Advertisement

Impact of Diabetes Mellitus on Human Mesenchymal Stromal Cell Biology and Functionality: Implications for Autologous Transplantation

  • Marwa Mahmoud
  • Nourhan Abu-Shahba
  • Osama Azmy
  • Nagwa El-BadriEmail author
Article

Abstract

Multipotent mesenchymal stem/stromal cells (MSCs) have regenerative and immunomodulatory properties to restore and repair injured tissues, making them attractive candidates for cell-based therapies. Experimental and clinical evidence has demonstrated the effectiveness of MSC transplantation in managing diabetes mellitus (DM). Autologous MSCs are assumed to be favorable because patient-derived cells are readily available and do not entail sustained immunosuppressive therapy. DM is associated with hyperglycemia, oxidative stress and altered immune responses and inflammation. It may thus alter the biological characteristics and therapeutic qualities of human MSCs (hMSCs). Several studies have explored the effect of DM or the diabetic microenvironment on the engraftment and efficacy of transplanted MSCs, which are determined by proliferation, differentiation, senescence, angiogenesis supportive effect, migration, anti-oxidative capacity and immunomodulatory properties. This review aims to present the available data on how DM impacts MSC biology and functionality and identify future perspectives for autologous MSC-based therapy in diabetics.

Keywords

Diabetes mellitus Mesenchymal stromal cells Biology Functionality Autologus transplantation 

Notes

Acknowledgements

This manuscript was funded in part by the Science and Technology Development Fund, STDF grant #5300, Center of Excellence for Stem Cells and Regenerative Medicine.

Compliance with Ethical Standards

Conflict of Interest

Authors declare no conflict of interest.

Supplementary material

12015_2018_9869_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17 kb)

References

  1. 1.
    Scully, T. (2012). Diabetes in numbers. Nature, 485(7398), S2–S3.PubMedCrossRefGoogle Scholar
  2. 2.
    Berezin, A. E. (2017). New trends in stem cell transplantation in diabetes mellitus type I and type II. In P. Pham (Ed.), Pancreas, kidney and skin regeneration (pp. 73–88). Cham: Springer.CrossRefGoogle Scholar
  3. 3.
    Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. Physiological Reviews, 93(1), 137–188.PubMedCrossRefGoogle Scholar
  4. 4.
    Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281.PubMedCrossRefGoogle Scholar
  5. 5.
    Atkinson, M. A. (2012). The pathogenesis and natural history of type 1 diabetes. Cold Spring Harbor Perspectives in Medicine, 2(11).Google Scholar
  6. 6.
    Alicka, M., & Marycz, K. (2018). The effect of chronic inflammation and oxidative and endoplasmic reticulum stress in the course of metabolic syndrome and its therapy. Stem Cells International, 2018, 4274361–4274313.  https://doi.org/10.1155/2018/4274361.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Donath, M. Y., & Shoelson, S. E. (2011). Type 2 diabetes as an inflammatory disease. Nature Reviews. Immunology, 11(2), 98–107.PubMedCrossRefGoogle Scholar
  8. 8.
    Chiefari, E., Arcidiacono, B., Foti, D., & Brunetti, A. (2017). Gestational diabetes mellitus: An updated overview. Journal of Endocrinological Investigation, 40(9), 899–909.PubMedCrossRefGoogle Scholar
  9. 9.
    Fanelli, C. G., Porcellati, F., Pampanelli, S., & Bolli, G. B. (2004). Insulin therapy and hypoglycaemia: The size of the problem. Diabetes/Metabolism Research and Reviews, 20(Suppl 2), S32–S42.PubMedCrossRefGoogle Scholar
  10. 10.
    Cefalu, W. T. (2012). American diabetes association-European association for the study of diabetes position statement: Due diligence was conducted. Diabetes Care, 35(6), 1201–1203.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Health Quality, O. (2015). Pancreas islet transplantation for patients with type 1 diabetes mellitus: A clinical evidence review. Ont Health Technol Assess Ser, 15(16), 1–84.Google Scholar
  12. 12.
    El-Badri, N., & Ghoneim, M. A. (2013). Mesenchymal stem cell therapy in diabetes mellitus: Progress and challenges. Journal of Nucleic Acids, 2013, 194858–194857.  https://doi.org/10.1155/2013/194858.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    El-Badawy, A., & El-Badri, N. (2016). Clinical efficacy of stem cell therapy for diabetes mellitus: A meta-analysis. PLoS One, 11(4), e0151938.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.PubMedCrossRefGoogle Scholar
  15. 15.
    Zuk, P. A., Zhu, M., Ashjian, P., de Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., & Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Romanov, Y. A., Svintsitskaya, V. A., & Smirnov, V. N. (2003). Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells, 21(1), 105–110.PubMedCrossRefGoogle Scholar
  17. 17.
    Bieback, K., Kern, S., Kluter, H., & Eichler, H. (2004). Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells, 22(4), 625–634.PubMedCrossRefGoogle Scholar
  18. 18.
    Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sawangmake, C., Pavasant, P., Chansiripornchai, P., & Osathanon, T. (2014). High glucose condition suppresses neurosphere formation by human periodontal ligament-derived mesenchymal stem cells. Journal of Cellular Biochemistry, 115(5), 928–939.PubMedCrossRefGoogle Scholar
  20. 20.
    Krampera, M., Franchini, M., Pizzolo, G., & Aprili, G. (2007). Mesenchymal stem cells: From biology to clinical use. Blood Transfusion, 5(3), 120–129.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Rohban, R., & Pieber, T. R. (2017). Mesenchymal stem and progenitor cells in regeneration: Tissue specificity and regenerative potential. Stem Cells International, 2017, 5173732.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chandra, V., Swetha, G., Muthyala, S., et al. (2011). Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS One, 6(6), e20615.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kim, S. J., Choi, Y. S., Ko, E. S., Lim, S. M., Lee, C. W., & Kim, D. I. (2012). Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation. Journal of Bioscience and Bioengineering, 113(6), 771–777.PubMedCrossRefGoogle Scholar
  24. 24.
    Ho, J. H., Tseng, T. C., Ma, W. H., Ong, W. K., Chen, Y. F., Chen, M. H., Lin, M. W., Hong, C. Y., & Lee, O. K. (2012). Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and beta-cell differentiation in streptozocin-induced diabetic mice. Cell Transplantation, 21(5), 997–1009.PubMedCrossRefGoogle Scholar
  25. 25.
    Tsai, P. J., Wang, H. S., Lin, G. J., Chou, S. C., Chu, T. H., Chuan, W. T., Lu, Y. J., Weng, Y. J., Su, C. H., Hsieh, P. S., Sytwu, H. K., Lin, C. H., Chen, T. H., & Shyu, J. F. (2015). Undifferentiated Wharton's jelly mesenchymal stem cell transplantation induces insulin-producing cell differentiation and suppression of T-cell-mediated autoimmunity in nonobese diabetic mice. Cell Transplantation, 24(8), 1555–1570.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hess, D., Li, L., Martin, M., Sakano, S., Hill, D., Strutt, B., Thyssen, S., Gray, D. A., & Bhatia, M. (2003). Bone marrow-derived stem cells initiate pancreatic regeneration. Nature Biotechnology, 21(7), 763–770.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lee, R. H., Seo, M. J., Reger, R. L., Spees, J. L., Pulin, A. A., Olson, S. D., & Prockop, D. J. (2006). Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences of the United States of America, 103(46), 17438–17443.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ezquer, F. E., Ezquer, M. E., Parrau, D. B., Carpio, D., Yanez, A. J., & Conget, P. A. (2008). Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biology of Blood and Marrow Transplantation, 14(6), 631–640.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bassi, E. J., Moraes-Vieira, P. M., Moreira-Sa, C. S., et al. (2012). Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes, 61(10), 2534–2545.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ezquer, F., Ezquer, M., Contador, D., Ricca, M., Simon, V., & Conget, P. (2012). The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells, 30(8), 1664–1674.PubMedCrossRefGoogle Scholar
  31. 31.
    Si, Y., Zhao, Y., Hao, H., Liu, J., Guo, Y., Mu, Y., Shen, J., Cheng, Y., Fu, X., & Han, W. (2012). Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: Identification of a novel role in improving insulin sensitivity. Diabetes, 61(6), 1616–1625.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kono, T. M., Sims, E. K., Moss, D. R., Yamamoto, W., Ahn, G., Diamond, J., Tong, X., Day, K. H., Territo, P. R., Hanenberg, H., Traktuev, D. O., March, K. L., & Evans-Molina, C. (2014). Human adipose-derived stromal/stem cells protect against STZ-induced hyperglycemia: Analysis of hASC-derived paracrine effectors. Stem Cells, 32(7), 1831–1842.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Xie, M., Hao, H. J., Cheng, Y., Xie, Z. Y., Yin, Y. Q., Zhang, Q., Gao, J. Q., Liu, H. Y., Mu, Y. M., & Han, W. D. (2017). Adipose-derived mesenchymal stem cells ameliorate hyperglycemia through regulating hepatic glucose metabolism in type 2 diabetic rats. Biochemical and Biophysical Research Communications, 483(1), 435–441.PubMedCrossRefGoogle Scholar
  34. 34.
    Xie, Z., Hao, H., Tong, C., Cheng, Y., Liu, J., Pang, Y., Si, Y., Guo, Y., Zang, L., Mu, Y., & Han, W. (2016). Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells, 34(3), 627–639.PubMedCrossRefGoogle Scholar
  35. 35.
    Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076–1084.PubMedCrossRefGoogle Scholar
  36. 36.
    Watt, S. M., Gullo, F., van der Garde, M., Markeson, D., Camicia, R., Khoo, C. P., & Zwaginga, J. J. (2013). The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. British Medical Bulletin, 108, 25–53.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Khubutiya, M. S., Vagabov, A. V., Temnov, A. A., & Sklifas, A. N. (2014). Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy, 16(5), 579–585.PubMedCrossRefGoogle Scholar
  38. 38.
    Yaochite, J. N., de Lima, K. W., Caliari-Oliveira, et al. (2016). Multipotent mesenchymal stromal cells from patients with newly diagnosed type 1 diabetes mellitus exhibit preserved in vitro and in vivo immunomodulatory properties. Stem Cell Research & Therapy, 7, 14.CrossRefGoogle Scholar
  39. 39.
    Klyushnenkova, E., Mosca, J. D., Zernetkina, V., Majumdar, M. K., Beggs, K. J., Simonetti, D. W., Deans, R. J., & McIntosh, K. R. (2005). T cell responses to allogeneic human mesenchymal stem cells: Immunogenicity, tolerance, and suppression. Journal of Biomedical Science, 12(1), 47–57.PubMedCrossRefGoogle Scholar
  40. 40.
    Griffin, M. D., Ryan, A. E., Alagesan, S., Lohan, P., Treacy, O., & Ritter, T. (2013). Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: What have we learned so far? Immunology and Cell Biology, 91(1), 40–51.PubMedCrossRefGoogle Scholar
  41. 41.
    Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B., Lurvink, E. G., Willemze, R., & Fibbe, W. E. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108(6), 2114–2120.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    van de Vyver, M. (2017). Intrinsic mesenchymal stem cell dysfunction in diabetes mellitus: Implications for autologous cell therapy. Stem Cells and Development, 26(14), 1042–1053.PubMedCrossRefGoogle Scholar
  43. 43.
    Sun, Y., Chen, L., Hou, X. G., et al. (2007). Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Medical Journal, 120(9), 771–776.PubMedCrossRefGoogle Scholar
  44. 44.
    Phadnis, S. M., Ghaskadbi, S. M., Hardikar, A. A., & Bhonde, R. R. (2009). Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. The Review of Diabetic Studies, 6(4), 260–270.PubMedCrossRefGoogle Scholar
  45. 45.
    Cramer, C., Freisinger, E., Jones, R. K., Slakey, D. P., Dupin, C. L., Newsome, E. R., Alt, E. U., & Izadpanah, R. (2010). Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells and Development, 19(12), 1875–1884.PubMedCrossRefGoogle Scholar
  46. 46.
    Harris, L. J., Zhang, P., Abdollahi, H., Tarola, N. A., DiMatteo, C., McIlhenny, S. E., Tulenko, T. N., & DiMuzio, P. J. (2010). Availability of adipose-derived stem cells in patients undergoing vascular surgical procedures. The Journal of Surgical Research, 163(2), e105–e112.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gu, J. H., Lee, J. S., Kim, D. W., Yoon, E. S., & Dhong, E. S. (2012). Neovascular potential of adipose-derived stromal cells (ASCs) from diabetic patients. Wound Repair and Regeneration, 20(2), 243–252.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee, H. C., An, S. G., Lee, H. W., Park, J. S., Cha, K. S., Hong, T. J., Park, J. H., Lee, S. Y., Kim, S. P., Kim, Y. D., Chung, S. W., Bae, Y. C., Shin, Y. B., Kim, J. I., & Jung, J. S. (2012). Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: A pilot study. Circulation Journal, 76(7), 1750–1760.PubMedCrossRefGoogle Scholar
  49. 49.
    Acosta, L., Hmadcha, A., Escacena, N., Perez-Camacho, I., de la Cuesta, A., Ruiz-Salmeron, R., Gauthier, B. R., & Soria, B. (2013). Adipose mesenchymal stromal cells isolated from type 2 diabetic patients display reduced fibrinolytic activity. Diabetes, 62(12), 4266–4269.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dentelli, P., Barale, C., Togliatto, G., Trombetta, A., Olgasi, C., Gili, M., Riganti, C., Toppino, M., & Brizzi, M. F. (2013). A diabetic milieu promotes OCT4 and NANOG production in human visceral-derived adipose stem cells. Diabetologia, 56(1), 173–184.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Liu, Y., Li, Z., Liu, T., Xue, X., Jiang, H., Huang, J., & Wang, H. (2013). Impaired cardioprotective function of transplantation of mesenchymal stem cells from patients with diabetes mellitus to rats with experimentally induced myocardial infarction. Cardiovascular Diabetology, 12, 40.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Dzhoyashvili, N. A., Efimenko, A. Y., Kochegura, T. N., Kalinina, N. I., Koptelova, N. V., Sukhareva, O. Y., Shestakova, M. V., Akchurin, R. S., Tkachuk, V. A., & Parfyonova, Y. V. (2014). Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2. Journal of Translational Medicine, 12, 337.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Gabr, M. M., Zakaria, M. M., Refaie, A. F., Ismail, A. M., Abou-el-Mahasen, M. A., Ashamallah, S. A., Khater, S. M., el-Halawani, S. M., Ibrahim, R. Y., Uin, G. S., Kloc, M., Calne, R. Y., & Ghoneim, M. A. (2013). Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplantation, 22(1), 133–145.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Koci, Z., Turnovcova, K., Dubsky, M., et al. (2014). Characterization of human adipose tissue-derived stromal cells isolated from diabetic patient's distal limbs with critical ischemia. Cell Biochemistry and Function, 32(7), 597–604.PubMedCrossRefGoogle Scholar
  55. 55.
    Policha, A., Zhang, P., Chang, L., Lamb, K., Tulenko, T., & DiMuzio, P. (2014). Endothelial differentiation of diabetic adipose-derived stem cells. The Journal of Surgical Research, 192(2), 656–663.PubMedCrossRefGoogle Scholar
  56. 56.
    Vecellio, M., Spallotta, F., Nanni, S., Colussi, C., Cencioni, C., Derlet, A., Bassetti, B., Tilenni, M., Carena, M. C., Farsetti, A., Sbardella, G., Castellano, S., Mai, A., Martelli, F., Pompilio, G., Capogrossi, M. C., Rossini, A., Dimmeler, S., Zeiher, A., & Gaetano, C. (2014). The histone acetylase activator pentadecylidenemalonate 1b rescues proliferation and differentiation in the human cardiac mesenchymal cells of type 2 diabetic patients. Diabetes, 63(6), 2132–2147.  https://doi.org/10.2337/db13-0731.CrossRefPubMedGoogle Scholar
  57. 57.
    Liu, Q., Hu, C. H., Zhou, C. H., Cui, X. X., Yang, K., Deng, C., Xia, J. J., Wu, Y., Liu, L. C., & Jin, Y. (2015). DKK1 rescues osteogenic differentiation of mesenchymal stem cells isolated from periodontal ligaments of patients with diabetes mellitus induced periodontitis. Scientific Reports, 5, 13142.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Minteer, D. M., Young, M. T., Lin, Y. C., et al. (2015). Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications. J Tissue Eng, 6, 2041731415579215.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Brewster, L., Robinson, S., Wang, R., Griffiths, S., Li, H., Peister, A., Copland, I., & McDevitt, T. (2017). Expansion and angiogenic potential of mesenchymal stem cells from patients with critical limb ischemia. Journal of Vascular Surgery, 65(3), 826–838 e821.PubMedCrossRefGoogle Scholar
  60. 60.
    Davies, L. C., Alm, J. J., Heldring, N., Moll, G., Gavin, C., Batsis, I., Qian, H., Sigvardsson, M., Nilsson, B., Kyllonen, L. E., Salmela, K. T., Carlsson, P. O., Korsgren, O., & le Blanc, K. (2016). Type 1 diabetes mellitus donor mesenchymal stromal cells exhibit comparable potency to healthy controls in vitro. Stem Cells Translational Medicine, 5(11), 1485–1495.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    de Lima, K. A., de Oliveira, G. L., Yaochite, J. N., Pinheiro, D. G., de Azevedo, J. T., Silva, W. A., Jr., … Malmegrim, K. C. (2016). Transcriptional profiling reveals intrinsic mRNA alterations in multipotent mesenchymal stromal cells isolated from bone marrow of newly-diagnosed type 1 diabetes patients. Stem Cell Research & Therapy, 7(1), 92.Google Scholar
  62. 62.
    Cheng, N. C., Hsieh, T. Y., Lai, H. S., & Young, T. H. (2016). High glucose-induced reactive oxygen species generation promotes stemness in human adipose-derived stem cells. Cytotherapy, 18(3), 371–383.PubMedCrossRefGoogle Scholar
  63. 63.
    Lafosse, A., Dufeys, C., Beauloye, C., Horman, S., & Dufrane, D. (2016). Impact of hyperglycemia and low oxygen tension on adipose-derived stem cells compared with dermal fibroblasts and keratinocytes: Importance for wound healing in type 2 diabetes. PLoS One, 11(12), e0168058.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Serena, C., Keiran, N., Ceperuelo-Mallafre, V., et al. (2016). Obesity and type 2 diabetes alters the immune properties of human adipose derived stem cells. Stem Cells, 34(10), 2559–2573.Google Scholar
  65. 65.
    Mancini, O. K., Shum-Tim, D., Stochaj, U., Correa, J. A., & Colmegna, I. (2017). Erratum to: Age, atherosclerosis and type 2 diabetes reduce human mesenchymal stromal cell-mediated T-cell suppression. Stem Cell Research & Therapy, 8(1), 35.CrossRefGoogle Scholar
  66. 66.
    Nawrocka, D., Kornicka, K., Szydlarska, J., & Marycz, K. (2017). Corrigendum to "basic fibroblast growth factor inhibits apoptosis and promotes proliferation of adipose-derived mesenchymal stromal cells isolated from patients with type 2 diabetes by reducing cellular oxidative stress". Oxidative Medicine and Cellular Longevity, 2017, 1083618.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Spallotta, F., Cencioni, C., Atlante, S., Garella, D., Cocco, M., Mori, M., Mastrocola, R., Kuenne, C., Guenther, S., Nanni, S., Azzimato, V., Zukunft, S., Kornberger, A., Sürün, D., Schnütgen, F., von Melchner, H., di Stilo, A., Aragno, M., Braspenning, M., van Criekinge, W., de Blasio, M. J., Ritchie, R. H., Zaccagnini, G., Martelli, F., Farsetti, A., Fleming, I., Braun, T., Beiras-Fernandez, A., Botta, B., Collino, M., Bertinaria, M., Zeiher, A. M., & Gaetano, C. (2018). Stable oxidative cytosine modifications accumulate in cardiac mesenchymal cells from Type2 diabetes patients: Rescue by alpha-ketoglutarate and TET-TDG functional reactivation. Circulation Research, 122(1), 31–46.PubMedCrossRefGoogle Scholar
  68. 68.
    Ferland-McCollough, D., Maselli, D., Spinetti, G., et al. (2018). MCP-1 feedback loop between adipocytes and mesenchymal stromal cells causes fat accumulation and contributes to hematopoietic stem cell rarefaction in the bone marrow of patients with diabetes. Diabetes, 67(7), 1380–1394.Google Scholar
  69. 69.
    Wajid, N., Naseem, R., Anwar, S. S., Awan, S. J., Ali, M., Javed, S., & Ali, F. (2015). The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells. Cell and Tissue Banking, 16(3), 389–397.PubMedCrossRefGoogle Scholar
  70. 70.
    Kim, J., Piao, Y., Pak, Y. K., Chung, D., Han, Y. M., Hong, J. S., Jun, E. J., Shim, J. Y., Choi, J., & Kim, C. J. (2015). Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells and Development, 24(5), 575–586.PubMedCrossRefGoogle Scholar
  71. 71.
    Mathew, S. A., & Bhonde, R. (2017). Mesenchymal stromal cells isolated from gestationally diabetic human placenta exhibit insulin resistance, decreased clonogenicity and angiogenesis. Placenta, 59, 1–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Li, Y. M., Schilling, T., Benisch, et al. (2007). Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochemical and Biophysical Research Communications, 363(1), 209–215.PubMedCrossRefGoogle Scholar
  73. 73.
    Weil, B. R., Abarbanell, A. M., Herrmann, J. L., Wang, Y., & Meldrum, D. R. (2009). High glucose concentration in cell culture medium does not acutely affect human mesenchymal stem cell growth factor production or proliferation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 296(6), R1735–R1743.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ryu, J. M., Lee, M. Y., Yun, S. P., & Han, H. J. (2010). High glucose regulates cyclin D1/E of human mesenchymal stem cells through TGF-beta1 expression via Ca2+/PKC/MAPKs and PI3K/Akt/mTOR signal pathways. Journal of Cellular Physiology, 224(1), 59–70.PubMedGoogle Scholar
  75. 75.
    Kim, Y. J., Hwang, S. H., Lee, S. Y., Shin, K. K., Cho, H. H., Bae, Y. C., & Jung, J. S. (2012). miR-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose. Stem Cells and Development, 21(10), 1749–1760.PubMedCrossRefGoogle Scholar
  76. 76.
    Dhanasekaran, M., Indumathi, S., Rajkumar, J. S., & Sudarsanam, D. (2013). Effect of high glucose on extensive culturing of mesenchymal stem cells derived from subcutaneous fat, omentum fat and bone marrow. Cell Biochemistry and Function, 31(1), 20–29.PubMedCrossRefGoogle Scholar
  77. 77.
    Kim, S. Y., Lee, J. Y., Park, Y. D., Kang, K. L., Lee, J. C., & Heo, J. S. (2013). Hesperetin alleviates the inhibitory effects of high glucose on the osteoblastic differentiation of periodontal ligament stem cells. PLoS One, 8(6), e67504.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Liu, Z., Chen, T., Sun, W., et al. (2016). DNA demethylation rescues the impaired osteogenic differentiation ability of human periodontal ligament stem cells in high glucose. SciRep, 6, 27447.Google Scholar
  79. 79.
    Ying, X., Chen, X., Liu, H., Nie, P., Shui, X., Shen, Y., Yu, K., & Cheng, S. (2015). Silibinin alleviates high glucose-suppressed osteogenic differentiation of human bone marrow stromal cells via antioxidant effect and PI3K/Akt signaling. European Journal of Pharmacology, 765, 394–401.PubMedCrossRefGoogle Scholar
  80. 80.
    Kato, H., Taguchi, Y., Tominaga, K., Kimura, D., Yamawaki, I., Noguchi, M., Yamauchi, N., Tamura, I., Tanaka, A., & Umeda, M. (2016). High glucose concentrations suppress the proliferation of human periodontal ligament stem cells and their differentiation into osteoblasts. Journal of Periodontology, 87(4), e44–e51.PubMedCrossRefGoogle Scholar
  81. 81.
    Kang, H. J., Kang, W. S., Hong, M. H., Choe, N., Kook, H., Jeong, H. C., Kang, J., Hur, J., Jeong, M. H., Kim, Y. S., & Ahn, Y. (2015). Involvement of miR-34c in high glucose-insulted mesenchymal stem cells leads to inefficient therapeutic effect on myocardial infarction. Cellular Signalling, 27(11), 2241–2251.PubMedCrossRefGoogle Scholar
  82. 82.
    Hankamolsiri, W., Manochantr, S., Tantrawatpan, C., Tantikanlayaporn, D., Tapanadechopone, P., & Kheolamai, P. (2016). The effects of high glucose on Adipogenic and osteogenic differentiation of gestational tissue-derived MSCs. Stem Cells International, 2016, 9674614.PubMedCrossRefGoogle Scholar
  83. 83.
    Hajmousa, G., Elorza, A. A., Nies, V. J., Jensen, E. L., Nagy, R. A., & Harmsen, M. C. (2016). Hyperglycemia induces bioenergetic changes in adipose-derived stromal cells while their Pericytic function is retained. Stem Cells and Development, 25(19), 1444–1453.PubMedCrossRefGoogle Scholar
  84. 84.
    Fromer, M. W., Chang, S., Hagaman, A. L. R., Koko, K. R., Nolan, R. S., Zhang, P., Brown, S. A., Carpenter, J. P., & Caputo, F. J. (2018). The endothelial cell secretome as a novel treatment to prime adipose-derived stem cells for improved wound healing in diabetes. Journal of Vascular Surgery, 68(1), 234–244.PubMedCrossRefGoogle Scholar
  85. 85.
    Qu, B., Gong, K., Yang, H. S., Li, Y. G., Jiang, T., Zeng, Z. M., Cao, Z. R., & Pan, X. M. (2018). MiR-449 overexpression inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via suppressing Sirt1/Fra-1 pathway in high glucose and free fatty acids microenvironment. Biochemical and Biophysical Research Communications, 496(1), 120–126.PubMedCrossRefGoogle Scholar
  86. 86.
    Rezabakhsh, A., Cheraghi, O., Nourazarian, A., Hassanpour, M., Kazemi, M., Ghaderi, S., Faraji, E., Rahbarghazi, R., Avci, Ç. B., Bagca, B. G., & Garjani, A. (2017). Type 2 diabetes inhibited human mesenchymal stem cells Angiogenic response by over-activity of the Autophagic pathway. Journal of Cellular Biochemistry, 118(6), 1518–1530.PubMedCrossRefGoogle Scholar
  87. 87.
    Ali, F., Aziz, F., & Wajid, N. (2017). Effect of type 2 diabetic serum on the behavior of Wharton's jelly-derived mesenchymal stem cells in vitro. Chronic Dis Transl Med, 3(2), 105–111.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Rezaie, J., Mehranjani, M. S., Rahbarghazi, R., & Shariatzadeh, M. A. (2018). Angiogenic and restorative abilities of human mesenchymal stem cells were reduced following treatment with serum from diabetes mellitus type 2 patients. Journal of Cellular Biochemistry, 119(1), 524–535.PubMedCrossRefGoogle Scholar
  89. 89.
    Thakkar, U. G., Trivedi, H. L., Vanikar, A. V., & Dave, S. D. (2015). Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus. Cytotherapy, 17(7), 940–947.PubMedCrossRefGoogle Scholar
  90. 90.
    Carlsson, P. O., Schwarcz, E., Korsgren, O., & Le Blanc, K. (2015). Preserved beta-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes, 64(2), 587–592.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Dang, L., Phan, N., & Truong, K. (2017). Mesenchymal stem cells for diabetes mellitus treatment: New advances. Biomedical Research and Therapy, 4(1), 1062–1081.CrossRefGoogle Scholar
  92. 92.
    Bhansali, S., Dutta, P., Kumar, V., Yadav, M. K., Jain, A., Mudaliar, S., Bhansali, S., Sharma, R. R., Jha, V., Marwaha, N., Khandelwal, N., Srinivasan, A., Sachdeva, N., Hawkins, M., & Bhansali, A. (2017). Efficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: A randomized, placebo-controlled comparative study. Stem Cells and Development, 26(7), 471–481.PubMedCrossRefGoogle Scholar
  93. 93.
    Hajer, G. R., van Haeften, T. W., & Visseren, F. L. (2008). Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. European Heart Journal, 29(24), 2959–2971.PubMedCrossRefGoogle Scholar
  94. 94.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., … Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.Google Scholar
  95. 95.
    Alt, E., Yan, Y., Gehmert, S., Song, Y. H., Altman, A., Gehmert, S., Vykoukal, D., & Bai, X. (2011). Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biology of the Cell, 103(4), 197–208.PubMedCrossRefGoogle Scholar
  96. 96.
    Konno, M., Hamabe, A., Hasegawa, S., Ogawa, H., Fukusumi, T., Nishikawa, S., Ohta, K., Kano, Y., Ozaki, M., Noguchi, Y., Sakai, D., Kudoh, T., Kawamoto, K., Eguchi, H., Satoh, T., Tanemura, M., Nagano, H., Doki, Y., Mori, M., & Ishii, H. (2013). Adipose-derived mesenchymal stem cells and regenerative medicine. Development, Growth & Differentiation, 55(3), 309–318.CrossRefGoogle Scholar
  97. 97.
    Zhang, F., Cui, J., Liu, X., Lv, B., Liu, X., Xie, Z., & Yu, B. (2015). Roles of microRNA-34a targeting SIRT1 in mesenchymal stem cells. Stem Cell Research & Therapy, 6, 195.CrossRefGoogle Scholar
  98. 98.
    Rutanen, J., Yaluri, N., Modi, S., Pihlajamaki, J., Vanttinen, M., Itkonen, P., Kainulainen, S., Yamamoto, H., Lagouge, M., Sinclair, D. A., Elliott, P., Westphal, C., Auwerx, J., & Laakso, M. (2010). SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity. Diabetes, 59(4), 829–835.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kanafi, M. M., Ramesh, A., Gupta, P. K., & Bhonde, R. R. (2013). Influence of hypoxia, high glucose, and low serum on the growth kinetics of mesenchymal stem cells from deciduous and permanent teeth. Cells, Tissues, Organs, 198(3), 198–208.PubMedCrossRefGoogle Scholar
  100. 100.
    Bigarella, C. L., Liang, R., & Ghaffari, S. (2014). Stem cells and the impact of ROS signaling. Development, 141(22), 4206–4218.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Salah Ud-Din, A. I., Tikhomirova, A., & Roujeinikova, A. (2016). Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT). International Journal of Molecular Sciences, 17(7).Google Scholar
  102. 102.
    Milite, C., Castellano, S., Benedetti, R., Tosco, A., Ciliberti, C., Vicidomini, C., Boully, L., Franci, G., Altucci, L., Mai, A., & Sbardella, G. (2011). Modulation of the activity of histone acetyltransferases by long chain alkylidenemalonates (LoCAMs). Bioorganic & Medicinal Chemistry, 19(12), 3690–3701.CrossRefGoogle Scholar
  103. 103.
    Bochtler, M., Kolano, A., & Xu, G. L. (2017). DNA demethylation pathways: Additional players and regulators. Bioessays, 39(1), 1–13.PubMedCrossRefGoogle Scholar
  104. 104.
    Guo, Z., Chen, R., Zhang, F., Ding, M., & Wang, P. (2018). Exendin-4 relieves the inhibitory effects of high glucose on the proliferation and osteoblastic differentiation of periodontal ligament stem cells. Archives of Oral Biology, 91, 9–16.PubMedCrossRefGoogle Scholar
  105. 105.
    Ambrosi, T. H., Scialdone, A., Graja, A., Gohlke, S., Jank, A. M., Bocian, C., Woelk, L., Fan, H., Logan, D. W., Schürmann, A., Saraiva, L. R., & Schulz, T. J. (2017). Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell, 20(6), 771–784 e776.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Younce, C., & Kolattukudy, P. (2012). MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cellular Physiology and Biochemistry, 30(2), 307–320.PubMedCrossRefGoogle Scholar
  107. 107.
    Liu, W., Konermann, A., Guo, T., Jager, A., Zhang, L., & Jin, Y. (2014). Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions. Biochimica et Biophysica Acta, 1840(3), 1125–1134.PubMedCrossRefGoogle Scholar
  108. 108.
    Li, X., Shan, J., Chang, W., Kim, I., Bao, J., Lee, H. J., Zhang, X., Samuel, V. T., Shulman, G. I., Liu, D., Zheng, J. J., & Wu, D. (2012). Chemical and genetic evidence for the involvement of Wnt antagonist Dickkopf2 in regulation of glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11402–11407.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Gaur, T., Lengner, C. J., Hovhannisyan, H., Bhat, R. A., Bodine, P. V. N., Komm, B. S., Javed, A., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2005). Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. The Journal of Biological Chemistry, 280(39), 33132–33140.PubMedCrossRefGoogle Scholar
  110. 110.
    Marycz, K., Kornicka, K., Maredziak, M., Golonka, P., & Nicpon, J. (2016). Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. Journal of Cellular and Molecular Medicine, 20(12), 2384–2404.  https://doi.org/10.1111/jcmm.12932.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Keats, E., & Khan, Z. A. (2012). Unique responses of stem cell-derived vascular endothelial and mesenchymal cells to high levels of glucose. PLoS One, 7(6), e38752.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Jeon, M., Rahman, N., & Kim, Y. S. (2016). Wnt/beta-catenin signaling plays a distinct role in methyl gallate-mediated inhibition of adipogenesis. Biochemical and Biophysical Research Communications, 479(1), 2227.CrossRefGoogle Scholar
  113. 113.
    Aguiari, P., Leo, S., Zavan, B., Vindigni, V., Rimessi, A., Bianchi, K., Franzin, C., Cortivo, R., Rossato, M., Vettor, R., Abatangelo, G., Pozzan, T., Pinton, P., & Rizzuto, R. (2008). High glucose induces adipogenic differentiation of muscle-derived stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1226–1231.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Atashi, F., Modarressi, A., & Pepper, M. S. (2015). The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells and Development, 24(10), 1150–1163.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kelley, E. E., Khoo, N. K., Hundley, N. J., Malik, U. Z., Freeman, B. A., & Tarpey, M. M. (2010). Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radical Biology & Medicine, 48(4), 493–498.CrossRefGoogle Scholar
  116. 116.
    Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 552(Pt 2), 335–344.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Iyer, S., Han, L., Bartell, S. M., Kim, H. N., Gubrij, I., de Cabo, R., O'Brien, C. A., Manolagas, S. C., & Almeida, M. (2014). Sirtuin1 (Sirt1) promotes cortical bone formation by preventing beta-catenin sequestration by FoxO transcription factors in osteoblast progenitors. The Journal of Biological Chemistry, 289(35), 24069–24078.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yu, S., Geng, Q., Sun, F., Yu, Y., Pan, Q., & Hong, A. (2013). Osteogenic differentiation of C2C12 myogenic progenitor cells requires the Fos-related antigen Fra-1 - a novel target of Runx2. Biochemical and Biophysical Research Communications, 430(1), 173–178.PubMedCrossRefGoogle Scholar
  119. 119.
    El-Badawy, A., Amer, M., Abdelbaset, R., et al. (2016). Adipose stem cells display higher regenerative capacities and more adaptable electro-kinetic properties compared to bone marrow-derived mesenchymal stromal cells. Scientific Reports, 6, 37801.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wang, M., Crisostomo, P. R., Herring, C., Meldrum, K. K., & Meldrum, D. R. (2006). Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 291(4), R880–R884.PubMedCrossRefGoogle Scholar
  121. 121.
    Wang, M., Zhang, W., Crisostomo, P., Markel, T., Meldrum, K. K., Fu, X. Y., & Meldrum, D. R. (2007). STAT3 mediates bone marrow mesenchymal stem cell VEGF production. Journal of Molecular and Cellular Cardiology, 42(6), 1009–1015.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Cao, Y., Sun, Z., Liao, L., Meng, Y., Han, Q., & Zhao, R. C. (2005). Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochemical and Biophysical Research Communications, 332(2), 370–379.PubMedCrossRefGoogle Scholar
  123. 123.
    Karar, J., & Maity, A. (2011). PI3K/AKT/mTOR pathway in angiogenesis. Frontiers in Molecular Neuroscience, 4, 51.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Lassance, L., Miedl, H., Absenger, M., Diaz-Perez, F., Lang, U., Desoye, G., & Hiden, U. (2013). Hyperinsulinemia stimulates angiogenesis of human fetoplacental endothelial cells: A possible role of insulin in placental hypervascularization in diabetes mellitus. The Journal of Clinical Endocrinology and Metabolism, 98(9), E1438–E1447.PubMedCrossRefGoogle Scholar
  125. 125.
    Zheng, X., Li, A., Zhao, L., Zhou, T., Shen, Q., Cui, Q., & Qin, X. (2013). Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 437(4), 625–631.PubMedCrossRefGoogle Scholar
  126. 126.
    Bajou, K., Herkenne, S., Thijssen, V. L., D'Amico, S., Nguyen, N. Q. N., Bouché, A., Tabruyn, S., Srahna, M., Carabin, J. Y., Nivelles, O., Paques, C., Cornelissen, I., Lion, M., Noel, A., Gils, A., Vinckier, S., Declerck, P. J., Griffioen, A. W., Dewerchin, M., Martial, J. A., Carmeliet, P., & Struman, I. (2014). PAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin. Nature Medicine, 20(7), 741–747.  https://doi.org/10.1038/nm.3552.CrossRefPubMedGoogle Scholar
  127. 127.
    Wani, W. Y., Boyer-Guittaut, M., Dodson, M., Chatham, J., Darley-Usmar, V., & Zhang, J. (2015). Regulation of autophagy by protein post-translational modification. Laboratory Investigation, 95(1), 14–25.PubMedCrossRefGoogle Scholar
  128. 128.
    Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: Cellular and molecular mechanisms. The Journal of Pathology, 221(1), 3–12.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Liu, J., Hao, H., Huang, H., Tong, C., Ti, D., Dong, L., Chen, D., Zhao, Y., Liu, H., Han, W., & Fu, X. (2015). Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy. The International Journal of Lower Extremity Wounds, 14(1), 63–72.PubMedCrossRefGoogle Scholar
  130. 130.
    Burke, R. M., & Berk, B. C. (2015). The role of PB1 domain proteins in endothelial cell dysfunction and disease. Antioxidants & Redox Signaling, 22(14), 1243–1256.CrossRefGoogle Scholar
  131. 131.
    Prockop, D. J., & Oh, J. Y. (2012). Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Molecular Therapy, 20(1), 14–20.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Neuss, S., Schneider, R. K., Tietze, L., Knuchel, R., & Jahnen-Dechent, W. (2010). Secretion of fibrinolytic enzymes facilitates human mesenchymal stem cell invasion into fibrin clots. Cells, Tissues, Organs, 191(1), 36–46.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Moll, G., Rasmusson-Duprez, I., von Bahr, L., Connolly-Andersen, A. M., Elgue, G., Funke, L., Hamad, O. A., Lönnies, H., Magnusson, P. U., Sanchez, J., Teramura, Y., Nilsson-Ekdahl, K., Ringdén, O., Korsgren, O., Nilsson, B., & le Blanc, K. (2012). Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells, 30(7), 1565–1574.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Fadini, G. P., Albiero, M., Vigili de Kreutzenberg, S., Boscaro, E., Cappellari, R., Marescotti, M., Poncina, N., Agostini, C., & Avogaro, A. (2013). Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care, 36(4), 943–949.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hocking, A. M. (2015). The role of chemokines in mesenchymal stem cell homing to wounds. Advances in Wound Care (New Rochelle), 4(11), 623–630.CrossRefGoogle Scholar
  136. 136.
    Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., Zhao, R. C., & Shi, Y. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2(2), 141–150.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Mendez-Ferrer, S., Michurina, T. V., Ferraro, F., et al. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308), 829–834.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Bernardo, M. E., & Fibbe, W. E. (2013). Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell, 13(4), 392–402.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Denu, R. A., & Hematti, P. (2016). Effects of oxidative stress on mesenchymal stem cell biology. Oxidative Medicine and Cellular Longevity, 2016, 2989076.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453–R462.PubMedCrossRefGoogle Scholar
  141. 141.
    Kume, S., Kato, S., Yamagishi, S., Inagaki, Y., Ueda, S., Arima, N., Okawa, T., Kojiro, M., & Nagata, K. (2005). Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. Journal of Bone and Mineral Research, 20(9), 1647–1658.PubMedCrossRefGoogle Scholar
  142. 142.
    Yang, K., Wang, X. Q., He, Y. S., et al. (2010). Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells. Cardiovascular Diabetology, 9, 66.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Grant, R. W., & Dixit, V. D. (2013). Mechanisms of disease: Inflammasome activation and the development of type 2 diabetes. Frontiers in Immunology, 4, 50.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Tornatore, L., Thotakura, A. K., Bennett, J., Moretti, M., & Franzoso, G. (2012). The nuclear factor kappa B signaling pathway: Integrating metabolism with inflammation. Trends in Cell Biology, 22(11), 557–566.PubMedCrossRefGoogle Scholar
  145. 145.
    Ye, J. (2013). Mechanisms of insulin resistance in obesity. Frontiers in Medicine, 7(1), 14–24.CrossRefGoogle Scholar
  146. 146.
    Ruan, H., & Dong, L. Q. (2016). Adiponectin signaling and function in insulin target tissues. Journal of Molecular Cell Biology, 8(2), 101–109.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Ohashi, K., Parker, J. L., Ouchi, N., Higuchi, A., Vita, J. A., Gokce, N., Pedersen, A. A., Kalthoff, C., Tullin, S., Sams, A., Summer, R., & Walsh, K. (2010). Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. The Journal of Biological Chemistry, 285(9), 6153–6160.PubMedCrossRefGoogle Scholar
  148. 148.
    Zhao, J., Goldberg, J., Bremner, J. D., & Vaccarino, V. (2012). Global DNA methylation is associated with insulin resistance: A monozygotic twin study. Diabetes, 61(2), 542–546.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Sebok, D., Eberhardt, M., Barbero, A., Linscheid, P., Timper, K., Martin, I., Keller, U., Muller, B., & Zulewski, H. (2007). Bone marrow derived mesenchymal stem cells isolated from patients with diabetes mellitus type 1 are able to induce a pancreatic endocrine genes in vitro. J Stem Cells Regen Med, 2(1), 102–103.PubMedGoogle Scholar
  150. 150.
    Ilangumaran, S., Villalobos-Hernandez, A., Bobbala, D., & Ramanathan, S. (2016). The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions. Cytokine, 82, 125–139.PubMedCrossRefGoogle Scholar
  151. 151.
    Alvarez-Perez, J. C., Ernst, S., Demirci, C., Casinelli, G. P., Mellado-Gil, J. M. D., Rausell-Palamos, F., Vasavada, R. C., & Garcia-Ocana, A. (2014). Hepatocyte growth factor/c-met signaling is required for beta-cell regeneration. Diabetes, 63(1), 216–223.PubMedCrossRefGoogle Scholar
  152. 152.
    Krampera, M., Pasini, A., Rigo, A., Scupoli, M. T., Tecchio, C., Malpeli, G., Scarpa, A., Dazzi, F., Pizzolo, G., & Vinante, F. (2005). HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: Inducing cell expansion and reversibly preventing multilineage differentiation. Blood, 106(1), 59–66.PubMedCrossRefGoogle Scholar
  153. 153.
    Coutu, D. L., Francois, M., & Galipeau, J. (2011). Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood, 117(25), 6801–6812.PubMedCrossRefGoogle Scholar
  154. 154.
    Shukla, A., Grisouard, J., Ehemann, V., Hermani, A., Enzmann, H., & Mayer, D. (2009). Analysis of signaling pathways related to cell proliferation stimulated by insulin analogs in human mammary epithelial cell lines. Endocrine-Related Cancer, 16(2), 429–441.PubMedCrossRefGoogle Scholar
  155. 155.
    Chen, J., Crawford, R., Chen, C., & Xiao, Y. (2013). The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Engineering. Part B, Reviews, 19(6), 516–528.PubMedCrossRefGoogle Scholar
  156. 156.
    Raffaele, M., Li Volti, G., Barbagallo, I. A., & Vanella, L. (2016). Therapeutic efficacy of stem cells transplantation in diabetes: Role of Heme oxygenase. Frontiers in Cell and Development Biology, 4, 80.CrossRefGoogle Scholar
  157. 157.
    Kawamura, N., Kugimiya, F., Oshima, Y., Ohba, S., Ikeda, T., Saito, T., Shinoda, Y., Kawasaki, Y., Ogata, N., Hoshi, K., Akiyama, T., Chen, W. S., Hay, N., Tobe, K., Kadowaki, T., Azuma, Y., Tanaka, S., Nakamura, K., Chung, U. I., & Kawaguchi, H. (2007). Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS One, 2(10), e1058.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Lo, T., Ho, J. H., Yang, M. H., & Lee, O. K. (2011). Glucose reduction prevents replicative senescence and increases mitochondrial respiration in human mesenchymal stem cells. Cell Transplantation, 20(6), 813–825.PubMedCrossRefGoogle Scholar
  159. 159.
    Bakopoulou, A., Kritis, A., Andreadis, D., Papachristou, E., Leyhausen, G., Koidis, P., Geurtsen, W., & Tsiftsoglou, A. (2015). Angiogenic potential and Secretome of human apical papilla mesenchymal stem cells in various stress microenvironments. Stem Cells and Development, 24(21), 2496–2512.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Rekittke, N. E., Ang, M., Rawat, D., Khatri, R., & Linn, T. (2016). Regenerative therapy of type 1 diabetes mellitus: From pancreatic islet transplantation to mesenchymal stem cells. Stem Cells International, 2016, 3764681.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Mottaghi, S., Larijani, B., & Sharifi, A. M. (2012). Apelin 13: A novel approach to enhance efficacy of hypoxic preconditioned mesenchymal stem cells for cell therapy of diabetes. Medical Hypotheses, 79(6), 717–718.PubMedCrossRefGoogle Scholar
  162. 162.
    Guarente, L. (2007). Sirtuins in aging and disease. Cold Spring Harbor Symposia on Quantitative Biology, 72, 483–488.PubMedCrossRefGoogle Scholar
  163. 163.
    Yuan, H. F., Zhai, C., Yan, X. L., Zhao, D. D., Wang, J. X., Zeng, Q., Chen, L., Nan, X., He, L. J., Li, S. T., Yue, W., & Pei, X. T. (2012). SIRT1 is required for long-term growth of human mesenchymal stem cells. J Mol Med (Berl), 90(4), 389–400.CrossRefGoogle Scholar
  164. 164.
    Shakibaei, M., Shayan, P., Busch, F., Aldinger, C., Buhrmann, C., Lueders, C., & Mobasheri, A. (2012). Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: Potential role of Runx2 deacetylation. PLoS One, 7(4), e35712.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Fu, Y., Kinter, M., Hudson, J., Humphries, K. M., Lane, R. S., White, J. R., Hakim, M., Pan, Y., Verdin, E., & Griffin, T. M. (2016). Aging promotes Sirtuin 3-dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis & Rhematology, 68(8), 1887–1898.CrossRefGoogle Scholar
  166. 166.
    Jeong, S. M., Hwang, S., & Seong, R. H. (2016). SIRT4 regulates cancer cell survival and growth after stress. Biochemical and Biophysical Research Communications, 470(2), 251–256.PubMedCrossRefGoogle Scholar
  167. 167.
    Wu, J., Strawn, T. L., Luo, M., Wang, L., Li, R., Ren, M., Xia, J., Zhang, Z., Ma, W., Luo, T., Lawrence, D. A., & Fay, W. P. (2015). Plasminogen activator inhibitor-1 inhibits angiogenic signaling by uncoupling vascular endothelial growth factor receptor-2-alphaVbeta3 integrin cross talk. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(1), 111–120.PubMedCrossRefGoogle Scholar
  168. 168.
    Cui, Z., Zhou, H., He, C., Wang, W., Yang, Y., & Tan, Q. (2015). Upregulation of Bcl-2 enhances secretion of growth factors by adipose-derived stem cells deprived of oxygen and glucose. Bioscience Trends, 9(2), 122–128.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Stem Cell Research group, Medical Research Centre of ExcellenceNational Research CentreCairoEgypt
  2. 2.Medical Molecular Genetics Department, Human Genetics and Genome Research DivisionNational Research CentreCairoEgypt
  3. 3.Department of Reproductive Health ResearchNational Research CentreCairoEgypt
  4. 4.Center of Excellence for Stem Cells and Regenerative MedicineZewail City of Science and Technology6th of October CityEgypt

Personalised recommendations