas, A., & Heldin, C. H. (2007). Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Science, 98(10), 1512–1520.Google Scholar
  47. 47.
    Vermeulen, L., De Sousa, E. M. F., van der Heijden, M., et al. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 12, 468–476.Google Scholar
  48. 48.
    Abetov, D., Mustapova, Z., Saliev, T., Bulanin, D., Batyrbekov, K., & Gilman, C. P. (2015). Novel small molecule inhibitors of cancer stem cell signaling pathways. Stem Cell Reviews and Reports, 11(6), 909–918.Google Scholar
  49. 49.
    Kornakiewicz, A., Czarnecka, A. M., Khan, M. I., Krasowski, P., Kotrys, A. V., & Szczylik, C. (2018). Effect of Everolimus on Heterogenous renal cancer cells populations including renal cancer stem cells. Stem Cell Reviews and Reports, 14(3), 385–397.Google Scholar
  50. 50.
    Curtarelli, R. B., Gonçalves, J. M., Dos Santos, L. G. P., Savim, M. G., Nör, J. E., Mezzomo, L. A. M., & Rodríguez Cordeiro, M. M. (2018). Expression of cancer stem cell biomarkers in human head and neck carcinomas: a systematic review. Stem Cell Reviews and Reports, 14(6), 769–784.Google Scholar
  51. 51.
    Tomita, H., Tanaka, K., Tanaka, T., & Hara, A. (2016). Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget, 7(10), 11018–11032.Google Scholar
  52. 52.
    Suresh, R., Ali, S., Ahmad, A., Philip, P. A., & Sarkar, F. H. (2016). The role of cancer stem cells in recurrent and drug-resistant lung cancer. Advances in Experimental Medicine and Biology, 890, 57–74.Google Scholar
  53. 53.
    Miyata, T., Oyama, T., Yoshimatsu, T., Higa, H., Kawano, D., Sekimura, A., Yamashita, N., So, T., & Gotoh, A. (2017). The clinical significance of cancer stem cell markers ALDH1A1 and CD133 in lung adenocarcinoma. Anticancer Research, 37(5), 2541–2547.Google Scholar
  54. 54.
    Li, X., Wan, W. L., Geng, J., Wu, C. L., & Bai, X. (2012). Aldehyde dehydrogenase 1A1 possesses stem-like properties and predicts lung cancer patient outcome. Journal of Thoracic Oncology, 7, 1235–1245.Google Scholar
  55. 55.
    Li, Z. (2013). CD133: a stem cell biomarker and beyond. Experimental Hematology & Oncology, 2(1), 17.Google Scholar
  56. 56.
    Liedtke, S., Stephan, M., & Kögler, G. (2008). Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biological Chemistry, 389(7), 845–850.Google Scholar
  57. 57.
    Hayashi, H., Arao, T., Togashi, Y., Kato, H., Fujita, Y., et al. (2015). The OCT4 pseudogene POU5F1B is amplified and promotes an aggressive phenotype in gastric cancer. Oncogene, 34, 199–208.Google Scholar
  58. 58.
    Zhang, X., Han, B., Huang, J., Zheng, B., Geng, Q., Aziz, F., & Dong, Q. (2010). Prognostic significance of OCT4 expression in adenocarcinoma of the lung. Japanese Journal of Clinical Oncology, 40(10), 961–966.Google Scholar
  59. 59.
    Ryuge, S., Sato, Y., Jiang, S. X., Wang, G., Kobayashi, M., Nagashio, R., Katono, K., Iyoda, A., Satoh, Y., & Masuda, N. (2013). The clinicopathological significance of LGR5 expression in lung adenocarcinoma. Lung Cancer, 82, 143e148.Google Scholar
  60. 60.
    Dandawate, P. R., Subramaniam, D., Jensen, R. A., & Anant, S. (2016). Targeting cancer stem cells and signaling pathways by phytochemicals: novel approach for breast cancer therapy. Seminars in Cancer Biology, 40-41, 192–208.Google Scholar
  61. 61.
    Oh, J., Hlatky, L., Jeong, Y. S., & Kim, D. (2016). Therapeutic effectiveness of anticancer phytochemicals on cancer stem cells. Toxins, 8(7), 199.Google Scholar
  62. 62.
    Singh, A., Sharma, N., Ghosh, M., Park, Y. H., & Jeong, D. K. (2017). Emerging importance of dietary phytochemicals in fight against cancer: role in targeting cancer stem cells. Critical Reviews in Food Science and Nutrition, 57(16), 3449–3463.Google Scholar
  63. 63.
    Zhu, J. Y., Yang, X., Chen, Y., Jiang, Y., Wang, S. J., Li, Y., Wang, X. Q., Meng, Y., Zhu, M. M., Ma, X., Huang, C., Wu, R., Xie, C. F., Li, X. T., Geng, S. S., Wu, J. S., Zhong, C. Y., & Han, H. Y. (2017). Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β-catenin and sonic hedgehog pathways. Phytotherapy Research, 31(4), 680–688.Google Scholar
  64. 64.
    Zhang, L., Wen, X., Li, M., Li, S., & Zhao, H. (2018). Targeting cancer stem cells and signaling pathways by resveratrol and pterostilbene. Biofactors, 44(1), 61–68.Google Scholar
  65. 65.
    Rapp, J., Jaromi, L., Kvell, K., Miskei, G., & Pongracz, J. E. (2017). WNT signaling - lung cancer is no exception. Respiratory Research, 18(1), 167.Google Scholar
  66. 66.
    Westhoff, B., Colaluca, I. N., D'Ario, G., et al. (2009). Alterations of the Notch pathway in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22293–22298.Google Scholar
  67. 67.
    Hassan, K. A., Wang, L., Korkaya, H., et al. (2013). Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clinical Cancer Research, 19(8), 1972–1980.Google Scholar
  68. 68.
    Venkatesh, V., Nataraj, R., Thangaraj, G. S., et al. (2018). Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investigation, 5, 5.Google Scholar
  69. 69.
    Zou, B., Zhou, X. L., Lai, S. Q., & Liu, J. C. (2018). Notch signaling and non-small cell lung cancer. Oncology Letters, 15(3), 3415–3421.Google Scholar
  70. 70.
    Casimiro, M. C., Velasco-Velázquez, M., Aguirre-Alvarado, C., & Pestell, R. G. (2014). Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opinion on Investigational Drugs, 23, 295–304.Google Scholar
  71. 71.
    Carvalho, M. R., Lima, D., Reis, R. L., Oliveira, J. M., & Correlo, V. M. (2017). Anti-cancer drug validation: the contribution of tissue engineered models. Stem Cell Reviews and Reports, 13(3), 347–363.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of LouisvilleLouisvilleUSA
  2. 2.James Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleUSA

Personalised recommendations