Stem Cell Reviews and Reports

, Volume 15, Issue 1, pp 35–47 | Cite as

Intrinsic Vascular Repair by Endothelial Progenitor Cells in Acute Coronary Syndromes: an Update Overview

  • Vânia LealEmail author
  • Carlos Fontes Ribeiro
  • Bárbara Oliveiros
  • Natália António
  • Sónia Silva


Bone marrow-derived endothelial progenitor cells (EPCs) play a key role in the maintenance of endothelial homeostasis and endothelial repair at areas of vascular damage. The quantification of EPCs in peripheral blood by flow cytometry is a strategy to assess this reparative capacity. The number of circulating EPCs is inversely correlated with the number of cardiovascular risk factors and to the occurrence of cardiovascular events. Therefore, monitoring EPCs levels may provide an accurate assessment of susceptibility to cardiovascular injury, greatly improving risk stratification of patients with high cardiovascular risk, such as those with an acute myocardial infarction. However, there are many issues in the field of EPC identification and quantification that remain unsolved. In fact, there have been conflicting protocols used to the phenotypic identification of EPCs and there is still no consensual immunophenotypical profile that corresponds exactly to EPCs. In this paper we aim to give an overview on EPCs-mediated vascular repair with special focus on acute coronary syndromes and to discuss the different phenotypic profiles that have been used to identify and quantify circulating EPCs in several clinical studies. Finally, we will synthesize evidence on the prognostic role of EPCs in patients with high cardiovascular risk.


Endothelial progenitor cells Myocardial infarction Acute coronary syndromes Cardiovascular risk Flow cytometry 



It is our privilege to express our sincere acknowledgments to all who helped us to successfully complete this manuscript. The authors received no specific funding for this work.


The first draft was written by Leal V. Silva S designed the work. All authors critically revised the manuscript. All gave final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no potential conflicts of interest.


  1. 1.
    Kong, D., Melo, L. G., Gnecchi, M., et al. (2004). Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation, 110(14), 2039–2046.Google Scholar
  2. 2.
    Asahara, T., Masuda, H., Takahashi, T., et al. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation Research, 85(3), 221–228.Google Scholar
  3. 3.
    Asahara, T., Murohara, T., Sullivan, A., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.Google Scholar
  4. 4.
    Schmidt-Lucke, C., Rossig, L., Fichtlscherer, S., et al. (2005). Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation, 111(22), 2981–2987.Google Scholar
  5. 5.
    Aragona, C. O., Imbalzano, E., Mamone, F., et al. (2016). Endothelial progenitor cells for diagnosis and prognosis in cardiovascular disease. Stem Cells International, 2016, 8043792.Google Scholar
  6. 6.
    Capobianco, S., Chennamaneni, V., Mittal, M., Zhang, N., & Zhang, C. (2010). Endothelial progenitor cells as factors in neovascularization and endothelial repair. World Journal of Cardiology, 2(12), 411–420.Google Scholar
  7. 7.
    Yoder, M. C. (2013). Endothelial progenitor cell: a blood cell by many other names may serve similar functions. Journal of Molecular Medicine (Berlin, Germany), 91(3), 285–295.Google Scholar
  8. 8.
    Negro, R., Greco, E. L., & Greco, G. (2017). Active stromal cell-derived factor 1α and endothelial progenitor cells are equally increased by alogliptin in good and poor diabetes control. Clinical Medicine Insights: Endocrinology and Diabetes, 10, 1179551417743980.
  9. 9.
    Massa, M., Rosti, V., Ferrario, M., et al. (2005). Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood, 105(1), 199–206.Google Scholar
  10. 10.
    Werner, N., & Nickenig, G. (2006). Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arteriosclerosis, Thrombosis, and Vascular Biology, 26(2), 257–266.Google Scholar
  11. 11.
    Wojakowski, W., Tendera, M., Michalowska, A., et al. (2004). Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation, 110(20), 3213–3220.Google Scholar
  12. 12.
    Jernberg, T., Hasvold, P., Henriksson, M., Hjelm, H., Thuresson, M., & Janzon, M. (2015). Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. European Heart Journal, 36(19), 1163–1170.Google Scholar
  13. 13.
    Rigato, M., Avogaro, A., & Fadini, G. P. (2016). Levels of circulating progenitor cells, cardiovascular outcomes and death: a meta-analysis of prospective observational studies. Circulation Research, 118(12), 1930–1939.Google Scholar
  14. 14.
    Cuadrado-Godia, E., Regueiro, A., Nunez, J., et al. (2015). Endothelial progenitor cells predict cardiovascular events after atherothrombotic stroke and acute myocardial infarction. A PROCELL substudy. PloS One, 10(9), e0132415.Google Scholar
  15. 15.
    Regueiro, A., Cuadrado-Godia, E., Bueno-Beti, C., et al. (2015). Mobilization of endothelial progenitor cells in acute cardiovascular events in the PROCELL study: time-course after acute myocardial infarction and stroke. Journal of Molecular and Cellular Cardiology, 80, 146–155.Google Scholar
  16. 16.
    Jimenez-Navarro, M. F., Caballero-Borrego, J., Rodriguez-Losada, N., et al. (2011). Influence of preinfarction angina on the release kinetics of endothelial progenitor cells and cytokines during the week after infarction. European Journal of Clinical Investigation, 41(11), 1220–1226.Google Scholar
  17. 17.
    Antonio, N., Fernandes, R., Soares, A., et al. (2014). Reduced levels of circulating endothelial progenitor cells in acute myocardial infarction patients with diabetes or pre-diabetes: accompanying the glycemic continuum. Cardiovascular Diabetology, 13, 101.Google Scholar
  18. 18.
    Numaguchi, Y., Sone, T., Okumura, K., et al. (2006). The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation, 114(1 Suppl), I114–I119.Google Scholar
  19. 19.
    Porto, I., De Maria, G. L., Leone, A. M., et al. (2013). Endothelial progenitor cells, microvascular obstruction, and left ventricular remodeling in patients with ST elevation myocardial infarction undergoing primary percutaneous coronary intervention. American Journal of Cardiology, 112(6), 782–791.Google Scholar
  20. 20.
    Porto, I., Leone, A. M., De Maria, G. L., et al. (2011). Are endothelial progenitor cells mobilized by myocardial ischemia or myocardial necrosis? A cardiac magnetic resonance study. Atherosclerosis, 216(2), 355–358.Google Scholar
  21. 21.
    Schmidt-Lucke, C., Fichtlscherer, S., Aicher, A., et al. (2010). Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PloS One, 5(11), e13790.Google Scholar
  22. 22.
    Povsic, T. J., Najjar, S. S., Prather, K., et al. (2013). EPC mobilization after erythropoietin treatment in acute ST-elevation myocardial infarction: the REVEAL EPC substudy. Journal of Thrombosis and Thrombolysis, 36(4), 375–383.Google Scholar
  23. 23.
    Werner, N., Kosiol, S., Schiegl, T., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. New England Journal of Medicine, 353(10), 999–1007.Google Scholar
  24. 24.
    Werner, N., Wassmann, S., Ahlers, P., et al. (2007). Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Research in Cardiology, 102(6), 565–571.Google Scholar
  25. 25.
    Porto, I., Di Vito, L., De Maria, G. L., et al. (2009). Comparison of the effects of ramipril versus telmisartan on high-sensitivity C-reactive protein and endothelial progenitor cells after acute coronary syndrome. American Journal of Cardiology, 103(11), 1500–1505.Google Scholar
  26. 26.
    Mozid, A. M., Jones, D., Arnous, S., et al. (2013). The effects of age, disease state, and granulocyte colony-stimulating factor on progenitor cell count and function in patients undergoing cell therapy for cardiac disease. Stem Cells and Development, 22(2), 216–223.Google Scholar
  27. 27.
    Lev, E. I., Kleiman, N. S., Birnbaum, Y., Harris, D., Korbling, M., & Estrov, Z. (2005). Circulating endothelial progenitor cells and coronary collaterals in patients with non-ST segment elevation myocardial infarction. Journal of Vascular Research, 42(5), 408–414.Google Scholar
  28. 28.
    Kuliczkowski, W., Derzhko, R., Prajs, I., Podolak-Dawidziak, M., & Serebruany, V. L. (2012). Endothelial progenitor cells and left ventricle function in patients with acute myocardial infarction: potential therapeutic considertions. American Journal of Therapeutics, 19(1), 44–50.Google Scholar
  29. 29.
    Nolan, D. J., Ciarrocchi, A., Mellick, A. S., et al. (2007). Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes & Development, 21(12), 1546–1558.Google Scholar
  30. 30.
    Gao, D., & Mittal, V. (2009). The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends in Molecular Medicine, 15(8), 333–343.Google Scholar
  31. 31.
    Kim, J. Y., Song, S. H., Kim, K. L., et al. (2010). Human cord blood-derived endothelial progenitor cells and their conditioned media exhibit therapeutic equivalence for diabetic wound healing. Cell Transplantation, 19(12), 1635–1644.Google Scholar
  32. 32.
    Um, J., Jung, N., Chin, S., Cho, Y., Choi, S., & Park, K. S. (2016). Substance P enhances EPC mobilization for accelerated wound healing. Wound Repair and Regeneration, 24(2), 402–410.Google Scholar
  33. 33.
    Shintani, S., Murohara, T., Ikeda, H., et al. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 103(23), 2776–2779.Google Scholar
  34. 34.
    Murayama, T., Tepper, O. M., Silver, M., et al. (2002). Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Experimental Hematology, 30(8), 967–972.Google Scholar
  35. 35.
    Risau, W., & Flamme, I. (1995). Vasculogenesis. Annual Review of Cell and Developmental Biology, 11, 73–91.Google Scholar
  36. 36.
    Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., & Keller, G. (1998). A common precursor for hematopoietic and endothelial cells. Development, 125(4), 725–732.Google Scholar
  37. 37.
    Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6(4), 389–395.Google Scholar
  38. 38.
    Risau, W. (1997). Mechanisms of angiogenesis. Nature, 386(6626), 671–674.Google Scholar
  39. 39.
    Ribatti, D., Vacca, A., Nico, B., Roncali, L., & Dammacco, F. (2001). Postnatal vasculogenesis. Mechanisms of Development, 100(2), 157–163.Google Scholar
  40. 40.
    Zengin, E., Chalajour, F., Gehling, U. M., et al. (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133(8), 1543–1551.Google Scholar
  41. 41.
    Gunsilius, E., Duba, H. C., Petzer, A. L., et al. (2000). Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet, 355(9216), 1688–1691.Google Scholar
  42. 42.
    Rosenzweig, A. (2003). Endothelial progenitor cells. New England Journal of Medicine, 348(7), 581–582.Google Scholar
  43. 43.
    Imanishi, T., Tsujioka, H., & Akasaka, T. (2008). Endothelial progenitor cells dysfunction and senescence: contribution to oxidative stress. Current Cardiology Reviews, 4(4), 275–286.Google Scholar
  44. 44.
    Heissig, B., Hattori, K., Dias, S., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109(5), 625–637.Google Scholar
  45. 45.
    Dar, A., Kollet, O., & Lapidot, T. (2006). Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Experimental Hematology, 34(8), 967–975.Google Scholar
  46. 46.
    Briasoulis, A., Tousoulis, D., Antoniades, C., Papageorgiou, N., & Stefanadis, C. (2011). The role of endothelial progenitor cells in vascular repair after arterial injury and atherosclerotic plaque development. Cardiovascular Therapeutics, 29(2), 125–139.Google Scholar
  47. 47.
    Lapidot, T., & Petit, I. (2002). Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Experimental Hematology, 30(9), 973–981.Google Scholar
  48. 48.
    Takahashi, T., Kalka, C., Masuda, H., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5(4), 434–438.Google Scholar
  49. 49.
    Balaji, S., King, A., Crombleholme, T. M., & Keswani, S. G. (2013). The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Advances in Wound Care (New Rochelle), 2(6), 283–295.Google Scholar
  50. 50.
    De Falco, E., Porcelli, D., Torella, A. R., et al. (2004). SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood, 104(12), 3472–3482.Google Scholar
  51. 51.
    Asahara, T., Takahashi, T., Masuda, H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO Journal, 18(14), 3964–3972.Google Scholar
  52. 52.
    Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858–864.Google Scholar
  53. 53.
    Krock, B. L., Skuli, N., & Simon, M. C. (2011). Hypoxia-induced angiogenesis: good and evil. Genes & Cancer, 2(12), 1117–1133.Google Scholar
  54. 54.
    Aicher, A., Zeiher, A. M., & Dimmeler, S. (2005). Mobilizing endothelial progenitor cells. Hypertension, 45(3), 321–325.Google Scholar
  55. 55.
    Huang, P. H., Chen, Y. H., Wang, C. H., et al. (2009). Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(8), 1179–1184.Google Scholar
  56. 56.
    Petit, I., Jin, D., & Rafii, S. (2007). The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends in Immunology, 28(7), 299–307.Google Scholar
  57. 57.
    Fortunato, O., Spinetti, G., Specchia, C., Cangiano, E., Valgimigli, M., & Madeddu, P. (2013). Migratory activity of circulating progenitor cells and serum SDF-1alpha predict adverse events in patients with myocardial infarction. Cardiovascular Research, 100(2), 192–200.Google Scholar
  58. 58.
    Tilling, L., Chowienczyk, P., & Clapp, B. (2009). Progenitors in motion: mechanisms of mobilization of endothelial progenitor cells. British Journal of Clinical Pharmacology, 68(4), 484–492.Google Scholar
  59. 59.
    Gill, M., Dias, S., Hattori, K., et al. (2001). Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circulation Research, 88(2), 167–174.Google Scholar
  60. 60.
    Xu, J., Liu, X., Jiang, Y., et al. (2008). MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. Journal of Cellular and Molecular Medicine, 12(6a), 2395–2406.Google Scholar
  61. 61.
    Cheng, Y., Jiang, S., Hu, R., & Lv, L. (2013). Potential mechanism for endothelial progenitor cell therapy in acute myocardial infarction: activation of VEGF- PI3K/Akte-NOS pathway. Annals of Clinical and Laboratory Science, 43(4), 395–401.Google Scholar
  62. 62.
    Wu, Y., Potempa, L. A., El Kebir, D., & Filep, J. G. (2015). C-reactive protein and inflammation: conformational changes affect function. Biological Chemistry, 396(11), 1181–1197.Google Scholar
  63. 63.
    Peplow, P. V. (2014). Influence of growth factors and cytokines on angiogenic function of endothelial progenitor cells: a review of in vitro human studies. Growth Factors, 32(3–4), 83–116.Google Scholar
  64. 64.
    Du, F., Zhou, J., Gong, R., et al. (2012). Endothelial progenitor cells in atherosclerosis. Frontiers in Bioscience (Landmark Edition), 17, 2327–2349.Google Scholar
  65. 65.
    Gross, A., Schoendube, J., Zimmermann, S., Steeb, M., Zengerle, R., & Koltay, P. (2015). Technologies for single-cell isolation. International Journal of Molecular Sciences, 16(8), 16897–16919.Google Scholar
  66. 66.
    Fadini, G. P., Baesso, I., Albiero, M., Sartore, S., Agostini, C., & Avogaro, A. (2008). Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis, 197(2), 496–503.Google Scholar
  67. 67.
    Spano, M., & Evenson, D. P. (1993). Flow cytometric analysis for reproductive biology. Biologie Cellulaire, 78(1–2), 53–62.Google Scholar
  68. 68.
    Ibrahim, S. F., & van den Engh, G. (2007). Flow cytometry and cell sorting. Advances in Biochemical Engineering/Biotechnology, 106, 19–39.Google Scholar
  69. 69.
    Bellik, L., Ledda, F., & Parenti, A. (2005). Morphological and phenotypical characterization of human endothelial progenitor cells in an early stage of differentiation. FEBS Letters, 579(12), 2731–2736.Google Scholar
  70. 70.
    Khan, S. S., Solomon, M. A., & McCoy Jr., J. P. (2005). Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry, Part B: Clinical Cytometry, 64(1), 1–8.Google Scholar
  71. 71.
    Yoder, M. C. (2012). Human endothelial progenitor cells. Cold Spring Harbor Perspectives in Medicine, 2(7), a006692.Google Scholar
  72. 72.
    Sirker, A. A., Astroulakis, Z. M., & Hill, J. M. (2009). Vascular progenitor cells and translational research: the role of endothelial and smooth muscle progenitor cells in endogenous arterial remodelling in the adult. Clinical Science (London, England: 1979), 116(4), 283–299.Google Scholar
  73. 73.
    Fadini, G. P., Losordo, D., & Dimmeler, S. (2012). Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circulation Research, 110(4), 624–637.Google Scholar
  74. 74.
    Lin, L. Y., Huang, C. C., Chen, J. S., et al. (2014). Effects of pitavastatin versus atorvastatin on the peripheral endothelial progenitor cells and vascular endothelial growth factor in high-risk patients: a pilot prospective, double-blind, randomized study. Cardiovascular Diabetology, 13, 111.Google Scholar
  75. 75.
    Yin, A. H., Miraglia, S., Zanjani, E. D., et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002–5012.Google Scholar
  76. 76.
    Krause, D. S., Fackler, M. J., Civin, C. I., & May, W. S. (1996). CD34: structure, biology, and clinical utility. Blood, 87(1), 1–13.Google Scholar
  77. 77.
    Andrews, R. G., Singer, J. W., & Bernstein, I. D. (1986). Monoclonal antibody 12–8 recognizes a 115-kd molecule present on both unipotent and multipotent hematopoietic colony-forming cells and their precursors. Blood, 67(3), 842–845.Google Scholar
  78. 78.
    Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S., & Hopkinson, A. (2014). Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells, 32(6), 1380–1389.Google Scholar
  79. 79.
    Lin, G., Finger, E., & Gutierrez-Ramos, J. C. (1995). Expression of CD34 in endothelial cells, hematopoietic progenitors and nervous cells in fetal and adult mouse tissues. European Journal of Immunology, 25(6), 1508–1516.Google Scholar
  80. 80.
    Siemerink, M. J., Klaassen, I., Vogels, I. M., Griffioen, A. W., Van Noorden, C. J., & Schlingemann, R. O. (2012). CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis, 15(1), 151–163.Google Scholar
  81. 81.
    Stauffer, B. L., Maceneaney, O. J., Kushner, E. J., et al. (2008). Gender and endothelial progenitor cell number in middle-aged adults. Artery Research, 2(4), 156–160.Google Scholar
  82. 82.
    Fadini, G. P., Coracina, A., Baesso, I., et al. (2006). Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke, 37(9), 2277–2282.Google Scholar
  83. 83.
    Peichev, M., Naiyer, A. J., Pereira, D., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95(3), 952–958.Google Scholar
  84. 84.
    Friedrich, E. B., Walenta, K., Scharlau, J., Nickenig, G., & Werner, N. (2006). CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circulation Research, 98(3), e20–e25.Google Scholar
  85. 85.
    Powell, T. M., Paul, J. D., Hill, J. M., et al. (2005). Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(2), 296–301.Google Scholar
  86. 86.
    Schatteman, G. C., & Awad, O. (2004). Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anatomical record part a: Discoveries in molecular, Cellular, and Evolutionary Biology, 276(1), 13–21.Google Scholar
  87. 87.
    Chao, H., & Hirschi, K. K. (2010). Hemato-vascular origins of endothelial progenitor cells? Microvascular Research, 79(3), 169–173.Google Scholar
  88. 88.
    Estes, M. L., Mund, J. A., Mead, L. E., et al. (2010). Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential. Cytometry. Part A : the Journal of the International Society for Analytical Cytology, 77(9), 831–839.Google Scholar
  89. 89.
    Kocher, A. A., Schuster, M. D., Szabolcs, M. J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7(4), 430–436.Google Scholar
  90. 90.
    Li, T. S., Hamano, K., Nishida, M., et al. (2003). CD117+ stem cells play a key role in therapeutic angiogenesis induced by bone marrow cell implantation. American Journal of Physiology: Heart and Circulatory Physiology, 285(3), H931–H937.Google Scholar
  91. 91.
    Li, T. S., Hayashi, M., Liu, Z. L., et al. (2004). Low angiogenic potency induced by the implantation of ex vivo expanded CD117(+) stem cells. American Journal of Physiology: Heart and Circulatory Physiology, 286(4), H1236–H1241.Google Scholar
  92. 92.
    Duff, S. E., Li, C., Garland, J. M., & Kumar, S. (2003). CD105 is important for angiogenesis: Evidence and potential applications. FASEB Journal, 17(9), 984–992.Google Scholar
  93. 93.
    Yu, D. C., Chen, J., & Ding, Y. T. (2010). Hypoxic and highly angiogenic non-tumor tissues surrounding hepatocellular carcinoma: the ‘niche’ of endothelial progenitor cells. International Journal of Molecular Sciences, 11(8), 2901–2909.Google Scholar
  94. 94.
    Li, C., Hampson, I. N., Hampson, L., Kumar, P., Bernabeu, C., & Kumar, S. (2000). CD105 antagonizes the inhibitory signaling of transforming growth factor beta1 on human vascular endothelial cells. FASEB Journal, 14(1), 55–64.Google Scholar
  95. 95.
    Hager, G., Holnthoner, W., Wolbank, S., et al. (2013). Three specific antigens to isolate endothelial progenitor cells from human liposuction material. Cytotherapy, 15(11), 1426–1435.Google Scholar
  96. 96.
    Hill, J. M., Zalos, G., Halcox, J. P., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine, 348(7), 593–600.Google Scholar
  97. 97.
    Jialal, I., Devaraj, S., Singh, U., & Huet, B. A. (2010). Decreased number and impaired functionality of endothelial progenitor cells in subjects with metabolic syndrome: implications for increased cardiovascular risk. Atherosclerosis, 211(1), 297–302.Google Scholar
  98. 98.
    Wu, Y. T., Li, J. X., Liu, S., et al. (2012). A novel and feasible way to cultivate and purify endothelial progenitor cells from bone marrow of children with congenital heart diseases. Chinese Medical Journal (Engl), 125(11), 1903–1907.Google Scholar
  99. 99.
    Hur, J., Yoon, C. H., Kim, H. S., et al. (2004). Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(2), 288–293.Google Scholar
  100. 100.
    Mauge, L., Sabatier, F., Boutouyrie, P., et al. (2014). Forearm ischemia decreases endothelial colony-forming cell angiogenic potential. Cytotherapy, 16(2), 213–224.Google Scholar
  101. 101.
    Wang, C. H., Huang, P. H., Chen, J. W., et al. (2013). Clinical application of endothelial progenitor cell: are we ready? Acta Cardiologica Sinica, 29(6), 479–487.Google Scholar
  102. 102.
    Yoder, M. C., Mead, L. E., Prater, D., et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 109(5), 1801–1809.Google Scholar
  103. 103.
    Ingram, D. A., Mead, L. E., Tanaka, H., et al. (2004). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 104(9), 2752–2760.Google Scholar
  104. 104.
    Lekakis, J., Abraham, P., Balbarini, A., et al. (2011). Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on peripheral circulation. European Journal of Cardiovascular Prevention and Rehabilitation, 18(6), 775–789.Google Scholar
  105. 105.
    Huizer, K., Mustafa, D. A. M., Spelt, J. C., Kros, J. M., & Sacchetti, A. (2017). Improving the characterization of endothelial progenitor cell subsets by an optimized FACS protocol. PloS One, 12(9), e0184895.Google Scholar
  106. 106.
    Brixius, K., Funcke, F., Graf, C., & Bloch, W. (2006). Endothelial progenitor cells: a new target for the prevention of cardiovascular diseases. European Journal of Cardiovascular Prevention and Rehabilitation, 13(5), 705–710.Google Scholar
  107. 107.
    Shantsila, E., Watson, T., Tse, H. F., & Lip, G. Y. (2007). Endothelial colony forming units: are they a reliable marker of endothelial progenitor cell numbers? Annals of Medicine, 39(6), 474–479.Google Scholar
  108. 108.
    Chu, K., Jung, K. H., Lee, S. T., et al. (2008). Circulating endothelial progenitor cells as a new marker of endothelial dysfunction or repair in acute stroke. Stroke, 39(5), 1441–1447.Google Scholar
  109. 109.
    Torsney, E., Mandal, K., Halliday, A., Jahangiri, M., & Xu, Q. (2007). Characterisation of progenitor cells in human atherosclerotic vessels. Atherosclerosis, 191(2), 259–264.Google Scholar
  110. 110.
    Ciulla, M. M., Giorgetti, A., Silvestris, I., et al. (2006). Endothelial colony forming capacity is related to C-reactive protein levels in healthy subjects. Current Neurovascular Research, 3(2), 99–106.Google Scholar
  111. 111.
    Wang, X., & Connolly, T. M. (2010). Biomarkers of vulnerable atheromatous plaques: translational medicine perspectives. Advances in Clinical Chemistry, 50, 1–22.Google Scholar
  112. 112.
    Chironi, G., Walch, L., Pernollet, M. G., et al. (2007). Decreased number of circulating CD34+KDR+ cells in asymptomatic subjects with preclinical atherosclerosis. Atherosclerosis, 191(1), 115–120.Google Scholar
  113. 113.
    Hughes, A. D., Coady, E., Raynor, S., et al. (2007). Reduced endothelial progenitor cells in European and South Asian men with atherosclerosis. European Journal of Clinical Investigation, 37(1), 35–41.Google Scholar
  114. 114.
    Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473(7347), 317–325.Google Scholar
  115. 115.
    Anderson, J. L., & Morrow, D. A. (2017). Acute myocardial infarction. New England Journal of Medicine, 376(21), 2053–2064.Google Scholar
  116. 116.
    Kotecha, T., & Rakhit, R. D. (2016). Acute coronary syndromes. Clinical Medicine (London, England), 16(Suppl 6), s43–s48.Google Scholar
  117. 117.
    Paxinos, G., & Katritsis, D. G. (2012). Current therapy of non-ST-elevation acute coronary syndromes. Hellenic Journal of Cardiology Hellenike Kardiologike Epitheorese, 53(1), 63–71.Google Scholar
  118. 118.
    Seiler, C. (2010). The human coronary collateral circulation. European Journal of Clinical Investigation, 40(5), 465–476.Google Scholar
  119. 119.
    Habib, G. B., Heibig, J., Forman, S. A., et al. (1991). Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. The TIMI Investigators. Circulation, 83(3), 739–746.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Group of Pharmacology and Pharmaceutical Care, Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  2. 2.Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  3. 3.Laboratory of Biostatistics and Medical Informatics, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  4. 4.Coimbra Institute for Biomedical Imaging and Translational ResearchUniversity of CoimbraCoimbraPortugal
  5. 5.Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  6. 6.Cardiology DepartmentCoimbra Hospital and Universitary CentreCoimbraPortugal

Personalised recommendations