Stem Cell Reviews and Reports

, Volume 15, Issue 2, pp 157–165 | Cite as

Endothelial Progenitor Cells Biology in Diabetes Mellitus and Peripheral Arterial Disease and their Therapeutic Potential

  • Anna Pyšná
  • Robert Bém
  • Andrea Němcová
  • Vladimíra Fejfarová
  • Alexandra Jirkovská
  • Jitka Hazdrová
  • Edward B. Jude
  • Michal DubskýEmail author


Endothelial progenitors are a population of cells with the inherent capacity to differentiate into mature endothelial cells and proangiogenic paracrine action. These characteristics have led to extensive studies being performed and tested in the treatment of tissue ischemia. The natural course of diabetes mellitus (DM) results in multiple areas of vascular damage. Thus endothelial progenitor cells‘(EPCs) beneficial potential is particularly desirable in diabetic patients. In this review, we summarize contemporary knowledge of EPC biology in DM. It has been shown that EPC functions are considerably impaired by DM. The presence of peripheral arterial disease (PAD) seems to further exacerbate the deficiencies of EPCs. However, studies examining EPC counts in PAD and DM observed disparate results, which can be due to a lack of consensus on precise EPC immunotype used in the different studies. Nevertheless, the results of EPC-based autologous cell therapy (ACT) are promising. In addition, EPCs have been shown to bean independent predictor of cardiovascular risk and diabetic foot ulcer healing.


Autologous cell therapy Diabetes mellitus Endothelial progenitor cells Peripheral arterial disease Vascular repair 



Autologous cell therapy


Advanced glycation products




Bone-marrow mononuclear cells


Coronary artery disease


Circulating progenitor cells


Critical limb ischemia


Diabetes mellitus


Diabetic neuropathy


Diabetic retinopathy


Endothelial colony-forming cells


Endothelial nitric oxide synthase




Extracellular matrix


Endothelial progenitor cell


Fibroblast growth factor receptor


Granulocyte colony-stimulating factor


Hypoxia-inducible factor-1


Kinase insert domain receptor


Myeloid angiogenic cell


Matrix metalloproteinase-9


Mononuclear cells




Peripheral arterial disease


Peripheral blood mononuclear cells

SDF -1

Stromal cell-derived factor-1


Type 1 diabetes mellitus


Type 2 diabetes mellitus


Umbilical cord blood


Vascular endothelial growth factor


Vascular endothelial growth factor receptor 2


Von Willebrand factor



This work was supported by Ministry of Health of the Czech Republic [grant number 16-27262A], by the conceptual development of research organization [Institute for Clinical and Experimental Medicine – IKEM, IN 00023001] and by Czech Science Foundation (GA ČR) [grant number 14-03540S]. All rights reserved.

Compliance with Ethical Standards

Conflicts of Interest

No potential conflicts of interest relevant to this article were reported.


  1. 1.
    Schaper, N. C., van Netten, J., Apelqvist, J., Lipsky, B. A., Bakker, K., & International Working Group on the Diabetic Foot (IWGDF). (2017). Prevention and management of foot problems in diabetes: A summary guidance for daily practice 2015, based on the IWGDF guidance documents. Diabetes Research and Clinical Practice, 124, 84–92.CrossRefGoogle Scholar
  2. 2.
    Fadini, G. P., Agostini, C., & Avogaro, A. (2010). Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis, 209(1), 10–17.CrossRefGoogle Scholar
  3. 3.
    Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., & Isner, J. M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.CrossRefGoogle Scholar
  4. 4.
    Lawall, H., Bramlage, P., & Amann, B. (2011). Treatment of peripheral arterial disease using stem and progenitor cell therapy. Journal of Vascular Surgery, 53(2), 445–453.CrossRefGoogle Scholar
  5. 5.
    Medina, R. J., Barber, C. L., Sabatier, F., Dignat-George, F., Melero-Martin, J. M., Khosrotehrani, K., Ohneda, O., Randi, A. M., Chan, J. K. Y., Yamaguchi, T., van Hinsbergh, V. W. M., Yoder, M. C., & Stitt, A. W. (2017). Endothelial progenitors: A consensus statement on nomenclature. Stem Cells Translational Medicine, 6(5), 1316–1320.CrossRefGoogle Scholar
  6. 6.
    Tasev, D., Koolwijk, P., & van Hinsbergh, V. W. (2016). Therapeutic Potential of Human-Derived Endothelial Colony-Forming Cells in Animal Models. Tissue Engineering. Part B, Reviews, 22(5), 371–382.CrossRefGoogle Scholar
  7. 7.
    Raval, Z., & Losordo, D. W. (2013). Cell therapy of peripheral arterial disease: From experimental findings to clinical trials. Circulation Research, 112(9), 1288–1302.CrossRefGoogle Scholar
  8. 8.
    Heilmann, C., Beyersdorf, F., & Lutter, G. (2002). Collateral growth: Cells arrive at the construction site. Cardiovascular Surgery, 10(6), 570–578.CrossRefGoogle Scholar
  9. 9.
    Dubsky, M., Jirkovska, A., Bem, R., Fejfarova, V., Pagacova, L., Sixta, B., Varga, M., Langkramer, S., Sykova, E., & Jude, E. B. (2013). Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes/Metabolism Research and Reviews, 29(5), 369–376.CrossRefGoogle Scholar
  10. 10.
    Hao, C., Shintani, S., Shimizu, Y., Kondo, K., Ishii, M., Wu, H., & Murohara, T. (2014). Therapeutic angiogenesis by autologous adipose-derived regenerative cells: comparison with bone marrow mononuclear cells. American Journal of Physiology. Heart and Circulatory Physiology, 307(6), H869–H879.CrossRefGoogle Scholar
  11. 11.
    Huang, P. P., Yang, X. F., Li, S. Z., Wen, J. C., Zhang, Y., & Han, Z. C. (2007). Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thrombosis and Haemostasis, 98(6), 1335–1342.CrossRefGoogle Scholar
  12. 12.
    Kulwas, A., Drela, E., Jundziłł, W., Góralczyk, B., Ruszkowska-Ciastek, B., & Rość, D. (2015). Circulating endothelial progenitor cells and angiogenic factors in diabetes complicated diabetic foot and without foot complications. Journal of Diabetes and its Complications, 29(5), 686–690.CrossRefGoogle Scholar
  13. 13.
    Fadini, G. P. (2014). A reappraisal of the role of circulating (progenitor) cells in the pathobiology of diabetic complications. Diabetologia, 57(1), 4–15.CrossRefGoogle Scholar
  14. 14.
    Fadini, G. P., Losordo, D., & Dimmeler, S. (2012). Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circulation Research, 110(4), 624–637.CrossRefGoogle Scholar
  15. 15.
    Shmelkov, S. V., St.Clair, R., Lyden, D., & Rafii, S. (2005). AC133/CD133/Prominin-1. The International Journal of Biochemistry & Cell Biology, 37(4), 715–719.CrossRefGoogle Scholar
  16. 16.
    Miettinen, M., & Lasota, J. (2005). KIT (CD117): A review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Applied Immunohistochemistry & Molecular Morphology : AIMM, 13(3), 205–220.CrossRefGoogle Scholar
  17. 17.
    de la Puente, P., Muz, B., Azab, F., & Azab, A. K. (2013). Cell trafficking of endothelial progenitor cells in tumor progression. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 19(13), 3360–3368.CrossRefGoogle Scholar
  18. 18.
    Sandhu, K., Mamas, M., & Butler, R. (2017). Endothelial progenitor cells: Exploring the pleiotropic effects of statins. World Journal of Cardiology, 9(1), 1–13.CrossRefGoogle Scholar
  19. 19.
    Hristov, M., Erl, W., & Weber, P. C. (2003). Endothelial progenitor cells: Isolation and characterization. Trends in Cardiovascular Medicine, 13(5), 201–206.CrossRefGoogle Scholar
  20. 20.
    McDonald, A. I., Shirali, A. S., Aragón, R., Ma, F., Hernandez, G., Vaughn, D. A., Mack, J. J., Lim, T. Y., Sunshine, H., Zhao, P., Kalinichenko, V., Hai, T., Pelegrini, M., Ardehali, R., & Iruela-Arispe, M. L. (2018). Endothelial regeneration of large vessels is a biphasic process driven by local cells with distinct proliferative capacities. Cell Stem Cell, 23(2), 210–225 e6.CrossRefGoogle Scholar
  21. 21.
    Singhal, M., Liu, X., Inverso, D., Jiang, K., Dai, J., He, H., Bartels, S., Li, W., Abdul Pari, A. A., Gengenbacher, N., Besemfelder, E., Hui, L., Augustin, H. G., & Hu, J. (2018). Endothelial cell fitness dictates the source of regenerating liver vasculature. The Journal of Experimental Medicine, 215(10), 2497–2508.CrossRefGoogle Scholar
  22. 22.
    Catrina, S. B., Okamoto, K., Pereira, T., Brismar, K., & Poellinger, L. (2004). Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes, 53(12), 3226–3232.CrossRefGoogle Scholar
  23. 23.
    Sibal, L., Aldibbiat, A., Agarwal, S. C., Mitchell, G., Oates, C., Razvi, S., Weaver, J. U., Shaw, J. A., & Home, P. D. (2009). Circulating endothelial progenitor cells, endothelial function, carotid intima-media thickness and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular disease or microalbuminuria. Diabetologia, 52(8), 1464–1473.CrossRefGoogle Scholar
  24. 24.
    Liao, Y. F., Chen, L. L., Zeng, T. S., Li, Y. M., Fan Yu, Hu, L. J., & Ling Yue. (2010). Number of circulating endothelial progenitor cells as a marker of vascular endothelial function for type 2 diabetes. Vascular Medicine, 15(4), 279–285.CrossRefGoogle Scholar
  25. 25.
    van Ark, J., Moser, J., Lexis, C. P. H., Bekkema, F., Pop, I., van der Horst, I. C. C., Zeebregts, C. J., van Goor, H., Wolffenbuttel, B. H. R., & Hillebrands, J. L. (2012). Type 2 diabetes mellitus is associated with an imbalance in circulating endothelial and smooth muscle progenitor cell numbers. Diabetologia, 55(9), 2501–2512.CrossRefGoogle Scholar
  26. 26.
    Lombardo, M. F., et al. (2012). Type 2 diabetes mellitus impairs the maturation of endothelial progenitor cells and increases the number of circulating endothelial cells in peripheral blood. Cytometry. Part A : the journal of the International Society for Analytical Cytology, 81(10), 856–864.CrossRefGoogle Scholar
  27. 27.
    Fadini, G. P., Sartore, S., Albiero, M., Baesso, I., Murphy, E., Menegolo, M., Grego, F., Vigili de Kreutzenberg, S., Tiengo, A., Agostini, C., & Avogaro, A. (2006). Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(9), 2140–2146.CrossRefGoogle Scholar
  28. 28.
    Chen, Q., Dong, L., Wang, L., Kang, L., & Xu, B. (2009). Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2. Biochemical and Biophysical Research Communications, 381(2), 192–197.CrossRefGoogle Scholar
  29. 29.
    Jung, C., Rafnsson, A., Shemyakin, A., Böhm, F., & Pernow, J. (2010). Different subpopulations of endothelial progenitor cells and circulating apoptotic progenitor cells in patients with vascular disease and diabetes. International Journal of Cardiology, 143(3), 368–372.CrossRefGoogle Scholar
  30. 30.
    Tepper, O. M., Galiano, R. D., Capla, J. M., Kalka, C., Gagne, P. J., Jacobowitz, G. R., Levine, J. P., & Gurtner, G. C. (2002). Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation, 106(22), 2781–2786.CrossRefGoogle Scholar
  31. 31.
    Werner, N., & Nickenig, G. (2006). Influence of cardiovascular risk factors on endothelial progenitor cells: Limitations for therapy? Arteriosclerosis, Thrombosis, and Vascular Biology, 26(2), 257–266.CrossRefGoogle Scholar
  32. 32.
    Li, H., Zhang, X., Guan, X., Cui, X., Wang, Y., Chu, H., & Cheng, M. (2012). Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells. Cardiovascular Diabetology, 11, 46.CrossRefGoogle Scholar
  33. 33.
    Yu, C. G., et al. (2016). Endothelial progenitor cells in diabetic microvascular complications: Friends or foes? Stem Cells International, 2016, 1803989.Google Scholar
  34. 34.
    Scheubel, R. J., Zorn, H., Silber, R. E., Kuss, O., Morawietz, H., Holtz, J., & Simm, A. (2003). Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. Journal of the American College of Cardiology, 42(12), 2073–2080.CrossRefGoogle Scholar
  35. 35.
    Mangialardi, G., Katare, R., Oikawa, A., Meloni, M., Reni, C., Emanueli, C., & Madeddu, P. (2013). Diabetes causes bone marrow endothelial barrier dysfunction by activation of the RhoA-rho-associated kinase signaling pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(3), 555–564.CrossRefGoogle Scholar
  36. 36.
    Spinetti, G., Cordella, D., Fortunato, O., Sangalli, E., Losa, S., Gotti, A., Carnelli, F., Rosa, F., Riboldi, S., Sessa, F., Avolio, E., Beltrami, A. P., Emanueli, C., & Madeddu, P. (2013). Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: Implication of the microRNA-155/FOXO3a signaling pathway. Circulation Research, 112(3), 510–522.CrossRefGoogle Scholar
  37. 37.
    Zhu, S., Liu, X., Li, Y., Goldschmidt-Clermont, P. J., & Dong, C. (2007). Aging in the atherosclerosis milieu may accelerate the consumption of bone marrow endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(1), 113–119.CrossRefGoogle Scholar
  38. 38.
    Yang, S. W., Hennessy, R. R., Khosla, S., Lennon, R., Loeffler, D., Sun, T., Liu, Z., Park, K. H., Wang, F. L., Lerman, L. O., & Lerman, A. (2017). Circulating osteogenic endothelial progenitor cell counts: New biomarker for the severity of coronary artery disease. International Journal of Cardiology, 227, 833–839.CrossRefGoogle Scholar
  39. 39.
    Fadini, G. P., et al. (2012). Procalcific phenotypic drift of circulating progenitor cells in type 2 diabetes with coronary artery disease. Experimental Diabetes Research, 2012, 921685.Google Scholar
  40. 40.
    Lois, N., et al. (2014). Endothelial progenitor cells in diabetic retinopathy. Frontiers in Endocrinology, 5, 44.CrossRefGoogle Scholar
  41. 41.
    Jeong, J. O., Kim, M. O., Kim, H., Lee, M. Y., Kim, S. W., Ii, M., Lee, J. U., Lee, J., Choi, Y. J., Cho, H. J., Lee, N., Silver, M., Wecker, A., Kim, D. W., & Yoon, Y. S. (2009). Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation, 119(5), 699–708.CrossRefGoogle Scholar
  42. 42.
    Albiero, M., Poncina, N., Tjwa, M., Ciciliot, S., Menegazzo, L., Ceolotto, G., Vigili de Kreutzenberg, S., Moura, R., Giorgio, M., Pelicci, P., Avogaro, A., & Fadini, G. P. (2014). Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes, 63(4), 1353–1365.CrossRefGoogle Scholar
  43. 43.
    Altabas, V., Altabas, K., & Kirigin, L. (2016). Endothelial progenitor cells (EPCs) in ageing and age-related diseases: How currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes. Mechanisms of Ageing and Development, 159, 49–62.CrossRefGoogle Scholar
  44. 44.
    Kung, C. T., et al. (2016). Circulating endothelial progenitor cells may predict outcomes in adult patients with severe sepsis in the emergency department. Clinica Chimica Acta; International Journal of Clinical Chemistry, 455, 1–6.CrossRefGoogle Scholar
  45. 45.
    Bitterli, L., Afan, S., Bühler, S., DiSanto, S., Zwahlen, M., Schmidlin, K., Yang, Z., Baumgartner, I., Diehm, N., & Kalka, C. (2016). Endothelial progenitor cells as a biological marker of peripheral artery disease. Vascular Medicine, 21(1), 3–11.CrossRefGoogle Scholar
  46. 46.
    Chen, M. C., Sheu, J. J., Wang, P. W., Chen, C. Y., Kuo, M. C., Hsieh, C. J., Chen, J. F., & Chang, H. W. (2009). Complications impaired endothelial progenitor cell function in type 2 diabetic patients with or without critical leg ischaemia: Implication for impaired neovascularization in diabetes. Diabetic Medicine : A Journal of the British Diabetic Association, 26(2), 134–141.CrossRefGoogle Scholar
  47. 47.
    Tsai, N. W., et al. (2014). The association between circulating endothelial progenitor cells and outcome in different subtypes of acute ischemic stroke. Clinica Chimica Acta; International Journal of Clinical Chemistry, 427, 6–10.CrossRefGoogle Scholar
  48. 48.
    Sambataro, M., et al. (2014). Prognostic significance of circulating and endothelial progenitor cell markers in type 2 diabetic foot. International Journal of Vascular Medicine, 2014, 589412.CrossRefGoogle Scholar
  49. 49.
    Park, H. S., Cho, K. H., Kim, K. L., Kim, D. K., & Lee, T. (2013). Reduced circulating endothelial progenitor cells in thromboangiitis obliterans (Buerger's disease). Vascular Medicine, 18(6), 331–339.CrossRefGoogle Scholar
  50. 50.
    Miyamoto, K., Nishigami, K., Nagaya, N., Akutsu, K., Chiku, M., Kamei, M., Soma, T., Miyata, S., Higashi, M., Tanaka, R., Nakatani, T., Nonogi, H., & Takeshita, S. (2006). Unblinded pilot study of autologous transplantation of bone marrow mononuclear cells in patients with thromboangiitis obliterans. Circulation, 114(24), 2679–2684.CrossRefGoogle Scholar
  51. 51.
    Esposito, K., Maiorino, M. I., di Palo, C., Gicchino, M., Petrizzo, M., Bellastella, G., Saccomanno, F., & Giugliano, D. (2011). Effects of pioglitazone versus metformin on circulating endothelial microparticles and progenitor cells in patients with newly diagnosed type 2 diabetes--a randomized controlled trial. Diabetes, Obesity & Metabolism, 13(5), 439–445.CrossRefGoogle Scholar
  52. 52.
    Chen, L. L., Liao, Y. F., Zeng, T. S., Yu, F., Li, H. Q., & Feng, Y. (2010). Effects of metformin plus gliclazide compared with metformin alone on circulating endothelial progenitor cell in type 2 diabetic patients. Endocrine, 38(2), 266–275.CrossRefGoogle Scholar
  53. 53.
    Wang, C. H., et al. (2006). Pioglitazone increases the numbers and improves the functional capacity of endothelial progenitor cells in patients with diabetes mellitus. American Heart Journal, 152(6), 1051–e1–8.CrossRefGoogle Scholar
  54. 54.
    Tateishi-Yuyama, E., Matsubara, H., Murohara, T., Ikeda, U., Shintani, S., Masaki, H., Amano, K., Kishimoto, Y., Yoshimoto, K., Akashi, H., Shimada, K., Iwasaka, T., & Imaizumi, T. (2002). Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial. Lancet, 360(9331), 427–435.CrossRefGoogle Scholar
  55. 55.
    Dubsky, M., et al. (2017). Cell therapy of critical limb ischemia in diabetic patients - state of art. Diabetes Research and Clinical Practice, 126, 263–271.CrossRefGoogle Scholar
  56. 56.
    Amann, B., Luedemann, C., Ratei, R., & Schmidt-Lucke, J. A. (2009). Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplantation, 18(3), 371–380.CrossRefGoogle Scholar
  57. 57.
    Walter, D. H., Krankenberg, H., Balzer, J. O., Kalka, C., Baumgartner, I., Schlüter, M., Tonn, T., Seeger, F., Dimmeler, S., Lindhoff-Last, E., Zeiher, A. M., & for the PROVASA Investigators. (2011). Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circulation. Cardiovascular Interventions, 4(1), 26–37.CrossRefGoogle Scholar
  58. 58.
    d'Audigier, C., Susen, S., Blandinieres, A., et al. (2018). Egfl7 represses the Vasculogenic potential of human endothelial progenitor cells. Stem Cell Reviews, 14(1), 82–91.
  59. 59.
    Li, X., Chen, C., Wei, L., Li, Q., Niu, X., Xu, Y., Wang, Y., & Zhao, J. (2016). Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function. Cytotherapy, 18(2), 253–262.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Clinical and Experimental MedicinePragueCzech Republic
  2. 2.Diabetes CentreTameside Hospital NHS Foundation Trust and University of ManchesterLancashireUK

Personalised recommendations