Stem Cell Reviews and Reports

, Volume 14, Issue 2, pp 166–176 | Cite as

Stem Cell Transplantation and Physical Exercise in Parkinson’s Disease, a Literature Review of Human and Animal Studies

  • Jaison Daniel Cucarián Hurtado
  • Jenny Paola Berrío Sánchez
  • Ramiro Barcos Nunes
  • Alcyr Alves de Oliveira
Article
  • 216 Downloads

Abstract

The absence of effective and satisfactory treatments that contribute to repairing the dopaminergic damage caused by Parkinson’s Disease (PD) and the limited recovery capacity of the nervous system are troubling issues and the focus of many research and clinical domains. Recent advances in the treatment of PD through stem cell (SC) therapy have recognized their promising restorative and neuroprotective effects that are implicated in the potentiation of endogenous mechanisms of repair and contribute to functional locomotor improvement. Physical exercise (PE) has been considered an adjuvant intervention that by itself induces beneficial effects in patients and animal models with Parkinsonism. In this sense, the combination of both therapies could provide synergic or superior effects for motor recovery, in contrast with their individual use. This review aims to provide an update on recent progress and the potential effectiveness of SC transplantation and PE for the treatment of locomotor deficits in PD. It has reviewed the neuropathological pathways involved in the classical motor symptoms of this condition and the mechanisms of action described in experimental studies that are associated with locomotor enhancement through exercise, cellular transplantation, and their union in some neurodegenerative conditions.

Keywords

Cell replacement Neurodegenerative diseases and disease-modifying therapies Parkinson’s disease Physical activity Physical exercise Stem cell transplantation 

Abbreviations

PD

Parkinson Disease

PE

Physical Exercise

SCs

Stem Cells

Notes

Acknowledgements

Jenny Paola Berrío acknowledges the financial assistance to (CAPES) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Compliance with Ethical Standards

Conflict of Interest

The Authors declare no potential conflicts of interest.

References

  1. 1.
    Elbaz, A., Carcaillon, L., Kab, S., & Moisan, F. (2016). Epidemiology of Parkinson’s disease. Revue Neurologique, 172(1), 14–26.  https://doi.org/10.1016/j.neurol.2015.09.012.PubMedCrossRefGoogle Scholar
  2. 2.
    Soundy, A., Stubbs, B., & Roskell, C. (2014). The experience of Parkinson’s disease: a systematic review and meta-ethnography. The Scientific World Journal, 2014, 19.  https://doi.org/10.1155/2014/613592.
  3. 3.
    Kowal, S. L., Dall, T. M., Chakrabarti, R., Storm, M. V., & Jain, A. (2013). The current and projected economic burden of Parkinson’s disease in the United States. Movement Disorders, 28(3), 311–318.  https://doi.org/10.1002/mds.25292.PubMedCrossRefGoogle Scholar
  4. 4.
    Lindgren, P., von Campenhausen, S., Spottke, E., Siebert, U., & Dodel, R. (2005). Cost of Parkinson’s disease in Europe. European Journal of Neurology, 12(s1), 68–73.  https://doi.org/10.1111/j.1468-1331.2005.01197.x.PubMedCrossRefGoogle Scholar
  5. 5.
    Ferreira, D. P. C., das Graças Wanderley de Sales Coriolano, M., & dos Santos Accioly Lins, C. C. (2017). The perspective of caregivers of people with Parkinson’s: an integrative review. Revista Brasileira de Geriatria e Gerontologia, 20(1), 99–109.  https://doi.org/10.1590/1981-22562017020.160088.CrossRefGoogle Scholar
  6. 6.
    Schapira, A. H. V., Olanow, C. W., Greenamyre, J. T., & Bezard, E. (2014). Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet, 384(9942), 545–555.  https://doi.org/10.1016/S0140-6736(14)61010-2.PubMedCrossRefGoogle Scholar
  7. 7.
    Fu, M.-H., Li, C.-L., Lin, H.-L., Chen, P.-C., Calkins, M. J., Chang, Y.-F., & Yang, S.-H. (2015). Stem cell transplantation therapy in Parkinson’s disease. SpringerPlus, 4, 597.  https://doi.org/10.1186/s40064-015-1400-1.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lunn, J. S., Sakowski, S. A., Hur, J., & Feldman, E. L. (2011). Stem cell technology for neurodegenerative diseases. Annals of Neurology, 70(3), 353–361.  https://doi.org/10.1002/ana.22487.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ang, E.-T., Tai, Y.-K., Lo, S.-Q., Seet, R., & Soong, T.-W. (2010). Neurodegenerative diseases: exercising toward neurogenesis and neuroregeneration. Frontiers in Aging Neuroscience, 2, 25.  https://doi.org/10.3389/fnagi.2010.00025.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Grealish, S., Diguet, E., Kirkeby, A., Mattsson, B., Heuer, A., Bramoulle, Y., & Parmar, M. (2014). Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell, 15(5), 653–665.  https://doi.org/10.1016/j.stem.2014.09.017.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Morberg, B. M., Jensen, J., Bode, M., & Wermuth, L. (2014). The impact of high intensity physical training on motor and non-motor symptoms in patients with Parkinson’s disease (PIP): a preliminary study. NeuroRehabilitation, 35(2), 291–298.  https://doi.org/10.3233/NRE-141119.PubMedGoogle Scholar
  12. 12.
    Smith, P. F. (2008). Inflammation in Parkinson’s disease: an update. Current Opinion in Investigational Drugs (London, England: 2000), 9(5), 478–484. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18465657.
  13. 13.
    Reeve, A., Simcox, E., & Turnbull, D. (2014). Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Research Reviews, 14, 19–30.  https://doi.org/10.1016/j.arr.2014.01.004.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Martins-Branco, D., Esteves, A. R., Santos, D., Arduino, D. M., Swerdlow, R. H., Oliveira, C. R., & Cardoso, S. M. (2012). Ubiquitin proteasome system in Parkinson’s disease: a keeper or a witness? Experimental Neurology, 238(2), 89–99.  https://doi.org/10.1016/j.expneurol.2012.08.008.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lim, K.-L., & Tan, J. M. (2007). Role of the ubiquitin proteasome system in Parkinson’s disease. BMC Biochemistry, 8(Suppl 1), S13.  https://doi.org/10.1186/1471-2091-8-S1-S13.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dickson, D. W. (2012). Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harbor Perspectives in Medicine, 2(8), a009258.  https://doi.org/10.1101/cshperspect.a009258.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Abeliovich, A., & Gitler, A. D. (2016). Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature, 539(7628), 207–216.  https://doi.org/10.1038/nature20414.PubMedCrossRefGoogle Scholar
  18. 18.
    Visanji, N. P., Brooks, P. L., Hazrati, L.-N., & Lang, A. E. (2013). The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathologica Communications, 1, 2.  https://doi.org/10.1186/2051-5960-1-2.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Esteves, A. R. F., Domingues, A. F., Ferreira, I. L., Januário, C., Swerdlow, R. H., Oliveira, C. R., & Cardoso, S. M. (2008). Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion, 8(3), 219–228.  https://doi.org/10.1016/j.mito.2008.03.004.PubMedCrossRefGoogle Scholar
  20. 20.
    Moon, H. E., & Paek, S. H. (2015). Mitochondrial dysfunction in Parkinson’s disease. Experimental Neurobiology, 24(2), 103–116.  https://doi.org/10.5607/en.2015.24.2.103.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kelly, N. A., Ford, M. P., Standaert, D. G., Watts, R. L., Bickel, C. S., Moellering, D. R., … Bamman, M. M. (2014). Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson’s disease. Journal of Applied Physiology, 116(5), 582–592.  https://doi.org/10.1152/japplphysiol.01277.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Russell, A. P., Foletta, V. C., Snow, R. J., & Wadley, G. D. (2014). Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochimica et Biophysica Acta, 1840(4), 1276–1284.  https://doi.org/10.1016/j.bbagen.2013.11.016.PubMedCrossRefGoogle Scholar
  23. 23.
    Niedzielska, E., Smaga, I., Gawlik, M., Moniczewski, A., Stankowicz, P., Pera, J., & Filip, M. (2016). Oxidative stress in neurodegenerative diseases. Molecular Neurobiology, 53(6), 4094–4125.  https://doi.org/10.1007/s12035-015-9337-5.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang, Q., Liu, Y., & Zhou, J. (2015). Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Translational Neurodegeneration, 4, 19.  https://doi.org/10.1186/s40035-015-0042-0.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kones, R. (2010). Parkinson’s disease: mitochondrial molecular pathology, inflammation, statins, and therapeutic neuroprotective nutrition. Nutrition in Clinical Practice, 25(4), 371–389.  https://doi.org/10.1177/0884533610373932.PubMedCrossRefGoogle Scholar
  26. 26.
    Qian, L., Flood, P. M., & Hong, J.-S. (2010). Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. Journal of Neural Transmission, 117(8), 971–979.  https://doi.org/10.1007/s00702-010-0428-1.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Williams, D. R., & Litvan, I. (2013). Parkinsonian syndromes. Continuum: Lifelong Learning in Neurology, 19(5 Movement Disorders), pp. 1189–1212.  https://doi.org/10.1212/01.CON.0000436152.24038.e0.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Helmich, R. C., Hallett, M., Deuschl, G., Toni, I., & Bloem, B. R. (2012). Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain, 135(11), 3206–3226.  https://doi.org/10.1093/brain/aws023.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Helmich, R. C., Janssen, M. J. R., Oyen, W. J. G., Bloem, B. R., & Toni, I. (2011). Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Annals of Neurology, 69(2), 269–281.  https://doi.org/10.1002/ana.22361.PubMedCrossRefGoogle Scholar
  30. 30.
    Lauzé, M., Daneault, J.-F., & Duval, C. (2016). The effects of physical activity in Parkinson’s disease: a review. Journal of Parkinson’s Disease, 6(4), 685–698.  https://doi.org/10.3233/JPD-160790.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Espay, A. J., Beaton, D. E., Morgante, F., Gunraj, C. A., Lang, A. E., & Chen, R. (2009). Impairments of speed and amplitude of movement in Parkinson’s disease: a pilot study. Movement Disorders, 24, 1001–1008.  https://doi.org/10.1002/mds.22480.PubMedCrossRefGoogle Scholar
  32. 32.
    Cano-de-la-Cuerda, R., Pérez-de-Heredia, M., Miangolarra-Page, J. C., Muñoz-Hellín, E., & Fernández-de-las-Peñas, C. (2010). Is there muscular weakness in Parkinsonʼs disease? American Journal of Physical Medicine & Rehabilitation, 89(1), 70–76.  https://doi.org/10.1097/PHM.0b013e3181a9ed9b.CrossRefGoogle Scholar
  33. 33.
    Magrinelli, F., Picelli, A., Tocco, P., Federico, A., Roncari, L., Smania, N., … Tamburin, S. (2016). Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinson’s Disease, 2016, 1–18.  https://doi.org/10.1155/2016/9832839.CrossRefGoogle Scholar
  34. 34.
    Ding, X., Li, Y., Liu, Z., Zhang, J., Cui, Y., Chen, X., & Chopp, M. (2013). The sonic hedgehog pathway mediates brain plasticity and subsequent functional recovery after bone marrow stromal cell treatment of stroke in mice. Journal of Cerebral Blood Flow & Metabolism, 33(7), 1015–1024.  https://doi.org/10.1038/jcbfm.2013.50.CrossRefGoogle Scholar
  35. 35.
    Takakusaki, K. (2017). Functional neuroanatomy for posture and gait control. Journal of Movement Disorders, 10(1), 1–17.  https://doi.org/10.14802/jmd.16062.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Madrazo, I., León, V., Torres, C., Aguilera, M. C., Varela, G., Alvarez, F., & Skurovich, M. (1988). Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. New England Journal of Medicine, 318(1), 51–51.  https://doi.org/10.1056/NEJM198801073180115.PubMedGoogle Scholar
  37. 37.
    Boronat-García, A., Guerra-Crespo, M., & Drucker-Colín, R. (2017). Historical perspective of cell transplantation in Parkinson’s disease. World Journal of Transplantation, 7(3), 179.  https://doi.org/10.5500/wjt.v7.i3.179.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Han, F., Baremberg, D., Gao, J., Duan, J., Lu, X., Zhang, N., & Chen, Q. (2015). Development of stem cell-based therapy for Parkinson’s disease. Translational Neurodegeneration, 4(1), 16.  https://doi.org/10.1186/s40035-015-0039-8.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lindvall, O., & Kokaia, Z. (2006). Stem cells for the treatment of neurological disorders. Nature, 441(7097), 1094–1096.  https://doi.org/10.1038/nature04960.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang, X. H., Lu, G., Hu, X., Tsang, K. S., Kwong, W. H., Wu, F. X., … Poon, W. S. (2012). Quantitative assessment of gait and neurochemical correlation in a classical murine model of Parkinson’s disease. BMC Neuroscience, 13, 142.  https://doi.org/10.1186/1471-2202-13-142.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ager, R. R., Davis, J. L., Agazaryan, A., Benavente, F., Poon, W. W., LaFerla, F. M., & Blurton-Jones, M. (2015). Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus, 25(7), 813–826.  https://doi.org/10.1002/hipo.22405.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kempermann, G., Song, H., & Gage, F. H. (2015). Neurogenesis in the adult hippocampus. Cold Spring Harbor Perspectives in Biology, 7(9), a018812.  https://doi.org/10.1101/cshperspect.a018812.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lindvall, O., Kokaia, Z., & Martinez-Serrano, A. (2004). Stem cell therapy for human neurodegenerative disorders-how to make it work. Nature Medicine, 10 Suppl, S42–50.  https://doi.org/10.1038/nm1064.PubMedCrossRefGoogle Scholar
  44. 44.
    Park, D., Yang, G., Bae, D. K., Lee, S. H., Yang, Y.-H., Kyung, J., & Kim, Y.-B. (2013). Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice. Journal of Neuroscience Research, 91(5), 660–670.  https://doi.org/10.1002/jnr.23182.PubMedCrossRefGoogle Scholar
  45. 45.
    Feng, Z., & Gao, F. (2012). Stem cell challenges in the treatment of neurodegenerative disease. CNS Neuroscience & Therapeutics, 18(2), 142–148.  https://doi.org/10.1111/j.1755-5949.2011.00239.x.CrossRefGoogle Scholar
  46. 46.
    Li, R. (2012). Stem cell transplantation for treating Parkinson’s disease: literature analysis based on the web of science. Neural Regeneration Research, 7(16), 1272–1279.  https://doi.org/10.3969/j.issn.1673-5374.2012.16.010.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Gerlach, M., Braak, H., Hartmann, A., Jost, W. H., Odin, P., Priller, J., & Schwarz, J. (2002). Current state of stem cell research for the treatment of Parkinson’s disease. Journal of Neurology, 249 Suppl III, 33–35.  https://doi.org/10.1007/s00415-002-1307-y.Google Scholar
  48. 48.
    Mercanti, G., Bazzu, G., & Giusti, P. (2012). A 6-hydroxydopamine in vivo model of Parkinson’s disease. In S. Skaper (Ed.) Neurotrophic factors. Methods in Molecular Biology (Methods and Protocols), Vol. 846. Humana Press.Google Scholar
  49. 49.
    Glavaski-Joksimovic, A., & Bohn, M. C. (2013). Mesenchymal stem cells and neuroregeneration in Parkinson’s disease. Experimental Neurology, 247, 25–38.  https://doi.org/10.1016/j.expneurol.2013.03.016.PubMedCrossRefGoogle Scholar
  50. 50.
    Kitada, M., & Dezawa, M. (2012). Parkinson’s disease and mesenchymal stem cells: potential for cell-based therapy. Parkinson’s Disease, 2012, 1–9.  https://doi.org/10.1155/2012/873706.CrossRefGoogle Scholar
  51. 51.
    Jin, G., Cho, S., Choi, E., Lee, Y., Yu, X., Choi, K., & Kong, I. (2008). Rat mesenchymal stem cells increase tyrosine hydroxylase expression and dopamine content in ventral mesencephalic cells in vitro. Cell Biology International, 32(11), 1433–1438.  https://doi.org/10.1016/j.cellbi.2008.08.014.PubMedCrossRefGoogle Scholar
  52. 52.
    Muramatsu, S.-I., Okuno, T., Suzuki, Y., Nakayama, T., Kakiuchi, T., Takino, N., & Tsukada, H. (2009). Multitracer assessment of dopamine function after transplantation of embryonic stem cell-derived neural stem cells in a primate model of Parkinson’s disease. Synapse, 63(7), 541–548.  https://doi.org/10.1002/syn.20634.PubMedCrossRefGoogle Scholar
  53. 53.
    Bjugstad, K. B., Teng, Y. D., Redmond, D. E., Elsworth, J. D., Roth, R. H., Cornelius, S. K., … Snyder, E. Y. (2008). Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson’s disease. Experimental Neurology, 211(2), 362–369.  https://doi.org/10.1016/j.expneurol.2008.01.025.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gincberg, G., Arien-Zakay, H., Lazarovici, P., & Lelkes, P. I. (2012). Neural stem cells: therapeutic potential for neurodegenerative diseases. British Medical Bulletin, 104(1), 7–19.  https://doi.org/10.1093/bmb/lds024.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang, J.-M., & An, J. (2007). Cytokines, inflammation and pain. International Anesthesiology Clinics, 45(2), 27–37.  https://doi.org/10.1097/AIA.0b013e318034194e.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Marks, W. J., Ostrem, J. L., Verhagen, L., Starr, P. A., Larson, P. S., Bakay, R. A., … Bartus, R. T. (2008). Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2–neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. The Lancet Neurology, 7(5), 400–408.  https://doi.org/10.1016/S1474-4422(08)70065-6.PubMedCrossRefGoogle Scholar
  57. 57.
    Mittermeyer, G., Christine, C. W., Rosenbluth, K. H., Baker, S. L., Starr, P., Larson, P., … Bankiewicz, K. S. (2012). Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Human Gene Therapy, 23(4), 377–381.  https://doi.org/10.1089/hum.2011.220.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Venkataramana, N. K., Kumar, S. K. V., Balaraju, S., Radhakrishnan, R. C., Bansal, A., Dixit, A., … Totey, S. M. (2010). Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Translational Research, 155(2), 62–70.  https://doi.org/10.1016/j.trsl.2009.07.006.PubMedCrossRefGoogle Scholar
  59. 59.
    Freed, C. R., Greene, P. E., Breeze, R. E., Tsai, W.-Y., DuMouchel, W., Kao, R., … Fahn, S. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. New England Journal of Medicine, 344(10), 710–719.  https://doi.org/10.1056/NEJM200103083441002.PubMedCrossRefGoogle Scholar
  60. 60.
    Piccini, P., Brooks, D. J., Björklund, A., Gunn, R. N., Grasby, P. M., Rimoldi, O., … Lindvall, O. (1999). Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nature Neuroscience, 2(12), 1137–1140.  https://doi.org/10.1038/16060.PubMedCrossRefGoogle Scholar
  61. 61.
    Kefalopoulou, Z., Politis, M., Piccini, P., Mencacci, N., Bhatia, K., Jahanshahi, M., … Foltynie, T. (2014). Long-term clinical outcome of fetal cell transplantation for Parkinson disease. JAMA Neurology, 71(1), 83.  https://doi.org/10.1001/jamaneurol.2013.4749.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Piccini, P., Pavese, N., Hagell, P., Reimer, J., Björklund, A., Oertel, W. H., … Lindvall, O. (2005). Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain, 128(12), 2977–2986.  https://doi.org/10.1093/brain/awh649.PubMedCrossRefGoogle Scholar
  63. 63.
    Stoker, T. B., Blair, N. F., & Barker, R. A. (2017). Neural grafting for Parkinson’s disease: challenges and prospects. Neural Regeneration Research.  https://doi.org/10.4103/1673-5374.202935.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Marędziak, M., Marycz, K., Tomaszewski, K. A., Kornicka, K., & Henry, B. M. (2016). The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells International, 2016, 2152435.  https://doi.org/10.1155/2016/2152435.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Voelcker-Rehage, C., & Niemann, C. (2013). Structural and functional brain changes related to different types of physical activity across the life span. Neuroscience & Biobehavioral Reviews, 37(9), 2268–2295.  https://doi.org/10.1016/j.neubiorev.2013.01.028.CrossRefGoogle Scholar
  66. 66.
    Hayes, S. M., Hayes, J. P., Cadden, M., & Verfaellie, M. (2013). A review of cardiorespiratory fitness-related neuroplasticity in the aging brain. Frontiers in Aging Neuroscience, 5, 31.  https://doi.org/10.3389/fnagi.2013.00031.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Svensson, M., Lexell, J., & Deierborg, T. (2015). Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior. Neurorehabilitation and Neural Repair, 29(6), 577–589.  https://doi.org/10.1177/1545968314562108.PubMedCrossRefGoogle Scholar
  68. 68.
    Erickson, K. I., Leckie, R. L., & Weinstein, A. M. (2014). Physical activity, fitness, and gray matter volume. Neurobiology of Aging, 35, S20–S28.  https://doi.org/10.1016/j.neurobiolaging.2014.03.034.PubMedCrossRefGoogle Scholar
  69. 69.
    de Salles, B. F., Simão, R., Fleck, S. J., Dias, I., Kraemer-Aguiar, L. G., & Bouskela, E. (2010). Effects of resistance training on cytokines. International Journal of Sports Medicine, 31(7), 441–450.  https://doi.org/10.1055/s-0030-1251994.PubMedCrossRefGoogle Scholar
  70. 70.
    Calle, M. C., & Fernandez, M. L. (2010). Effects of resistance training on the inflammatory response. Nutrition Research and Practice, 4(4), 259–269.  https://doi.org/10.4162/nrp.2010.4.4.259.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Oliveira, S. L. B., Pillat, M. M., Cheffer, A., Lameu, C., Schwindt, T. T., & Ulrich, H. (2013). Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry Part A, 83A(1), 76–89.  https://doi.org/10.1002/cyto.a.22161.CrossRefGoogle Scholar
  72. 72.
    Marycz, K., Mierzejewska, K., Śmieszek, A., Suszynska, E., Malicka, I., Kucia, M., & Ratajczak, M. Z. (2016). Endurance exercise mobilizes developmentally early stem cells into peripheral blood and increases their number in bone marrow: implications for tissue regeneration. Stem Cells International.  https://doi.org/10.1155/2016/5756901.PubMedCentralGoogle Scholar
  73. 73.
    Chen, W.-W., Zhang, X., & Huang, W.-J. (2016). Role of physical exercise in Alzheimer’s disease. Biomedical Reports, 4(4), 403–407.  https://doi.org/10.3892/br.2016.607.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Aguiar, A. S., Castro, A. A., Moreira, E. L., Glaser, V., Santos, A. R. S., Tasca, C. I., … Kramer, A. (2011). Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling. Mechanisms of Ageing and Development, 132(11–12), 560–567.  https://doi.org/10.1016/j.mad.2011.09.005.PubMedCrossRefGoogle Scholar
  75. 75.
    Tuon, T., Souza, P. S., Santos, M. F., et al. (2015). Physical training regulates mitochondrial parameters and neuroinflammatory mechanisms in an experimental model of Parkinson’s disease. Oxidative Medicine and Cellular Longevity, 2015, 10.  https://doi.org/10.1155/2015/261809.
  76. 76.
    Corona, J. C., & Duchen, M. R. (2015). PPARγ and PGC-1α as therapeutic targets in Parkinson’s. Neurochemical Research, 40(2), 308–316.  https://doi.org/10.1007/s11064-014-1377-0.PubMedCrossRefGoogle Scholar
  77. 77.
    Lau, Y.-S., Patki, G., Das-Panja, K., Le, W.-D., & Ahmad, S. O. (2011). Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. The European Journal of Neuroscience, 33(7), 1264–1274.  https://doi.org/10.1111/j.1460-9568.2011.07626.x.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ahlskog, J. E. (2011). Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology, 77(3), 288–294.  https://doi.org/10.1212/WNL.0b013e318225ab66.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Barber-Singh, J., Seo, B. B., Nakamaru-Ogiso, E., Lau, Y. S., Matsuno-Yagi, A., & Yagi, T. (2009). Neuroprotective effect of long-term NDI1 gene expression in a chronic mouse model of Parkinson disorder. Rejuvenation Research, 12, 259–267.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Phillips, C., Baktir, M. A., Srivatsan, M., & Salehi, A. (2014). Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Frontiers in Cellular Neuroscience, 8, 170.  https://doi.org/10.3389/fncel.2014.00170.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Tambosco, L., Percebois-Macadré, L., Rapin, A., Nicomette-Bardel, J., & Boyer, F.-C. (2014). Effort training in Parkinson’s disease: a systematic review. Annals of Physical and Rehabilitation Medicine, 57(2), 79–104.  https://doi.org/10.1016/j.rehab.2014.01.003.PubMedCrossRefGoogle Scholar
  82. 82.
    Xu, Q., Park, Y., Huang, X., Hollenbeck, A., Blair, A., Schatzkin, A., & Chen, H. (2010). Physical activities and future risk of Parkinson disease. Neurology, 75(4), 341–348.  https://doi.org/10.1212/WNL.0b013e3181ea1597.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wu, S.-Y., Wang, T.-F., Yu, L., Jen, C. J., Chuang, J.-I., Wu, F.-S., … Kuo, Y.-M. (2011). Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain, Behavior, and Immunity, 25(1), 135–146.  https://doi.org/10.1016/j.bbi.2010.09.006.PubMedCrossRefGoogle Scholar
  84. 84.
    Robertson, C. L., Ishibashi, K., Chudzynski, J., Mooney, L. J., Rawson, R. A., Dolezal, B. A., … London, E. D. (2016). Effect of exercise training on striatal dopamine D2/D3 receptors in methamphetamine users during behavioral treatment. Neuropsychopharmacology, 41, 1629–1636.  https://doi.org/10.1038/npp.2015.331.PubMedCrossRefGoogle Scholar
  85. 85.
    Vučković, M. G., Li, Q., Fisher, B., Nacca, A., Leahy, R. M., Walsh, J. P., … Petzinger, G. M. (2010). Exercise elevates dopamine D2 receptor in a mouse model of Parkinson’s disease: in vivo imaging with [18F]Fallypride. Movement Disorders, 25(16), 2777–2784.  https://doi.org/10.1002/mds.23407.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Borrione, P., Tranchita, E., Sansone, P., & Parisi, A. (2014). Effects of physical activity in Parkinson’s disease: a new tool for rehabilitation. World Journal of Methodology, 4(3), 133.  https://doi.org/10.5662/wjm.v4.i3.133.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Morgan, J. A., Corrigan, F., & Baune, B. T. (2015). Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations. Journal of Molecular Psychiatry, 3, 3.  https://doi.org/10.1186/s40303-015-0010-8.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    VanLeeuwen, J.-E., Petzinger, G. M., Walsh, J. P., Akopian, G. K., Vuckovic, M., & Jakowec, M. W. (2010). Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Journal of Neuroscience Research, 88, 650–668.  https://doi.org/10.1002/jnr.22216.PubMedGoogle Scholar
  89. 89.
    Frazzitta, G., Balbi, P., Maestri, R., Bertotti, G., Boveri, N., & Pezzoli, G. (2013). The beneficial role of intensive exercise on Parkinson disease progression. American Journal of Physical Medicine & Rehabilitation, 92(6), 523–532.  https://doi.org/10.1097/PHM.0b013e31828cd254.CrossRefGoogle Scholar
  90. 90.
    Rojas Vega, S., Knicker, A., Hollmann, W., Bloch, W., & Strüder, H. K. (2010). Effect of resistance exercise on serum levels of growth factors in humans. Hormone and Metabolic Research, 42(13), 982–986.  https://doi.org/10.1055/s-0030-1267950.PubMedCrossRefGoogle Scholar
  91. 91.
    Seo, J. H., & Cho, S.-R. (2012). Neurorestoration induced by mesenchymal stem cells: potential therapeutic mechanisms for clinical trials. Yonsei Medical Journal, 53(6), 1059–1067.  https://doi.org/10.3349/ymj.2012.53.6.1059.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sadan, O., Shemesh, N., Barzilay, R., Dadon-Nahum, M., Blumenfeld-Katzir, T., Assaf, Y., … Offen, D. (2012). Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: a potential therapy for Huntington’s disease. Experimental Neurology, 234(2), 417–427.  https://doi.org/10.1016/j.expneurol.2011.12.045.PubMedCrossRefGoogle Scholar
  93. 93.
    Petzinger, G. M., Fisher, B. E., McEwen, S., Beeler, J. A., Walsh, J. P., & Jakowec, M. W. (2013). Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. The Lancet Neurology, 12(7), 716–726.  https://doi.org/10.1016/S1474-4422(13)70123-6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Yau, S., Gil-Mohapel, J., Christie, B. R., & So, K. (2014). Physical exercise-induced adult neurogenesis: a good strategy to prevent cognitive decline in neurodegenerative diseases? BioMed Research International, 2014, 403120.  https://doi.org/10.1155/2014/403120.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sinelnyk, A. A., Klunnyk, M. O., Demchuk, M. P., Sych, N. S., Ivankova, O. V., et al. (2015) Combined therapy using fetal stem cells and a complex of physical exercises in treatment of patients with amyotrophic lateral sclerosis. Integrative Molecular Medicine 2.  https://doi.org/10.15761/IMM.1000178.
  96. 96.
    Kim, Y.-M., Seo, T.-B., Kim, C.-J., & Ji, E.-S. (2017). Treadmill exercise with bone marrow stromal cells transplantation potentiates recovery of locomotor function after spinal cord injury in rats. Journal of Exercise Rehabilitation, 13(3), 273–278.  https://doi.org/10.12965/jer.1735014.507.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nicola, F. C., Rodrigues, L. P., Crestani, T., Quintiliano, K., Sanches, E. F., Willborn, S., … Netto, C. A. (2016). Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury. Brazilian Journal of Medical and Biological Research, 49(9).  https://doi.org/10.1590/1414-431X20165319.
  98. 98.
    Wang, J., Yang, C.-C., Chen, S.-C., & Hsieh, Y.-L. (2010). No synergistic effect of mesenchymal stem cells and exercise on functional recovery following sciatic nerve transection. Functional Neurology, 25(1), 33–43. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20626995.
  99. 99.
    Swain, R. A., Berggren, K. L., Kerr, A. L., Patel, A., Peplinski, C., & Sikorski, A. M. (2012). On aerobic exercise and behavioral and neural plasticity. Brain Sciences, 2(4), 709–744.  https://doi.org/10.3390/brainsci2040709.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Murray, D. K., Sacheli, M. A., Eng, J. J., & Stoessl, A. J. (2014). The effects of exercise on cognition in Parkinson’s disease: a systematic review. Translational Neurodegeneration, 3, 5.  https://doi.org/10.1186/2047-9158-3-5.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gallaway, P. J., Miyake, H., Buchowski, M. S., Shimada, M., Yoshitake, Y., Kim, A. S., & Hongu, N. (2017). Physical activity: a viable way to reduce the risks of mild cognitive impairment, Alzheimer’s disease, and vascular dementia in older adults. Brain Sciences, 7(2).  https://doi.org/10.3390/brainsci7020022.
  102. 102.
    Wildes, T. M., Stirewalt, D. L., Medeiros, B., & Hurria, A. (2014). Hematopoietic stem cell transplantation for hematologic malignancies in older adults: geriatric principles in the transplant clinic. Journal of the National Comprehensive Cancer Network: JNCCN, 12(1), 128–136. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24453296.
  103. 103.
    Hacker, E. D., Larson, J. L., & Peace, D. (2011). Exercise in patients receiving hematopoietic stem cell transplantation: lessons learned and results from a feasibility study. Oncology Nursing Forum, 38(2), 216–223.  https://doi.org/10.1188/11.ONF.216-223.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Persoon, S., Kersten, M. J., van der Weiden, K., Buffart, L. M., Nollet, F., Brug, J., & Chinapaw, M. J. M. (2013). Effects of exercise in patients treated with stem cell transplantation for a hematologic malignancy: a systematic review and meta-analysis. Cancer Treatment Reviews, 39(6), 682–690.  https://doi.org/10.1016/j.ctrv.2013.01.001.PubMedCrossRefGoogle Scholar
  105. 105.
    Persoon, S., ChinAPaw, M. J. M., Buffart, L. M., Liu, R. D. K., Wijermans, P., Koene, H. R., … Kersten, M. J. (2017). Randomized controlled trial on the effects of a supervised high intensity exercise program in patients with a hematologic malignancy treated with autologous stem cell transplantation: results from the EXIST study. PloS One, 12(7), e0181313.  https://doi.org/10.1371/journal.pone.0181313.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Jaison Daniel Cucarián Hurtado
    • 1
    • 2
  • Jenny Paola Berrío Sánchez
    • 1
  • Ramiro Barcos Nunes
    • 3
  • Alcyr Alves de Oliveira
    • 1
  1. 1.Federal University of Health Sciences of Porto AlegrePorto AlegreBrazil
  2. 2.Federal University of Health Sciences of Porto AlegrePorto AlegreBrazil
  3. 3.Research DepartmentInstituto Federal Sul Rio GrandenseGravataíBrazil

Personalised recommendations