Stem Cell Reviews and Reports

, Volume 15, Issue 1, pp 126–138 | Cite as

circRNA Expression Profiles in Human Bone Marrow Stem Cells Undergoing Osteoblast Differentiation

  • Mengjun Zhang
  • Lingfei Jia
  • Yunfei ZhengEmail author


Circular RNAs (circRNAs), which are produced by back-splicing events in genes, have emerged as factors in gene regulation and normal cellular homeostasis. They play an important role not only in normal development of tissues and organs, but also in disease pathogenesis and cell differentiation. However, the role of circRNAs in bone marrow stem cells (BMSCs) undergoing osteoblast differentiation remains largely unknown. We performed microarray analysis to determine the expression profiles of circRNAs during osteoblast differentiation. In total, 3938 circRNAs were upregulated and 1505 were downregulated in BMSCs at day 7 (D7) compared with day 0 (D0). About 95% of the differentially expressed circRNAs were derived from protein coding genes, and functional annotation analysis showed that the parental genes of differentially expressed circRNAs were enriched in osteogenesis-associated terms. We also analyzed the microRNA (miRNA) transcriptome since circRNAs have been suggested to interact with miRNAs. We then selected the circRNAs that were negatively correlated with miRNAs and possessed miRNA response elements to construct a circRNA-miRNA interaction network. Analysis of the hub nodes in the networks showed that the top five nodes were miRNAs. Some circRNAs were linked to miRNAs with osteogenic roles, indicating that these circRNAs potentially function in osteogenic differentiation of BMSCs. Moreover, we validated the expression of one hub miRNA, miR-199b-5p, and its linked circIGSF11. Silencing of circIGSF11 promoted osteoblast differentiation and increased the expression of miR-199b-5p. Our study suggests that circRNA-miRNA interaction actively contributes to the osteogenic differentiation of human BMSCs, suggesting potential avenues for further study.


Circular RNAs Noncoding RNAs Bone marrow stem cells Osteogenic differentiation Osteoblast 



This study was financially supported by grants from the National Natural Science Foundation of China (81772876; 81700938), and the grant of Peking University School and Hospital of Stomatology (PKUSS20140104).

Compliance with Ethical Standards

Conflict of Interest

There is no conflict of interest of any authors. No competing financial interests exist.

Supplementary material

12015_2018_9841_MOESM1_ESM.xlsx (51 kb)
ESM 1 (XLSX 51 kb)
12015_2018_9841_MOESM2_ESM.xlsx (68 kb)
ESM 2 (XLSX 67 kb)


  1. 1.
    Younger, E. M., & Chapman, M. W. (1989). Morbidity at bone graft donor sites. Journal of Orthopaedic Trauma, 3, 192–195.CrossRefGoogle Scholar
  2. 2.
    Banwart, J. C., Asher, M. A., & Hassanein, R. S. (1995). Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine, 20, 1055–1060.Google Scholar
  3. 3.
    Bianco, P., Robey, P. G., & Simmons, P. J. (2008). Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell, 2, 313–319.CrossRefGoogle Scholar
  4. 4.
    Bianco, P., Riminucci, M., Gronthos, S., & Robey, P. G. (2001). Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells, 19, 180–192.CrossRefGoogle Scholar
  5. 5.
    Yousefi, A. M., James, P. F., Akbarzadeh, R., Subramanian, A., Flavin, C., & Oudadesse, H. (2016). Prospect of stem cells in bone tissue engineering: A review. Stem Cells International, 2016, 6180487.CrossRefGoogle Scholar
  6. 6.
    Im, G. I. (2017). Bone marrow-derived stem/stromal cells and adipose tissue-derived stem/stromal cells: Their comparative efficacies and synergistic effects. Journal of biomedical materials research Part A, 105(9), 2640–2648.CrossRefGoogle Scholar
  7. 7.
    Zhang, W., Dong, R., Diao, S., Du, J., Fan, Z., & Wang, F. (2017). Differential long noncoding RNA/mRNA expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells. Stem Cell Research & Therapy, 8, 30.CrossRefGoogle Scholar
  8. 8.
    Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495, 384–388.CrossRefGoogle Scholar
  9. 9.
    Liu, J., Liu, T., Wang, X., & He, A. (2017). Circles reshaping the RNA world: From waste to treasure. Molecular Cancer, 16, 58.CrossRefGoogle Scholar
  10. 10.
    Qu, S., Yang, X., Li, X., Wang, J., Gao, Y., Shang, R., Sun, W., Dou, K., & Li, H. (2015). Circular RNA: A new star of noncoding RNAs. Cancer Letters, 365, 141–148.CrossRefGoogle Scholar
  11. 11.
    Daniel, C., Behm, M., & Ohman, M. (2015). The role of Alu elements in the cis-regulation of RNA processing. Cellular and molecular life sciences : CMLS, 72, 4063–4076.CrossRefGoogle Scholar
  12. 12.
    Chen, L. L., & Yang, L. (2015). Regulation of circRNA biogenesis. RNA Biology, 12, 381–388.CrossRefGoogle Scholar
  13. 13.
    Rybak-Wolf, A., Stottmeister, C., Glazar, P., et al. (2015). Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Molecular Cell, 58, 870–885.CrossRefGoogle Scholar
  14. 14.
    Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., Marzluff, W. F., & Sharpless, N. E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19, 141–157.CrossRefGoogle Scholar
  15. 15.
    Lasda, E., & Parker, R. (2014). Circular RNAs: Diversity of form and function. RNA, 20, 1829–1842.CrossRefGoogle Scholar
  16. 16.
    Xia, S., Feng, J., Chen, K., Ma, Y., Gong, J., Cai, F., Jin, Y., Gao, Y., Xia, L., Chang, H., Wei, L., Han, L., & He, C. (2018). CSCD: a database for cancer-specific circular RNAs. Nucleic Acids Research, 46, D925–D9D9.CrossRefGoogle Scholar
  17. 17.
    Burd, C. E., Jeck, W. R., Liu, Y., Sanoff, H. K., Wang, Z., & Sharpless, N. E. (2010). Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genetics, 6, e1001233.CrossRefGoogle Scholar
  18. 18.
    Hansen, T. B., Kjems, J., & Damgaard, C. K. (2013). Circular RNA and miR-7 in cancer. Cancer Research, 73, 5609–5612.CrossRefGoogle Scholar
  19. 19.
    Li, P., Chen, S., Chen, H., et al. (2015). Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clinica chimica acta; international journal of clinical chemistry, 444, 132–136.CrossRefGoogle Scholar
  20. 20.
    Diomede F, Merciaro I, Martinotti S, et al. (2016). miR-2861 is involved in osteogenic commitment of human periodontal ligament stem cells grown onto 3D scaffold. Journal of biological regulators and homeostatic agents, 30.Google Scholar
  21. 21.
    Qu, Q., Fang, F., Wu, B., Hu, Y., Chen, M., Deng, Z., Ma, D., Chen, T., Hao, Y., & Ge, Y. (2016). Potential role of long non-coding RNA in osteogenic differentiation of human periodontal ligament stem cells. Journal of Periodontology, 87, e127–e137.CrossRefGoogle Scholar
  22. 22.
    Huang, Y., Zheng, Y., Jin, C., Li, X., Jia, L., & Li, W. (2016). Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Scientific Reports, 6, 28897.CrossRefGoogle Scholar
  23. 23.
    Jin, C., Jia, L., Huang, Y., Zheng, Y., du, N., Liu, Y., & Zhou, Y. (2016). Inhibition of lncRNA MIR31HG promotes osteogenic differentiation of human adipose-derived stem cells. Stem Cells, 34(11), 2707–2720.CrossRefGoogle Scholar
  24. 24.
    Qiu, Y., Chen, Y., Zeng, T., Guo, W., Zhou, W., & Yang, X. (2016). EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210. Molecular Biology Reports, 43, 183–193.CrossRefGoogle Scholar
  25. 25.
    Liu, X. D., Cai, F., Liu, L., Zhang, Y., & Yang, A. L. (2015). MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation. Biological Chemistry, 396, 339–347.CrossRefGoogle Scholar
  26. 26.
    Zhao, R., Li, Y., Lin, Z., Wan, J., Xu, C., Zeng, Y., & Zhu, Y. (2016). miR-199b-5p modulates BMSC osteogenesis via suppressing GSK-3beta/beta-catenin signaling pathway. Biochemical and Biophysical Research Communications, 477, 749–754.CrossRefGoogle Scholar
  27. 27.
    Zhang, X. H., Geng, G. L., Su, B., Liang, C. P., Wang, F., & Bao, J. C. (2016). MicroRNA-338-3p inhibits glucocorticoid-induced osteoclast formation through RANKL targeting. Genetics and molecular research: GMR, 15.Google Scholar
  28. 28.
    Liu, H., Sun, Q., Wan, C., Li, L., Zhang, L., & Chen, Z. (2014). MicroRNA-338-3p regulates osteogenic differentiation of mouse bone marrow stromal stem cells by targeting Runx2 and Fgfr2. Journal of Cellular Physiology, 229, 1494–1502.CrossRefGoogle Scholar
  29. 29.
    Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., & Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 56, 55–66.CrossRefGoogle Scholar
  30. 30.
    Wang, F., Nazarali, A. J., & Ji, S. (2016). Circular RNAs as potential biomarkers for cancer diagnosis and therapy. American Journal of Cancer Research, 6, 1167–1176.Google Scholar
  31. 31.
    Peng, L., Yuan, X. Q., & Li, G. C. (2015). The emerging landscape of circular RNA ciRS-7 in cancer (review). Oncology Reports, 33, 2669–2674.CrossRefGoogle Scholar
  32. 32.
    Bachmayr-Heyda, A., Reiner, A. T., Auer, K., Sukhbaatar, N., Aust, S., Bachleitner-Hofmann, T., Mesteri, I., Grunt, T. W., Zeillinger, R., & Pils, D. (2015). Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Scientific Reports, 5, 8057.CrossRefGoogle Scholar
  33. 33.
    Liu, Q., Zhang, X., Hu, X., Dai, L., Fu, X., Zhang, J., & Ao, Y. (2016). Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 'Sponge' in human cartilage degradation. Scientific Reports, 6, 22572.CrossRefGoogle Scholar
  34. 34.
    Lukiw, W. J. (2013). Circular RNA (circRNA) in Alzheimer's disease (AD). Frontiers in Genetics, 4, 307.Google Scholar
  35. 35.
    Qian, D. Y., Yan, G. B., Bai, B., Chen, Y., Zhang, S. J., Yao, Y. C., & Xia, H. (2017). Differential circRNA expression profiles during the BMP2-induced osteogenic differentiation of MC3T3-E1 cells. Biomedecine & pharmacotherapie, 90, 492–499.CrossRefGoogle Scholar
  36. 36.
    Zheng, Y., Li, X., Huang, Y., Jia, L., & Li, W. (2017). The circular RNA landscape of periodontal ligament stem cells during osteogenesis. Journal of Periodontology, 88, 906–914.CrossRefGoogle Scholar
  37. 37.
    Lan, P. H., Liu, Z. H., Pei, Y. J., Wu, Z. G., Yu, Y., Yang, Y. F., Liu, X., Che, L., Ma, C. J., Xie, Y. K., Hu, Q. J., Wan, Z. Y., & Wang, H. Q. (2016). Landscape of RNAs in human lumbar disc degeneration. Oncotarget, 7, 63166–63176.Google Scholar
  38. 38.
    Veno, M. T., Hansen, T. B., Veno, S. T., et al. (2015). Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biology, 16, 245.CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., Zhu, S., Yang, L., & Chen, L. L. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51, 792–806.CrossRefGoogle Scholar
  40. 40.
    Karner, E., Backesjo, C. M., Cedervall, J., Sugars, R. V., Ahrlund-Richter, L., & Wendel, M. (2009). Dynamics of gene expression during bone matrix formation in osteogenic cultures derived from human embryonic stem cells in vitro. Biochimica et Biophysica Acta, 1790, 110–118.CrossRefGoogle Scholar
  41. 41.
    Kulterer, B., Friedl, G., Jandrositz, A., Sanchez-Cabo, F., Prokesch, A., Paar, C., Scheideler, M., Windhager, R., Preisegger, K. H., & Trajanoski, Z. (2007). Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics, 8, 70.CrossRefGoogle Scholar
  42. 42.
    Alford, A. I., Kozloff, K. M., & Hankenson, K. D. (2015). Extracellular matrix networks in bone remodeling. The International Journal of Biochemistry & Cell Biology, 65, 20–31.CrossRefGoogle Scholar
  43. 43.
    Baroncelli, M., van der Eerden, B. C., Kan, Y. Y., Alves, R. D., Demmers, J. A., van de Peppel, J., & van Leeuwen, J. (2017). Comparative proteomic profiling of human osteoblast-derived extracellular matrices identifies proteins involved in mesenchymal stromal cell osteogenic differentiation and mineralization. Journal of Cellular Physiology, 233(1), 387–395.CrossRefGoogle Scholar
  44. 44.
    Wu, M., Chen, G., & Li, Y. P. (2016). TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone research, 4, 16009.CrossRefGoogle Scholar
  45. 45.
    Itkin, T., Kaufmann, K. B., Gur-Cohen, S., Ludin, A., & Lapidot, T. (2013). Fibroblast growth factor signaling promotes physiological bone remodeling and stem cell self-renewal. Current Opinion in Hematology, 20, 237–244.Google Scholar
  46. 46.
    Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., & Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495, 333–338.CrossRefGoogle Scholar
  47. 47.
    Mizuno, Y., Tokuzawa, Y., Ninomiya, Y., Yagi, K., Yatsuka-Kanesaki, Y., Suda, T., Fukuda, T., Katagiri, T., Kondoh, Y., Amemiya, T., Tashiro, H., & Okazaki, Y. (2009). miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Letters, 583, 2263–2268.CrossRefGoogle Scholar
  48. 48.
    Zhang, J., Tu, Q., Bonewald, L. F., He, X., Stein, G., Lian, J., & Chen, J. (2011). Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 26, 1953–1963.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PeriodontologyPeking University Hospital of Stomatology First Clinical DivisionBeijingPeople’s Republic of China
  2. 2.Central LaboratoryPeking University School and Hospital of StomatologyBeijingPeople’s Republic of China
  3. 3.Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingPeople’s Republic of China
  4. 4.Department of OrthodonticsPeking University School and Hospital of StomatologyBeijingPeople’s Republic of China

Personalised recommendations