Advertisement

Stem Cell Reviews and Reports

, Volume 15, Issue 1, pp 82–92 | Cite as

Use of a PTFE Micro-Bioreactor to Promote 3D Cell Rearrangement and Maintain High Plasticity in Epigenetically Erased Fibroblasts

  • Georgia Pennarossa
  • Elena F. M. Manzoni
  • Sergio Ledda
  • Magda deEguileor
  • Fulvio Gandolfi
  • Tiziana A. L. BreviniEmail author
Article
  • 105 Downloads

Abstract

Phenotype definition is driven by epigenetic mechanisms as well as directly influenced by the cell microenvironment and by biophysical signals deriving from the extracellular matrix. The possibility to interact with the epigenetic signature of an adult mature cell, reversing its differentiated state and inducing a short transient high plasticity window, was previously demonstrated. In parallel, in vitro studies have shown that 3D culture systems, mimicking cell native tissue, exert significant effects on cell behavior and functions. Here we report the production of “PTFE micro-bioreactors” for long-term culture of epigenetically derived high plasticity cells. The system promotes 3D cell rearrangement, global DNA demethylation and elevated transcription of pluripotency markers, that is dependent on WW domain containing transcription regulator 1 (TAZ) nuclear accumulation and SMAD family member 2 (SMAD2) co-shuttling. Our findings demonstrate that the use of 3D culture strategies greatly improves the induction and maintenance of a high plasticity state.

Keywords

Epigenetic erasing High plasticity Micro-bioreactor PTFE SMAD2 TAZ 

Notes

Acknowledgements

This work was funded by Carraresi Foundation. The Laboratory of Biomedical Embryology is member of the COST Action CA16119 In vitro 3-D total cell guidance and fitness (CellFit), and the COST Action CM1406 Epigenetic Chemical Biology (EPICHEM). We thank Prof. E. Somigliana for kindly providing human skin biopsies.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hemberger, M., Dean, W., & Reik, W. (2009). Epigenetic dynamics of stem cells and cell lineage commitment: Digging Waddington's canal. Nature Reviews. Molecular Cell Biology, 10(8), 526–537.CrossRefGoogle Scholar
  2. 2.
    Zhou, Q., & Melton, D. A. (2008). Extreme makeover: Converting one cell into another. Cell Stem Cell, 3, 382–388.CrossRefGoogle Scholar
  3. 3.
    Pennarossa, G., Maffei, S., Campagnol, M., Tarantini, L., Gandolfi, F., & Brevini, T. A. (2013). Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8948–8953.CrossRefGoogle Scholar
  4. 4.
    Pennarossa, G., Maffei, S., Campagnol, M., Rahman, M. M., Brevini, T. A., & Gandolfi, F. (2014). Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Reviews, 10(1), 31–43.CrossRefGoogle Scholar
  5. 5.
    Brevini, T. A., Pennarossa, G., Rahman, M. M., et al. (2014). Morphological and molecular changes of human granulosa cells exposed to 5-Azacytidine and addressed toward muscular differentiation. Stem Cell Reviews, 10(5), 633–642.CrossRefGoogle Scholar
  6. 6.
    Mirakhori, F., Zeynali, B., Kiani, S., & Baharvand, H. (2015). Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell Journal, 17(1), 153–158.Google Scholar
  7. 7.
    Tan, S. J., Fang, J. Y., Wu, Y., Yang, Z., Liang, G., & Han, B. (2015). Muscle tissue engineering and regeneration through epigenetic reprogramming and scaffold manipulation. Scientific Reports, 5, 16333.CrossRefGoogle Scholar
  8. 8.
    Brevini, T. A., Pennarossa, G., Acocella, F., Brizzola, S., Zenobi, A., & Gandolfi, F. (2016). Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. The Veterinary Journal, 211, 52–56.CrossRefGoogle Scholar
  9. 9.
    Chandrakanthan, V., Yeola, A., Kwan, J. C., Oliver, R. A., Qiao, Q., Kang, Y. C., Zarzour, P., Beck, D., Boelen, L., Unnikrishnan, A., Villanueva, J. E., Nunez, A. C., Knezevic, K., Palu, C., Nasrallah, R., Carnell, M., Macmillan, A., Whan, R., Yu, Y., Hardy, P., Grey, S. T., Gladbach, A., Delerue, F., Ittner, L., Mobbs, R., Walkley, C. R., Purton, L. E., Ward, R. L., Wong, J. W. H., Hesson, L. B., Walsh, W., & Pimanda, J. E. (2016). PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 113(16), E2306–E2315.CrossRefGoogle Scholar
  10. 10.
    Manzoni, E. F., Pennarossa, G., deEguileor, M., Tettamanti, G., Gandolfi, F., & Brevini, T. A. (2016). 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Scientific Reports, 6, 37017.CrossRefGoogle Scholar
  11. 11.
    Constantinides, P. G., Jones, P. A., & Gevers, W. (1977). Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature, 267(5609), 364–366.CrossRefGoogle Scholar
  12. 12.
    Taylor, S. M., & Jones, P. A. (1979). Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell, 17(4), 771–779.CrossRefGoogle Scholar
  13. 13.
    Taylor, S. M., Constantinides, P. A., & Jones, P. A. (1984). 5-Azacytidine, DNA methylation, and differentiation. Current Topics in Microbiology and Immunology, 108, 115–127.Google Scholar
  14. 14.
    Jones, P. A. (1985). Effects of 5-azacytidine and its 2′-deoxyderivative on cell differentiation and DNA methylation. Pharmacology & Therapeutics, 28(1), 17–27.CrossRefGoogle Scholar
  15. 15.
    Palii, S. S., Van Emburgh, B. O., Sankpal, U. T., Brown, K. D., & Robertson, K. D. (2008). DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Molecular and Cellular Biology, 28(2), 752–771.CrossRefGoogle Scholar
  16. 16.
    Christman, J. K. (2002). 5-Azacytidine and 5-aza-2[prime]-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene, 21, 5483–5495.CrossRefGoogle Scholar
  17. 17.
    Stresemann, C., & Lyko, F. (2008). Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. International Journal of Cancer, 123(1), 8–13.CrossRefGoogle Scholar
  18. 18.
    Bissell, M. J., Rizki, A., & Mian, I. S. (2003). Tissue architecture: The ultimate regulator of breast epithelial function. Current Opinion in Cell Biology, 15(6), 753–762.CrossRefGoogle Scholar
  19. 19.
    Streuli, C. H., Schmidhauser, C., Bailey, N., Yurchenco, P., Skubitz, A. P., Roskelley, C., & Bissell, M. J. (1995). Laminin mediates tissue-specific gene expression in mammary epithelia. The Journal of Cell Biology, 129(3), 591–603.CrossRefGoogle Scholar
  20. 20.
    Mizukami, A., de Abreu Neto, M. S., Moreira, F., Fernandes-Platzgummer, A., Huang, Y. F., Milligan, W., Cabral, J. M. S., da Silva, C. L., Covas, D. T., & Swiech, K. (2018). A fully-closed and automated hollow Fiber bioreactor for clinical-grade manufacturing of human mesenchymal stem/stromal cells. Stem Cell Reviews, 14(1), 141–143.CrossRefGoogle Scholar
  21. 21.
    Lengner, C. J., Camargo, F. D., Hochedlinger, K., Welstead, G. G., Zaidi, S., Gokhale, S., Scholer, H. R., Tomilin, A., & Jaenisch, R. (2007). Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell, 1(4), 403–415.CrossRefGoogle Scholar
  22. 22.
    Pennarossa, G., Santoro, R., Manzoni, E., Pesce, M., Gandolfi, F., & Brevini, T. (2018). Epigenetic erasing and pancreatic differentiation of dermal fibroblasts into insulin-producing cells are boosted by the use of low-stiffness substrate. Stem Cell Reviews, 14(3), 398–411.CrossRefGoogle Scholar
  23. 23.
    Brevini, T. A., Pennarossa, G., Antonini, S., et al. (2009). Cell lines derived from human parthenogenetic embryos can display aberrant centriole distribution and altered expression levels of mitotic spindle check-point transcripts. Stem Cell Reviews, 5(4), 340–352.CrossRefGoogle Scholar
  24. 24.
    Sathananthan, H., Pera, M., & Trounson, A. (2002). The fine structure of human embryonic stem cells. Reproductive Biomedicine Online, 4(1), 56–61.CrossRefGoogle Scholar
  25. 25.
    Ireland, R. G., & Simmons, C. A. (2015). Human pluripotent stem cell Mechanobiology: Manipulating the biophysical microenvironment for regenerative medicine and tissue engineering applications. Stem Cells, 33(11), 3187–3196.CrossRefGoogle Scholar
  26. 26.
    Shao, Y., Sang, J., & Fu, J. (2015). On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology. Biomaterials, 52, 26–43.CrossRefGoogle Scholar
  27. 27.
    Caiazzo, M., Okawa, Y., Ranga, A., Piersigilli, A., Tabata, Y., & Lutolf, M. P. (2016). Defined three-dimensional microenvironments boost induction of pluripotency. Nature Materials, 15(3), 344–352.CrossRefGoogle Scholar
  28. 28.
    McKee, C., & Chaudhry, G. R. (2017). Advances and challenges in stem cell culture. Colloids and Surfaces. B, Biointerfaces, 159, 62–77.CrossRefGoogle Scholar
  29. 29.
    Lai, D., Wang, Y., Sun, J., Chen, Y., Li, T., Wu, Y., Guo, L., & Wei, C. (2015). Derivation and characterization of human embryonic stem cells on human amnion epithelial cells. Scientific Reports, 5, 10014.CrossRefGoogle Scholar
  30. 30.
    Courtot, A. M., Magniez, A., Oudrhiri, N., Féraud, O., Bacci, J., Gobbo, E., Proust, S., Turhan, A. G., & Bennaceur-Griscelli, A. (2014). Morphological analysis of human induced pluripotent stem cells during induced differentiation and reverse programming. Biores Open Access, 3(5), 206–216.CrossRefGoogle Scholar
  31. 31.
    Sarvi, F., Arbatan, T., Chan, P. P. Y., & Shen, W. A. (2013). A novel technique for the formation of embryoid bodies inside liquid marbles. RSC Advances, 3, 14501–14508.CrossRefGoogle Scholar
  32. 32.
    Vadivelu, R. K., Ooi, C. H., Yao, R. Q., Tello Velasquez, J., Pastrana, E., Diaz-Nido, J., Lim, F., Ekberg, J. A. K., Nguyen, N. T., & St John, J. A. (2015). Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Scientific Reports, 5, 15083.CrossRefGoogle Scholar
  33. 33.
    Meshorer, E., Yellajoshula, D., George, E., Scambler, P. J., Brown, D. T., & Misteli, T. (2006). Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Developmental Cell, 10(1), 105–116.CrossRefGoogle Scholar
  34. 34.
    Meshorer, E., & Misteli, T. (2006). Chromatin in pluripotent embryonic stem cells and differentiation. Nature Reviews. Molecular Cell Biology, 7(7), 540–546.CrossRefGoogle Scholar
  35. 35.
    Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D. J., Dash, C., Bazett-Jones, D. P., le Grice, S., McKay, R. D. G., Buetow, K. H., Gingeras, T. R., Misteli, T., & Meshorer, E. (2008). Global transcription in pluripotent embryonic stem cells. Cell Stem Cell, 2(5), 437–447.CrossRefGoogle Scholar
  36. 36.
    Liang, G., & Zhang, Y. (2013). Embryonic stem cell and induced pluripotent stem cell: An epigenetic perspective. Cell Research, 23(1), 49–69.CrossRefGoogle Scholar
  37. 37.
    Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B. E., Jaenisch, R., Lander, E. S., & Meissner, A. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454(7200), 49–55.CrossRefGoogle Scholar
  38. 38.
    Hysolli, E., Tanaka, Y., Su, J., Kim, K. Y., Zhong, T., Janknecht, R., Zhou, X. L., Geng, L., Qiu, C., Pan, X., Jung, Y. W., Cheng, J., Lu, J., Zhong, M., Weissman, S. M., & Park, I. H. (2016). Regulation of the DNA methylation landscape in human somatic cell reprogramming by the miR-29 family. Stem Cell Reports, 7(1), 43–54.CrossRefGoogle Scholar
  39. 39.
    Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., & Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930–935.CrossRefGoogle Scholar
  40. 40.
    Ito, S., D/'Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C., and Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310), 1129–1133.Google Scholar
  41. 41.
    Liang, G., He, J., & Zhang, Y. (2012). Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nature Cell Biology, 14(5), 457–466.CrossRefGoogle Scholar
  42. 42.
    Hu, X., Zhang, L., Mao, S. Q., Li, Z., Chen, J., Zhang, R. R., Wu, H. P., Gao, J., Guo, F., Liu, W., Xu, G. F., Dai, H. Q., Shi, Y. G., Li, X., Hu, B., Tang, F., Pei, D., & Xu, G. L. (2014). Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell, 14(4), 512–522.CrossRefGoogle Scholar
  43. 43.
    Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., Dupont, S., & Piccolo, S. (2013). A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell, 154(5), 1047–1059.CrossRefGoogle Scholar
  44. 44.
    Varelas, X., Sakuma, R., Samavarchi-Tehrani, P., Peerani, R., Rao, B. M., Dembowy, J., Yaffe, M. B., Zandstra, P. W., & Wrana, J. L. (2008). TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biology, 10(7), 837–848.CrossRefGoogle Scholar
  45. 45.
    Ohgushi, M., Minaguchi, M., & Sasai, Y. (2015). Rho-signaling-directed YAP/TAZ activity underlies the long-term survival and expansion of human embryonic stem cells. Cell Stem Cell, 17(4), 448–461.CrossRefGoogle Scholar
  46. 46.
    Panciera, T., Azzolin, L., Fujimura, A., di Biagio, D., Frasson, C., Bresolin, S., Soligo, S., Basso, G., Bicciato, S., Rosato, A., Cordenonsi, M., & Piccolo, S. (2016). Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell, 19(6), 725–737.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Georgia Pennarossa
    • 1
  • Elena F. M. Manzoni
    • 1
  • Sergio Ledda
    • 2
  • Magda deEguileor
    • 3
  • Fulvio Gandolfi
    • 4
    • 5
  • Tiziana A. L. Brevini
    • 1
    • 5
    Email author
  1. 1.Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food SafetyUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of Veterinary MedicineUniversity of SassariSassariItaly
  3. 3.Department of Biotechnology and Life SciencesUniversità degli Studi dell’InsubriaVareseItaly
  4. 4.Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences - Production, Landscape, AgroenergyUniversity of MilanMilanItaly
  5. 5.Unistem, Centre for Stem Cell ResearchUniversita’ degli Studi di MilanoMilanItaly

Personalised recommendations