Advertisement

Stem Cell Reviews and Reports

, Volume 15, Issue 1, pp 59–66 | Cite as

Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Encapsulated on Polyvinylidene Fluoride Membranes (PFM) Promote Functional Recovery from Spinal Cord Injury

  • Koya Obara
  • Natsuko Tohgi
  • Kyoumi Shirai
  • Sumiyuki Mii
  • Yuko Hamada
  • Nobuko Arakawa
  • Ryoichi Aki
  • Shree Ram SinghEmail author
  • Robert M. HoffmanEmail author
  • Yasuyuki AmohEmail author
Article

Abstract

Our previous studies showed that nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells, which reside in the bulge area of the hair follicle, could restore injured nerve and spinal cord and differentiate into cardiac muscle cells. Here we transplanted mouse green fluorescent protein (GFP)-expressing HAP stem-cell colonies enclosed on polyvinylidene fluoride membranes (PFM) into the severed thoracic spinal cord of nude mice. After seven weeks of implantation, we found the differentiation of HAP stem cells into neurons and glial cells. Our results also showed that PFM-captured GFP-expressing HAP stem-cell colonies assisted complete reattachment of the thoracic spinal cord. Furthermore, our quantitative motor function analysis with the Basso Mouse Scale for Locomotion (BMS) score demonstrated a significant improvement in the implanted mice compared to non-implanted mice with a severed spinal cord. Our study also showed that it is easy to obtain HAP stem cells, they do not develop teratomas, and do not loose differentiation ability when cryopreserved. Collectively our results suggest that HAP stem cells could be a better source compared to induced pluripotent stem cells (iPS) or embryonic stem (ES) cells for regenerative medicine, specifically for spinal cord repair.

Keywords

Human hair follicle Nestin Stem cells Differentiation Neurons Glial cells Cardiac muscle cells Spinal cord injury 

Notes

Acknowledgements

This work was partially supported by Grant-in-Aid for Scientific Research (C) 16 K10173 from the Ministry of Education, Science, Sports, and Culture of Japan, a grant from the Ministry of Education, Culture, Sports, Science, and Technology of the Japan Government, MEXT-Supported Program for the Strategic Research Foundation at Private Universities (2014-2018), the Terumo Life Science Foundation (to Y. Amoh), and the Parents Association Grant of Kitasato University, School of Medicine (to K. Obara).

Compliance with Ethical Standard

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Holmes, D. (2017). Repairing the neural highway. Nature, 552(7684), S50–S51.CrossRefGoogle Scholar
  2. 2.
    Kuhl, E. (2018). Mechanical cues in spinal cord injury. Biophysical Journal, 115(5), 751–753.CrossRefGoogle Scholar
  3. 3.
    Li, L., Mignone, J., Yang, M., Matic, M., Penman, S., Enikolopov, G., & Hoffman, R. M. (2003). Nestin expression in hair follicle sheath progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 9958–99561.CrossRefGoogle Scholar
  4. 4.
    Amoh, Y., Li, L., Yang, M., Moossa, A. R., Katsuoka, K., Penman, S., & Hoffman, R. M. (2004). Nascent blood vessels in the skin arise from nestin-expressing hair-follicle cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 13291–13295.CrossRefGoogle Scholar
  5. 5.
    Hoffman, R. M. (2000). The hair follicle as a gene therapy target. Nat Biothechnol, 18, 20–21.CrossRefGoogle Scholar
  6. 6.
    Amoh, Y., Li, L., Yang, M., Moossa, A. R., Katsuoka, K., Penman, S., & Hoffman, R. M. (2005). Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proceedings of the National Academy of Sciences of the United States of America, 102, 5530–5534.CrossRefGoogle Scholar
  7. 7.
    Amoh, Y., Li, L., Katsuoka, K., & Hoffman, R. M. (2008). Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle, 7, 1865–1869.CrossRefGoogle Scholar
  8. 8.
    Amoh, Y., Kanoh, M., Niiyama, S., Hamada, Y., Kawahara, K., Sato, Y., Hoffman, R. M., & Katsuoka, K. (2009). Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: An advantageous alternative to ES and iPS cells. Journal of Cellular Biochemistry, 107, 1016–1020.CrossRefGoogle Scholar
  9. 9.
    Amoh, Y., Mii, S., Aki, R., Hamada, Y., Kawahara, K., Hoffman, R. M., & Katsuoka, K. (2012). Multipotent nestin-expressing stem cells capable of forming neurons are located in the upper, middle, and lower part of the vibrissa hair follicle. Cell Cycle, 11, 3513–3517.CrossRefGoogle Scholar
  10. 10.
    Liu, F., Uchugonova, A., Kimura, H., Zhang, C., Zhao, M., Zhang, L., Koenig, K., Duong, J., Aki, R., Saito, N., Mii, S., Amoh, Y., Katsuoka, K., & Hoffman, R. M. (2011). The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle, 10, 830–839.CrossRefGoogle Scholar
  11. 11.
    Kajiura, S., Mii, S., Aki, R., Hamada, Y., Arakawa, N., Kawahara, K., Li, L., Katsuoka, K., Hoffman, R. M., & Amoh, Y. (2015). Cryopreservation of the hair follicle maintains pluripotency of nestin-expressing hair follicle associated pluripotent stem cells. Tissue Engineering, 21, 825–831.CrossRefGoogle Scholar
  12. 12.
    Yashiro, M., Mii, S., Aki, R., Hamada, Y., Arakawa, N., Kawahara, K., Hoffman, R. M., & Amoh, Y. (2015). From hair to heart: Hair follicle stem cells differentiate to beating cardiac muscle cells. Cell Cycle, 14, 2362–2366.CrossRefGoogle Scholar
  13. 13.
    Yamazaki, A., Yashiro, M., Mii, S., Aki, R., Hamada, Y., Arakawa, N., Kawahara, K., Hoffman, R. M., & Amoh, Y. (2016). Isoproterenol directs hair follicle-associated pluripotent (HAP) stem cells to differentiate in vitro to cardiac-muscle cells which can be induced to form beating heart muscle tissue sheets. Cell Cycle, 15, 760–765.CrossRefGoogle Scholar
  14. 14.
    Yamazaki, A., Hamada, Y., Arakawa, N., Yashiro, M., Mii, S., Aki, R., Kawahara, K., et al. (2016). Early –age-dependent selective decrease of differentiation potential of hair-follicle-associated pluripotent (HAP) stem cells to beating cardiac muscle cells. Cell Cycle, 2, 848–861.Google Scholar
  15. 15.
    Yamazaki, A., Obara, K., Tohgi, N., Shirai, K., Mii, S., Hamada, Y., Arakawa, N., Aki, R., Hoffman, R. M., & Amoh, Y. (2017). Implanted hair-follicle-associated pluripotent (HAP) stem cells encapsulated in poly-vinylidene fluoride membrane cylinders promote effective recovery of peripheral nerve injury. Cell Cycle, 16, 1927–1932.CrossRefGoogle Scholar
  16. 16.
    Tohgi, N., Obara, K., Yashiro, M., Hamada, Y., Arakawa, N., Mii, S., Aki, R., Hoffman, R. M., & Amoh, Y. (2017). Human hair-follicle associated pluripotent (hHAP) stem cells differentiate to cardiac-muscle cells. Cell Cycle, 16, 95–99.CrossRefGoogle Scholar
  17. 17.
    Amoh, Y., Li, L., Campillo, R., Kawahara, K., Katsuoka, K., Penman, S., & Hoffman, R. M. (2005). Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proceedings of the National Academy of Sciences of the United States of America, 102, 17734–17738.CrossRefGoogle Scholar
  18. 18.
    Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., & Nishimune, Y. (1997). ‘Green mice’ as a source of ubiquitous green cells. FEBS Letters, 407, 313–319.CrossRefGoogle Scholar
  19. 19.
    Yashiro, M., Mii, S., Aki, R., Hamada, Y., Arakawa, N., Kawahara, K., Hoffman, R. M., Amoh, Y. (2016). Protocols for efficient differentiation of hair follicle-associated pluripotent (HAP) stem cells to beating cardiac muscle cells. Methods in Molecular Biology, 1453, 151–159.Google Scholar
  20. 20.
    Basso, D. M., Fisher, L. C., Anderson, A. J., Jakeman, L. B., McTigue, D. M., & Popovich, P. G. (2006). Mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. Journal of Neurotrauma, 23, 635–659.CrossRefGoogle Scholar
  21. 21.
    Faden, A. I. (1987). Pharmacotherapy in spinal cord injury: A critical review of recent developments. Clinical Neuropharmacology, 10(3), 193–204.CrossRefGoogle Scholar
  22. 22.
    Ozawa, H., Keane, R. W., Marcillo, A. E., Diaz, P. H., & Dietrich, W. D. (2002). Therapeutic strategies targeting caspase inhibition following spinal cord injury in rats. Experimental Neurology, 177(1), 306–313.CrossRefGoogle Scholar
  23. 23.
    Keirstead, H. S., Nistor, G., Bernal, G., Totoiu, M., Cloutier, F., Sharp, K., & Steward, O. (2005). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. The Journal of Neuroscience, 25(19), 4694–4705.CrossRefGoogle Scholar
  24. 24.
    Jarocha, D., Milczarek, O., Wedrychowicz, A., Kwiatkowski, S., & Majka, M. (2015). Continuous improvement after multiple mesenchymal stem cell transplantations in a patient with complete spinal cord injury. Cell Transplantation, 24(4), 661–672.CrossRefGoogle Scholar
  25. 25.
    Fandel, T. M., Trivedi, A., Nicholas, C. R., Zhang, H., Chen, J., Martinez, A. F., Noble-Haeusslein, L. J., & Kriegstein, A. R. (2016). Transplanted human stem cell-derived interneuron precursors mitigate mouse bladder dysfunction and central neuropathic pain after spinal cord injury. Cell Stem Cell, 19(4), 544–557.CrossRefGoogle Scholar
  26. 26.
    Ruven, C., Li, W., Li, H., Wong, W. M., & Wu, W. (2017). Transplantation of embryonic spinal cord derived cells helps to prevent muscle atrophy after peripheral nerve injury. International Journal of Molecular Sciences, 18(3), E511.CrossRefGoogle Scholar
  27. 27.
    Zhang, X. M., Ma, J., Sun, Y., Yu, B. Q., Jiao, Z. M., Wang, D., Yu, M. Y., Li, J. Y., & Fu, J. (2018). Tanshinone IIA promotes the differentiation of bone marrow mesenchymal stem cells into neuronal-like cells in a spinal cord injury model. Journal of Translational Medicine, 16(1), 193.CrossRefGoogle Scholar
  28. 28.
    Khan, I. U., Yoon, Y., Kim, A., Jo, K. R., Choi, K. U., Jung, T., Kim, N., Son, Y., Kim, W. H., & Kweon, O. K. (2018). Improved healing after the co-transplantation of HO-1 and BDNF overexpressed mesenchymal stem cells in the subacute spinal cord injury of dogs. Cell Transplantation, 27(7), 1140–1153.CrossRefGoogle Scholar
  29. 29.
    Gomes, E. D., Mendes, S. S., Assunção-Silva, R. C., Teixeira, F. G., Pires, A. O., Anjo, S. I., Manadas, B., Leite-Almeida, H., Gimble, J. M., Sousa, N., Lepore, A. C., Silva, N. A., & Salgado, A. J. (2018). Co-transplantation of adipose tissue-derived stromal cells and olfactory Ensheathing cells for spinal cord injury repair. Stem Cells, 36(5), 696–708.CrossRefGoogle Scholar
  30. 30.
    Alastrue-Agudo A, Rodriguez-Jimenez FJ, Mocholi EL, De Giorgio F, Erceg S, Moreno-Manzano V. (2018). FM19G11 and ependymal progenitor/stem cell combinatory treatment enhances neuronal preservation and Oligodendrogenesis after severe spinal cord injury. International Journal of Molecular Sciences, 19(1), E200.Google Scholar
  31. 31.
    Wichterle, H., Lieberm, I., Porter, J. A., & Jessell, T. M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell, 110, 385–397.CrossRefGoogle Scholar
  32. 32.
    Cummings, B. J., Uchida, N., Tamaki, S. J., Salazar, D. L., Hooshmand, M., Summers, R., Gage, F. H., & Anderson, A. J. (2005). Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 14069–14074.CrossRefGoogle Scholar
  33. 33.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRefGoogle Scholar
  34. 34.
    Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.CrossRefGoogle Scholar
  35. 35.
    Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953.CrossRefGoogle Scholar
  36. 36.
    Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., & Yamanaka, S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5, 237–241.CrossRefGoogle Scholar
  37. 37.
    Lu, P., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., Brock, J., Blesch, A., Rosenzweig, E. S., Havton, L. A., Zheng, B., Conner, J. M., Marsala, M., & Tuszynski, M. H. (2012). Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell, 150(6), 1264–1273.CrossRefGoogle Scholar
  38. 38.
    Sabelström, H., Stenudd, M., Réu, P., Dias, D. O., Elfineh, M., Zdunek, S., Damberg, P., Göritz, C., & Frisén, J. (2013). Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science, 342(6158), 637–640.CrossRefGoogle Scholar
  39. 39.
    Stenudd, M., Sabelström, H., & Frisén, J. (2015). Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurology, 72(2), 235–237.CrossRefGoogle Scholar
  40. 40.
    Rosenzweig, E. S., Brock, J. H., Lu, P., Kumamaru, H., Salegio, E. A., Kadoya, K., Weber, J. L., Liang, J. J., Moseanko, R., Hawbecker, S., Huie, J. R., Havton, L. A., Nout-Lomas, Y. S., Ferguson, A. R., Beattie, M. S., Bresnahan, J. C., & Tuszynski, M. H. (2018). Restorative effects of human neural stem cell grafts on the primate spinal cord. Nature Medicine, 24(4), 484–490.CrossRefGoogle Scholar
  41. 41.
    Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, Van Gorp S, Leerink M, Tadokoro T, Marsala S, Jamieson C, Marsala M, Ciacci JD. (2018). A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell, 22(6):941–950.Google Scholar
  42. 42.
    Tsuji, O., Miura, K., Okada, Y., Fujiyoshi, K., Mukaino, M., Nagoshi, N., Kitamura, K., Kumagai, G., Nishino, M., Tomisato, S., Higashi, H., Nagai, T., Katoh, H., Kohda, K., Matsuzaki, Y., Yuzaki, M., Ikeda, E., Toyama, Y., Nakamura, M., Yamanaka, S., & Okano, H. (2010). Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12704–12709.CrossRefGoogle Scholar
  43. 43.
    Nori, S., Okada, Y., Nishimura, S., Sasaki, T., Itakura, G., Kobayashi, Y., Renault-Mihara, F., Shimizu, A., Koya, I., Yoshida, R., Kudoh, J., Koike, M., Uchiyama, Y., Ikeda, E., Toyama, Y., Nakamura, M., & Okano, H. (2015). Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: Oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Reports, 4(3), 360–373.CrossRefGoogle Scholar
  44. 44.
    Strnadel, J., Carromeu, C., Bardy, C., Navarro, M., et al. (2018). Survival of syngeneic and allogeneic iPSC-derived neural precursors after spinal grafting in minipigs. Sci Transl Med, 10(440), eaam6651.Google Scholar
  45. 45.
    Yang, C., Li, X., Sun, L., Guo, W., & Tian, W. (2017). Potential of human dental stem cells in repairing the complete transection of rat spinal cord. Journal of Neural Engineering, 14(2), 026005.Google Scholar
  46. 46.
    Najafzadeh, N., Nobakht, M., Pourheydar, B., & Golmohammadi, M. G. (2013). Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury. Neural Regeneration Research, 8(36), 3365–3372.Google Scholar
  47. 47.
    Ohta, Y., Takenaga, M., Hamaguchi, A., Ootaki, M., Takeba, Y., Kobayashi, T., Watanabe, M., Iiri, T., & Matsumoto, N. (2018). Isolation of adipose-derived stem/stromal cells from cryopreserved fat tissue and transplantation into rats with spinal cord injury. International Journal of Molecular Sciences, 19(7), E1963.CrossRefGoogle Scholar
  48. 48.
    Ramalho BDS, Almeida FM, Sales CM, de Lima S, Martinez AMB (2018). Injection of bone marrow mesenchymal stem cells by intravenous or intraperitoneal routes is a viable alternative to spinal cord injury treatment in mice. Neural Regeneration Research, 13(6),1046–1053.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of DermatologyKitasato University School of MedicineSagamiharaJapan
  2. 2.Basic Research LaboratoryNational Cancer InstituteFrederickUSA
  3. 3.AntiCancer, Inc.San DiegoUSA
  4. 4.Department of SurgeryUniversity of CaliforniaSan DiegoUSA

Personalised recommendations