Advertisement

Stem Cell Reviews and Reports

, Volume 15, Issue 1, pp 48–58 | Cite as

Kinin-B2 Receptor Activity in Skeletal Muscle Regeneration and Myoblast Differentiation

  • Janaina M. Alves
  • Antonio H. Martins
  • Claudiana Lameu
  • Talita Glaser
  • Nawal M. Boukli
  • Vinicius Bassaneze
  • Rafael Dariolli
  • Isis C. Nascimento
  • Poliana C. M. Martins
  • Héllio D. N. de Souza
  • José Eduardo Krieger
  • Dulce E. Casarini
  • Vicencia M. Sales
  • João B. Pesquero
  • Henning UlrichEmail author
Article

Abstract

The bioactive peptide bradykinin obtained from cleavage of precursor kininogens activates the kinin-B2 receptor functioning in induction of inflammation and vasodilatation. In addition, bradykinin participates in kidney and cardiovascular development and neuronal and muscle differentiation. Here we show that kinin-B2 receptors are expressed throughout differentiation of murine C2C12 myoblasts into myotubes. An autocrine loop between receptor activation and bradykinin secretion is suggested, since bradykinin secretion is significantly reduced in the presence of the kinin-B2 receptor antagonist HOE-140 during differentiation. Expression of skeletal muscle markers and regenerative capacity were decreased after pharmacological inhibition or genetic ablation of the B2 receptor, while its antagonism increased the number of myoblasts in culture. In summary, the present work reveals to date no functions described for the B2 receptor in muscle regeneration due to the control of proliferation and differentiation of muscle precursor cells.

Keywords

Mouse myoblast differentiation Muscle repair Kinin-B2 receptor HOE-140 

Notes

Funding

This work was supported by grants awarded by Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation, FAPESP, Project No. 2012/50880-4) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil, to H.U. and C.L. (2015/19128-2), by a NIH grant, to A.H.M (8G12MD007600) and by the Universidad Central del Caribe Biomedical Proteomics Facility Grant G12MD007583 awarded to NMB from the NIH National Institute on Minority Health and Health Disparities (NIMHD) RCMI Program.. J.M.A.’s Ph.D. thesis research was funded by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Brazil. This study was financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -Brazil (CAPES) – Finance Code 001.

Compliance with Ethical Standards

Conflict of Interest

All authors declare that they do not have conflict of interests of any type to publish the manuscript.

Supplementary material

12015_2018_9850_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1.01 mb)

References

  1. 1.
    Tschöpe, C., & Westermann, D. (2008). Development of diabetic cardiomyopathy and the kallikrein-kinin system--new insights from B1 and B2 receptor signaling. Biological Chemistry, 389(6), 707–711.CrossRefGoogle Scholar
  2. 2.
    Cruden, N. L. M., & Newby, D. E. (2008). Therapeutic potential of icatibant (HOE-140, JE-049). Expert Opinion on Pharmacotherapy, 9(13), 2383–2390.CrossRefGoogle Scholar
  3. 3.
    Rodi, D., Buzzi, A., Barbieri, M., et al. (2013). Bradykinin B2receptors increase hippocampal excitability and susceptibility to seizures in mice. Neuroscience, 17(/248), 392–402.CrossRefGoogle Scholar
  4. 4.
    Torres-Rivera, W., Pérez, D., Park, K. Y., et al. (2013). Kinin-B2 receptor exerted neuroprotection after diisopropylfluorophosphate-induced neuronal damage. Neuroscience, 5(/247), 273–279.CrossRefGoogle Scholar
  5. 5.
    Martins, A. H., Alves, J. M., Perez, D., et al. (2012). Kinin-B2 receptor mediated neuroprotection after NMDA excitotoxicity is reversed in the presence of kinin-B1 receptor agonists. PLoS One, 7(2), 3505.Google Scholar
  6. 6.
    El-Dahr, S. S., Dipp, S., Meleg-Smith, S., et al. (2000). Fetal ontogeny and role of metanephric bradykinin B2receptors. Pediatric Nephrology, 14(4), 288–296.CrossRefGoogle Scholar
  7. 7.
    Madeddu, P., Emanueli, C., Gaspa, L., et al. (1999). Role of the bradykinin B2 receptor in the maturation of blood pressure phenotype: Lesson from transgenic and knockout mice. Immunopharmacology, 15(/44), 9–13.CrossRefGoogle Scholar
  8. 8.
    Martins, A. H., Alves, J. M., Trujillo, C. A., et al. (2008). Kinin-B2 receptor expression and activity during differentiation of embryonic rat neurospheres. Cytometry. Part A, 73(/4), 361–368.CrossRefGoogle Scholar
  9. 9.
    Trujillo, C. A., Schwindt, T. T., Martins, A. H., et al. (2009). Novel perspectives of neural stem cell differentiation: From neurotransmitters to therapeutics. Cytometry. Part A, 75(/1), 38–53.CrossRefGoogle Scholar
  10. 10.
    Martins, A. H. B., Resende, R. R., Majumder, P., Faria, M., Casarini, D. E., Tárnok, A., Colli, W., Pesquero, J. B., & Ulrich, H. (2005). Neuronal differentiation of P19 embryonal carcinoma cells modulates kinin B2 receptor gene expression and function. The Journal of Biological Chemistry, 280(/20), 19576–19586.CrossRefGoogle Scholar
  11. 11.
    Trujillo, C. A., Negraes, P. D., Schwindt, T. T., Lameu, C., Carromeu, C., Muotri, A. R., Pesquero, J. B., Cerqueira, D. M., Pillat, M. M., de Souza, H. D. N., Turaça, L. T., Abreu, J. G., & Ulrich, H. (2012). Kinin-B2 receptor activity determines the differentiation fate of neural stem cells. Journal of Biological Chemistry, 287(53), 44046–44061.CrossRefGoogle Scholar
  12. 12.
    Bruno, G., Cencetti, F., Bernacchioni, C., Donati, C., Blankenbach, K. V., Thomas, D., Meyer zu Heringdorf, D., & Bruni, P. (2018). Bradykinin mediates myogenic differentiation in murine myoblasts through the involvement of SK1/Spns2/S1P2axis. Cellular Signalling, 45, 110–121.CrossRefGoogle Scholar
  13. 13.
    Campion, D. R. (1984). The muscle satellite cell: a review. International Review of Cytology, 87, 225–251.CrossRefGoogle Scholar
  14. 14.
    Camillo, A. C., De Carvalho Rocha, R., & Chopard, R. P. (2004). Structural and microvascular study of soleous muscle of Wistar rats after section of the sciatic nerve. Arquivos de Neuro-Psiquiatria, 62, 835–838.CrossRefGoogle Scholar
  15. 15.
    Cooper, R. N., Tajbakhsh, S., Mouly, V., et al. (1999). In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. Journal of Cell Science, 112(/1), 2895–2901.Google Scholar
  16. 16.
    Morgan, J. E., & Partridge, T. A. (2003). Muscle satellite cells. The International Journal of Biochemistry & Cell Biology, 35, 1151–1156.CrossRefGoogle Scholar
  17. 17.
    Bernacchioni, C., Cencetti, F., Ouro, A., Bruno, M., Gomez-Muñoz, A., Donati, C., & Bruni, P. (2018). Lysophosphatidic acid signaling axis mediates ceramide 1-phosphate-induced proliferation of C2C12 myoblasts. International Journal of Molecular Sciences, 19(1), 139.CrossRefGoogle Scholar
  18. 18.
    Čamernik, K., Barlič, A., Drobnič, M., Marc, J., Jeras, M., & Zupan, J. (2018). Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration? Stem Cell Reviews and Reports, 14, 346–369.CrossRefGoogle Scholar
  19. 19.
    Siemionow, M., Cwykiel, J., Heydemann, A., Garcia, J., Marchese, E., Siemionow, K., & Szilagyi, E. (2018). Dystrophin expressing chimeric (DEC) human cells provide a potential therapy for Duchenne muscular dystrophy. Stem Cell Reviews and Reports, 14, 370–384.CrossRefGoogle Scholar
  20. 20.
    Siemionow, M., Cwykiel, J., Heydemann, A., Garcia-Martinez, J., Siemionow, K., & Szilagyi, E. (2018). Creation of dystrophin expressing chimeric cells of myoblast origin as a novel stem cell based therapy for Duchenne muscular dystrophy. Stem Cell Reviews and Reports, 14, 189–199.CrossRefGoogle Scholar
  21. 21.
    Blau, H. M., Pavlath, G. K., Hardeman, E. C., et al. (1985). Plasticity of the differentiated state. Science, 230, 758–766.CrossRefGoogle Scholar
  22. 22.
    Filigheddu, N., Gnocchi, V. F., Coscia, M., Cappelli, M., Porporato, P. E., Taulli, R., Traini, S., Baldanzi, G., Chianale, F., Cutrupi, S., Arnoletti, E., Ghè, C., Fubini, A., Surico, N., Sinigaglia, F., Ponzetto, C., Muccioli, G., Crepaldi, T., & Graziani, A. (2007). Ghrelin and des-acyl ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells. Molecular Biology of the Cell, 18, 986–994.CrossRefGoogle Scholar
  23. 23.
    Burattini, S., Ferri, R., Battistelli, M., et al. (2004). C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. European Journal of Histochemistry, 48(/3), 223–233.Google Scholar
  24. 24.
    Ulrich, H., Ratajczak, M. Z., Schneider, G., et al. (2018). Kinin and purine signaling contributes to neuroblastoma metastasis. Frontiers in Pharmacology, 9, 500.CrossRefGoogle Scholar
  25. 25.
    Abmayr, S. M., & Pavlath, G. K. (2012). Myoblast fusion: lessons from flies and mice. Development, 139, 641–656.CrossRefGoogle Scholar
  26. 26.
    Cardoso, C. C., Garrett, T., Cayla, C., Meneton, P., Pesquero, J. B., & Bader, M. (2004). Structure and expression of two kininogen genes in mice. Biological Chemistry, 385(3–4), 295–301.Google Scholar
  27. 27.
    Morais, K. L., Ianzer, D., Miranda, J. R., Melo, R. L., Guerreiro, J. R., Santos, R. A., Ulrich, H., Lameu, C. (2013). Proline rich-oligopeptides: Diverse mechanisms for antihypertensive action. Peptides, 48, 124–133.CrossRefGoogle Scholar
  28. 28.
    Mori, S., & Tokuyama, K. (2007). ACE activity affects myogenic differentiation via mTOR signaling. Biochemical and Biophysical Research Communications, 363(3), 597–602.CrossRefGoogle Scholar
  29. 29.
    Yusuf, F., & Brand-Saberi, B. (2012). Myogenesis and muscle regeneration. Histochemistry and Cell Biology, 138(2), 187–199.CrossRefGoogle Scholar
  30. 30.
    Pillat, M. M., Lameu, C., Trujillo, C. A., Glaser, T., Cappellari, A. R., Negraes, P. D., Battastini, A. M. O., Schwindt, T. T., Muotri, A. R., & Ulrich, H. (2016). Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation. Journal of Cell Science, 129(/18), 3437–3448.CrossRefGoogle Scholar
  31. 31.
    Garry, G. A., Antony, M. L., & Garry, D. J. (2016). Cardiotoxin induced injury and skeletal muscle regeneration. Methods in Molecular Biology (Clifton, N.J.), 1460, 61–71.CrossRefGoogle Scholar
  32. 32.
    Zhu, L. N., Ren, Y., Chen, J. Q., & Wang, Y. Z. (2013). Effects of myogenin on muscle fiber types and key metabolic enzymes in gene transfer mice and C2C12 myoblasts. Gene, 532(2), 246–252.CrossRefGoogle Scholar
  33. 33.
    Paulin, D., & Li, Z. (2004). Desmin: A major intermediate filament protein essential for the structural integrity and function of muscle. Experimental Cell Research, 301(1), 1–7.CrossRefGoogle Scholar
  34. 34.
    Allen, D. L., Harrison, B. C., Sartorius, C., Byrnes, W. C., & Leinwand, L. A. (2001). Mutation of the IIB myosin heavy chain gene results in muscle fiber loss and compensatory hypertrophy. American Journal of Physiology. Cell Physiology, 280(3), C637–C645.CrossRefGoogle Scholar
  35. 35.
    Lyons, G. E., Ontell, M., Cox, R., Sassoon, D., & Buckingham, M. (1990). The expression of myosin genes in developing skeletal muscle in the mouse embryo. Journal of Cell Biology, 111(4), 1465–1476.CrossRefGoogle Scholar
  36. 36.
    Schaffel, R., Rodrigues, M. S., & Assreuy, J. (1991). Potentiation of bradykinin effects and inhibition of kininase activity in isolated smooth muscle. Canadian Journal of Physiology and Pharmacology, 69(7), 904–908.CrossRefGoogle Scholar
  37. 37.
    Minshall, R. D., Erdös, E. G., & Vogel, S. M. (1997). Angiotensin I-converting enzyme inhibitors potentiate bradykinin’s inotropic effects independently of blocking its inactivation. American Journal of Cardiology, 3(80), 132A–136A.CrossRefGoogle Scholar
  38. 38.
    Bains, W., Ponte, P., Blau, H., & Kedes, L. (1984). Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. Molecular and Cellular Biology, 4(8), 1449–1453.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Janaina M. Alves
    • 1
    • 2
  • Antonio H. Martins
    • 3
    • 4
  • Claudiana Lameu
    • 4
  • Talita Glaser
    • 4
  • Nawal M. Boukli
    • 5
  • Vinicius Bassaneze
    • 6
  • Rafael Dariolli
    • 6
  • Isis C. Nascimento
    • 1
    • 4
  • Poliana C. M. Martins
    • 4
  • Héllio D. N. de Souza
    • 4
  • José Eduardo Krieger
    • 6
  • Dulce E. Casarini
    • 6
  • Vicencia M. Sales
    • 7
  • João B. Pesquero
    • 7
  • Henning Ulrich
    • 4
    Email author
  1. 1.Departmento de Neurologia/NeurocirurgiaUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Department of Microbiology and ImmunologyUniversidad Central del CaribeBayamónUSA
  3. 3.Pharmacology and Toxicology DepartmentUniversity of Puerto Rico Medical -Sciences CampusRio PiedrasUSA
  4. 4.Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  5. 5.Biomedical Proteomics Facility, Department of Microbiology and ImmunologyUniversidad Central del CaribeBayamónUSA
  6. 6.Heart Institute (InCor)University of São Paulo Medical SchoolSão PauloBrazil
  7. 7.Departamento de BiofísicaUniversidade Federal de São PauloSão PauloBrazil

Personalised recommendations