Advertisement

Stem Cell Reviews and Reports

, Volume 15, Issue 2, pp 166–175 | Cite as

Biological Products: Cellular Therapy and FDA Approved Products

  • Ali GolchinEmail author
  • Tahereh Zarnoosheh Farahany
Article

Abstract

The pace of advances in the world of science have created new opportunities and insights that give us new and more understanding of our nature and environment. Among the different fields of science, new medical sciences have drawn a great deal of attention among medical science researchers and the society. The hope for finding treatments for incurable diseases and further improvement of man’s health is growing thanks to new medical technologies. Among the novel medical fields that have been extensively covered by medical and academic societies are cell therapy and gene therapy that are categorized under regenerative medicine. The present paper is an attempt to introduce the prospect of a curative cell-based therapy and new cellular and gene therapy drugs that have been recently approved by FDA (food and drug administration). Cellular and gene therapy are two very close fields of regenerative medicine and sciences which their targets and applications can be discussed together. What adds to the importance of this new field of science is the possibility to translate the hope for treatment of incurable diseases into actual treatments. What follows delves deeper into this new field of science and the drugs.

Keywords

Approved drugs Applications Cellular therapy Gene therapy Stem cell 

Notes

Author Contributions

A.G. conceptualized the outline and contents of the article. All authors contributed to writing and editing the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Authors do not have conflict of interest.

References

  1. 1.
    Petricciani, J., Hayakawa, T., Stacey, G., Trouvin, J.-H., & Knezevic, I. (2017). Scientific considerations for the regulatory evaluation of cell therapy products. Biologicals, 50, 20–26.  https://doi.org/10.1016/J.BIOLOGICALS.2017.08.011.CrossRefGoogle Scholar
  2. 2.
    Shaz, B., Hillyer, C. D., Abrams, C. S., & Roshal, M. (2013). Transfusion medicine and hemostasis : Clinical and laboratory aspects (3rd ed.). Elsevier. Retrieved from https://www.sciencedirect.com/science/book/9780123971647.
  3. 3.
    Kuraitis, D., Giordano, C., Suuronen, E. J., & Ruel, M. (2014). Cell therapy to regenerate the ischemic heart. In Cardiac regeneration and repair (pp. 118–137). Elsevier.  https://doi.org/10.1533/9780857096708.2.118.
  4. 4.
    Golchin, A., Hosseinzadeh, S., & Ardeshirylajimi, A. (2018). The exosomes released from different cell types and their effects in wound healing. Journal of Cellular Biochemistry, 119(7), 5043–5052.  https://doi.org/10.1002/jcb.26706.CrossRefGoogle Scholar
  5. 5.
    Mehta, R. S., Randolph, B., Daher, M., & Rezvani, K. (2018). NK cell therapy for hematologic malignancies. International Journal of Hematology, 107(3), 262–270.  https://doi.org/10.1007/s12185-018-2407-5.CrossRefGoogle Scholar
  6. 6.
    June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S., & Milone, M. C. (2018). CAR T cell immunotherapy for human cancer. Science, 359(6382), 1361–1365.  https://doi.org/10.1126/science.aar6711.CrossRefGoogle Scholar
  7. 7.
    Zumla, A., Rao, M., Wallis, R. S., Kaufmann, S. H. E., Rustomjee, R., Mwaba, P., … Host-Directed Therapies Network consortium. (2016). Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. The Lancet Infectious Diseases, 16(4), e47–e63.  https://doi.org/10.1016/S1473-3099(16)00078-5.
  8. 8.
    Tsilimigras, D. I., Oikonomou, E. K., Moris, D., Schizas, D., Economopoulos, K. P., & Mylonas, K. S. (2017). Stem cell therapy for congenital heart disease. Circulation, 136(24), 2373–2385.  https://doi.org/10.1161/CIRCULATIONAHA.117.029607.CrossRefGoogle Scholar
  9. 9.
    Roura, S., Gálvez-Montón, C., Mirabel, C., Vives, J., & Bayes-Genis, A. (2017). Mesenchymal stem cells for cardiac repair: are the actors ready for the clinical scenario? Stem Cell Research & Therapy, 8(1), 238.  https://doi.org/10.1186/s13287-017-0695-y.CrossRefGoogle Scholar
  10. 10.
    Arnold, D. E., & Heimall, J. R. (2017). A review of chronic granulomatous disease. Advances in Therapy, 34(12), 2543–2557.  https://doi.org/10.1007/s12325-017-0636-2.CrossRefGoogle Scholar
  11. 11.
    Schlabe, S., & Rockstroh, J. K. (2018). Advances in the treatment of HIV/HCV coinfection in adults. Expert Opinion on Pharmacotherapy, 19(1), 49–64.  https://doi.org/10.1080/14656566.2017.1419185.CrossRefGoogle Scholar
  12. 12.
    Bajek, A., Porowinska, D., Kloskowski, T., Brzoska, E., Ciemerych, M. A., & Drewa, T. (2015). Cell therapy in Duchenne muscular dystrophy treatment: Clinical trials overview. Critical Reviews in Eukaryotic Gene Expression, 25(1), 1–11. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25955813.
  13. 13.
    Negroni, E., Bigot, A., Butler-Browne, G. S., Trollet, C., & Mouly, V. (2016). Cellular therapies for muscular dystrophies: frustrations and clinical successes. Human Gene Therapy, 27(2), 117–126.  https://doi.org/10.1089/hum.2015.139.CrossRefGoogle Scholar
  14. 14.
    Kumar, R., Bonfim, C., & George, B. (2017). Hematopoietic cell transplantation for aplastic anemia. Current Opinion in Hematology, 24(6), 509–514.  https://doi.org/10.1097/MOH.0000000000000382.CrossRefGoogle Scholar
  15. 15.
    Dong, A. C., & Rivella, S. (2017). Gene addition strategies for β-thalassemia and sickle cell anemia. Advances in Experimental Medicine and Biology, 1013, 155–176.  https://doi.org/10.1007/978-1-4939-7299-9_6.CrossRefGoogle Scholar
  16. 16.
    Lunn, J. S., Sakowski, S. A., Hur, J., & Feldman, E. L. (2011). Stem cell technology for neurodegenerative diseases. Annals of Neurology, 70(3), 353–361.  https://doi.org/10.1002/ana.22487.CrossRefGoogle Scholar
  17. 17.
    Sakthiswary, R., & Raymond, A. A. (2012). Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regeneration Research, 7(23), 1822–1831.  https://doi.org/10.3969/j.issn.1673-5374.2012.23.009.Google Scholar
  18. 18.
    Geiger, S., Hirsch, D., & Hermann, F. G. (2017). Cell therapy for lung disease. European Respiratory Review, 26(144), 170044.  https://doi.org/10.1183/16000617.0044-2017.CrossRefGoogle Scholar
  19. 19.
    Shin, T.-H., Kim, H.-S., Choi, S. W., & Kang, K.-S. (2017). Mesenchymal stem cell therapy for inflammatory skin diseases: clinical potential and mode of action. International Journal of Molecular Sciences, 18(2), 244.  https://doi.org/10.3390/ijms18020244.CrossRefGoogle Scholar
  20. 20.
    Maeder, M. L., & Gersbach, C. A. (2016). Genome-editing technologies for gene and cell therapy. Molecular Therapy, 24(3), 430–446.  https://doi.org/10.1038/mt.2016.10.CrossRefGoogle Scholar
  21. 21.
    Golchin, A., Hosseinzadeh, S., & Roshangar, L. (2017). The role of nanomaterials in cell delivery systems. Medical Molecular Morphology, 51(1), 1–12.  https://doi.org/10.1007/s00795-017-0173-8.CrossRefGoogle Scholar
  22. 22.
    Zhang, J., Huang, X., Wang, H., Liu, X., Zhang, T., Wang, Y., & Hu, D. (2015). The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Research & Therapy, 6(1), 234.  https://doi.org/10.1186/s13287-015-0240-9.CrossRefGoogle Scholar
  23. 23.
    Golchin, A., Rekabgardan, M., Taheri, R. A., & Nourani, M. R. (2018). Promotion of cell-based therapy: special focus on the cooperation of mesenchymal stem cell therapy and gene therapy for clinical trial studies (pp. 1–16). New York: Springer.  https://doi.org/10.1007/5584_2018_256.Google Scholar
  24. 24.
    Matsumoto, M. M., & Matthews, K. R. W. (2015). A need for renewed and cohesive US policy on cord blood banking. Stem Cell Reviews, 11(6), 789–797.  https://doi.org/10.1007/s12015-015-9613-9.CrossRefGoogle Scholar
  25. 25.
    Matsumoto, M. M., Dajani, R., & Matthews, K. R. W. (2015). Cord blood banking in the Arab world: current status and future developments. Biology of Blood and Marrow Transplantation, 21(7), 1188–1194.  https://doi.org/10.1016/j.bbmt.2015.01.012.CrossRefGoogle Scholar
  26. 26.
    Allison, M. (2012). Hemacord approval may foreshadow regulatory creep for HSC therapies. Nature Biotechnology, 30(4), 304–304.  https://doi.org/10.1038/nbt0412-304.CrossRefGoogle Scholar
  27. 27.
    Research, C. for B. E. and. (2018). Cellular & gene therapy products. Retrieved from https://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/default.htm.
  28. 28.
    Dessels, C., Alessandrini, M., & Pepper, M. S. (2018). Factors influencing the umbilical cord blood stem cell industry: an evolving treatment landscape. Stem Cells Translational Medicine.  https://doi.org/10.1002/sctm.17-0244.
  29. 29.
    Siripattarapravat, K., & Cibelli, J. B. (2011). Method for somatic cell nuclear transfer in zebrafish. Methods in Cell Biology, 104, 209–217.  https://doi.org/10.1016/B978-0-12-374814-0.00012-4.CrossRefGoogle Scholar
  30. 30.
    Trounson, A. (2014). Nuclear transfer for stem cells. In Principles of cloning (pp. 313–316).  https://doi.org/10.1016/B978-0-12-386541-0.00024-2.
  31. 31.
    Brenner, M. K. (2018). Current gene marking and gene therapy protocols for human bone marrow transplantation. In Somatic gene therapy (pp. 225–242). CRC Press.  https://doi.org/10.1201/9781351076760-13.
  32. 32.
    Schmidt, C. (2011). FDA approves first cell therapy for wrinkle-free visage. Nature Biotechnology, 29(8), 674–675.  https://doi.org/10.1038/nbt0811-674.CrossRefGoogle Scholar
  33. 33.
    Piñero Eça, L., Galdino Pinto, D., Murari Soares de Pinho, A., Paulo Vaccari Mazzetti, M., & Emiko Yagima Odo, M. (2012). Autologous fibroblast culture in the repair of aging skin. Dermatologic Surgery, 38(2 Part 1), 180–184.  https://doi.org/10.1111/j.1524-4725.2011.02192.x.CrossRefGoogle Scholar
  34. 34.
    Mehrabani, D., & Manafi, N. (2013). Role of cultured skin fibroblasts in aesthetic and plastic surgery. World Journal of Plastic Surgery, 2(1), 2–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25489497.
  35. 35.
    McArdle, A., Senarath-Yapa, K., Walmsley, G. G., Hu, M., Atashroo, D. A., Tevlin, R., … Longaker, M. T. (2014). The role of stem cells in aesthetic surgery. Plastic and Reconstructive Surgery, 134(2), 193–200.  https://doi.org/10.1097/PRS.0000000000000404.
  36. 36.
    Smith, S. R., Munavalli, G., Weiss, R., Maslowski, J. M., Hennegan, K. P., & Novak, J. M. (2012). A multicenter, double-blind, placebo-controlled trial of autologous fibroblast therapy for the treatment of nasolabial fold wrinkles. Dermatologic Surgery, 38(7pt2), 1234–1243.  https://doi.org/10.1111/j.1524-4725.2012.02349.x.CrossRefGoogle Scholar
  37. 37.
    Dunkin, B. S., & Lattermann, C. (2013). New and emerging techniques in cartilage repair: MACI. Operative Techniques in Sports Medicine, 21(2), 100–107.  https://doi.org/10.1053/j.otsm.2013.03.003.CrossRefGoogle Scholar
  38. 38.
    Gobbi, A., Kon, E., Berruto, M., Francisco, R., Filardo, G., & Marcacci, M. (2006). Patellofemoral full-thickness chondral defects treated with Hyalograft-C. The American Journal of Sports Medicine, 34(11), 1763–1773.  https://doi.org/10.1177/0363546506288853.CrossRefGoogle Scholar
  39. 39.
    Ochs, B. G., Müller-Horvat, C., Albrecht, D., Schewe, B., Weise, K., Aicher, W. K., & Rolauffs, B. (2011). Remodeling of articular cartilage and subchondral bone after bone grafting and matrix-associated autologous chondrocyte implantation for osteochondritis Dissecans of the knee. The American Journal of Sports Medicine, 39(4), 764–773.  https://doi.org/10.1177/0363546510388896.CrossRefGoogle Scholar
  40. 40.
    Dekker, T. J., Erickson, B., Adams, S. B., & Gross, C. E. (2017). Topical review: MACI as an emerging technology for the treatment of Talar osteochondral lesions. Foot & Ankle International, 38(9), 1045–1048.  https://doi.org/10.1177/1071100717711482.CrossRefGoogle Scholar
  41. 41.
    Zaulyanov, L., & Kirsner, R. S. (2007). A review of a bi-layered living cell treatment (Apligraf) in the treatment of venous leg ulcers and diabetic foot ulcers. Clinical Interventions in Aging, 2(1), 93–98. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18044080.
  42. 42.
    Falanga, V., Faria, K., & Bollenbach, T. (2014). Bioengineered skin constructs. In Principles of tissue engineering (pp. 1619–1643).  https://doi.org/10.1016/B978-0-12-398358-9.00077-X.
  43. 43.
    Schmidt, C. (2012). Gintuit cell therapy approval signals shift at US regulator. Nature Biotechnology, 30(6), 479–479.  https://doi.org/10.1038/nbt0612-479.CrossRefGoogle Scholar
  44. 44.
    McGuire, M. K., Scheyer, E. T., Nunn, M. E., & Lavin, P. T. (2008). A pilot study to evaluate a tissue-engineered bilayered cell therapy as an alternative to tissue from the palate. Journal of Periodontology, 79(10), 1847–1856.  https://doi.org/10.1902/jop.2008.080017.CrossRefGoogle Scholar
  45. 45.
    Yáñez-Muñoz, R. J., & Grupp, S. A. (2018). CAR-T in the clinic: drive with care. Gene Therapy, 25(3), 157–161.  https://doi.org/10.1038/s41434-018-0023-x.CrossRefGoogle Scholar
  46. 46.
    Jarosławski, S., & Toumi, M. (2015). Sipuleucel-T (Provenge®)—Autopsy of an innovative paradigm change in cancer treatment: why a single-product biotech company failed to capitalize on its breakthrough invention. BioDrugs, 29(5), 301–307.  https://doi.org/10.1007/s40259-015-0140-7.CrossRefGoogle Scholar
  47. 47.
    Vasani, D., Josephson, D. Y., Carmichael, C., Sartor, O., & Pal, S. K. (2011). Recent advances in the therapy of castration-resistant prostate cancer: The price of progress. Maturitas, 70(2), 194–196.  https://doi.org/10.1016/j.maturitas.2011.07.018.CrossRefGoogle Scholar
  48. 48.
    Cheever, M. A., & Higano, C. S. (2011). PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clinical Cancer Research, 17(11), 3520–3526.  https://doi.org/10.1158/1078-0432.CCR-10-3126.CrossRefGoogle Scholar
  49. 49.
    Zheng, P.-P., Kros, J. M., & Li, J. (2018). Approved CAR T cell therapies: ice bucket challenges on glaring safety risks and long-term impacts. Drug Discovery Today, 23(6), 1175–1182.  https://doi.org/10.1016/j.drudis.2018.02.012.CrossRefGoogle Scholar
  50. 50.
    Dias, M. F., Joo, K., Kemp, J. A., Fialho, S. L., da Silva Cunha, A., Woo, S. J., & Kwon, Y. J. (2018). Molecular genetics and emerging therapies for retinitis pigmentosa: basic research and clinical perspectives. Progress in Retinal and Eye Research, 63, 107–131.  https://doi.org/10.1016/j.preteyeres.2017.10.004.CrossRefGoogle Scholar
  51. 51.
    Russell, S., Bennett, J., Wellman, J. A., Chung, D. C., Yu, Z.-F., Tillman, A., … Maguire, A. M. (2017). Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. The Lancet, 390(10097), 849–860.  https://doi.org/10.1016/S0140-6736(17)31868-8.
  52. 52.
    Prasad, V. (2017). Immunotherapy: tisagenlecleucel — the first approved CAR-T-cell therapy: implications for payers and policy makers. Nature Reviews Clinical Oncology, 15(1), 11–12.  https://doi.org/10.1038/nrclinonc.2017.156.CrossRefGoogle Scholar
  53. 53.
    Bach, P. B., Giralt, S. A., & Saltz, L. B. (2017). FDA approval of tisagenlecleucel. JAMA, 318(19), 1861.  https://doi.org/10.1001/jama.2017.15218.CrossRefGoogle Scholar
  54. 54.
    Liu, Y., Chen, X., Han, W., & Zhang, Y. (2017). Tisagenlecleucel, an approved anti-CD19 chimeric antigen receptor T-cell therapy for the treatment of leukemia. Drugs of Today, 53(11), 597.  https://doi.org/10.1358/dot.2017.53.11.2725754.CrossRefGoogle Scholar
  55. 55.
    Iyer, R. K., Bowles, P. A., Kim, H., & Dulgar-Tulloch, A. (2018). Industrializing autologous adoptive immunotherapies: manufacturing advances and challenges. Frontiers in Medicine, 5, 150.  https://doi.org/10.3389/fmed.2018.00150.CrossRefGoogle Scholar
  56. 56.
    Salmikangas, P., Kinsella, N., & Chamberlain, P. (2018). Chimeric antigen receptor T-cells (CAR T-cells) for cancer immunotherapy – moving target for industry? Pharmaceutical Research, 35(8), 152.  https://doi.org/10.1007/s11095-018-2436-z.CrossRefGoogle Scholar
  57. 57.
    Commissioner, O. of the. (2017). Press Announcements - FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma. U.S. Food & Drugs Administration. Retrieved from https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm581216.htm
  58. 58.
    de Lima Lopes, G., & Nahas, G. R. (2018). Chimeric antigen receptor T cells, a savior with a high price. Chinese Clinical Oncology, 7(2), 21–21.  https://doi.org/10.21037/cco.2018.04.02.CrossRefGoogle Scholar
  59. 59.
    Collichio, F., Burke, L., Proctor, A., Wallack, D., Collichio, A., Long, P. K., & Ollila, D. W. (2018). Implementing a program of talimogene laherparepvec. Annals of Surgical Oncology, 25(7), 1828–1835.  https://doi.org/10.1245/s10434-018-6361-5.CrossRefGoogle Scholar
  60. 60.
    Chesney, J., Awasthi, S., Curti, B., Hutchins, L., Linette, G., Triozzi, P., … Amatruda, T. (2018). Phase IIIb safety results from an expanded-access protocol of talimogene laherparepvec for patients with unresected, stage IIIB–IVM1c melanoma. Melanoma Research, 28(1), 44–51.  https://doi.org/10.1097/CMR.0000000000000399.
  61. 61.
    Ghadimi, K., Dombrowski, K. E., Levy, J. H., & Welsby, I. J. (2016). Andexanet alfa for the reversal of factor Xa inhibitor related anticoagulation. Expert Review of Hematology, 9(2), 115–122.  https://doi.org/10.1586/17474086.2016.1135046.CrossRefGoogle Scholar
  62. 62.
    (2018). Andexxa--an antidote for apixaban and rivaroxaban. The Medical Letter on Drugs and Therapeutics, 60(1549), 99–101. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/29913471.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Student Research Committee, Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in Medicine, Shahid Beheshti University of Medical SciencesTehranIran
  2. 2.Department of Biology, School of Advanced Technologies in MedicineIslamic Azad University Medical Branch of TehranTehranIran

Personalised recommendations