Advertisement

Functional Characterization and Gene Expression Profiling of α-Smooth Muscle Actin Expressing Cardiomyocytes Derived from Murine Induced Pluripotent Stem Cells

  • 317 Accesses

  • 5 Citations

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Wobus, A. M., & Boheler, K. R. (2005). Embryonic stem cells: prospects for developmental biology and cell therapy. Physiological Reviews, 85(2), 635–678.

  2. 2.

    Winkler, J., Hescheler, J., & Sachinidis, A. (2005). Embryonic stem cells for basic research and potential clinical applications in cardiology. Biochimica et Biophysica Acta, 1740(2), 240–248.

  3. 3.

    Doss, M. X., Koehler, C. I., Gissel, C., Hescheler, J., & Sachinidis, A. (2004). Embryonic stem cells: a promising tool for cell replacement therapy. Journal of Cellular and Molecular Medicine, 8(4), 465–473.

  4. 4.

    Winkler, J., Sotiriadou, I., Chen, S., Hescheler, J., & Sachinidis, A. (2009). The potential of embryonic stem cells combined with -omics technologies as model systems for toxicology. Current Medicinal Chemistry, 16(36), 4814–4827.

  5. 5.

    Doss, M. X., Chen, S., Winkler, J., Hippler-Altenburg, R., Odenthal, M., Wickenhauser, C., et al. (2007). Transcriptomic and phenotypic analysis of murine embryonic stem cell derived BMP2+ lineage cells: an insight into mesodermal patterning. Genome Biology, 8(9), R184.

  6. 6.

    Doss, M., Winkler, J., Chen, S., Hippler-Altenburg, R., Sotiriadou, I., Halbach, M., et al. (2007). Global transcriptome analysis of murine embryonic stem cell-derived cardiomyocytes. Genome Biology, 8(4), R56.

  7. 7.

    Mariappan, D., Niemann, R., Gajewski, M., Winkler, J., Chen, S., Choorapoikayil, S., et al. (2009). Somitovasculin, a novel endothelial-specific transcript involved in the vasculature development. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(11), 1823–1829.

  8. 8.

    Mariappan, D., Winkler, J., Chen, S., Schulz, H., Hescheler, J., & Sachinidis, A. (2009). Transcriptional profiling of CD31(+) cells isolated from murine embryonic stem cells. Genes to Cells, 14(2), 243–260.

  9. 9.

    Potta, S. P., Liang, H., Pfannkuche, K., Winkler, J., Chen, S., Doss, M. X., et al. (2009). Functional characterization and transcriptome analysis of embryonic stem cell-derived contractile smooth muscle cells. Hypertension, 53(2), 196–204.

  10. 10.

    Doss, M. X., Wagh, V., Schulz, H., Kull, M., Kolde, R., Pfannkuche, K. et al. (2010). Global transcriptomic analysis of murine embryonic stem cell-derived brachyury (T) cells. Genes to Cells, 15(3), 209–228.

  11. 11.

    Ruzicka, D. L., & Schwartz, R. J. (1988). Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. The Journal of Cell Biology, 107(6 Pt 2), 2575–2586.

  12. 12.

    Ya, J., Markman, M. W., Wagenaar, G. T., Blommaart, P. J., Moorman, A. F., & Lamers, W. H. (1997). Expression of the smooth-muscle proteins alpha-smooth-muscle actin and calponin, and of the intermediate filament protein desmin are parameters of cardiomyocyte maturation in the prenatal rat heart. The Anatomical Record, 249(4), 495–505.

  13. 13.

    Woodcock-Mitchell, J., Mitchell, J. J., Low, R. B., Kieny, M., Sengel, P., Rubbia, L., et al. (1988). Alpha-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation, 39(3), 161–166.

  14. 14.

    Potta, S. P., Liang, H., Winkler, J., Doss, M. X., Chen, S., Wagh, V., et al. (2010). Isolation and functional characterization of alpha-smooth muscle actin expressing cardiomyocytes from embryonic stem cells. Cell Physiology and Biochemistry, 25(6), 595–604.

  15. 15.

    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

  16. 16.

    Yu, J., Vodyanik, M. A., Smuga-Otto, K., ntosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

  17. 17.

    Gunaseeli, I., Doss, M. X., Antzelevitch, C., Hescheler, J., & Sachinidis, A. (2010). Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Current Medicinal Chemistry, 17(8), 759–766.

  18. 18.

    Pfannkuche, K., Hannes, T., Khalil, M., Noghabi, M. S., Morshedi, A., Hescheler, J., et al. (2010). Induced pluripotent stem cells: a new approach for physiological research. Cellular Physiology and Biochemistry, 26(2), 105–124.

  19. 19.

    Pfannkuche, K., Liang, H., Hannes, T., Xi, J., Fatima, A., Nguemo, F., et al. (2009). Cardiac myocytes derived from murine reprogrammed fibroblasts: intact hormonal regulation, cardiac ion channel expression and development of contractility. Cellular Physiology and Biochemistry, 24(1–2), 73–86.

  20. 20.

    Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology, 25(10), 1177–1181.

  21. 21.

    Horn, R., & Marty, A. (1988). Muscarinic activation of ionic currents measured by a new whole-cell recording method. The Journal of General Physiology, 92(2), 145–159.

  22. 22.

    Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185–193.

  23. 23.

    Irizarry, R. A., Gautier, L., & Cope, L. M. (2003). An R package for analyses of Affymetrix oligonucleotide arrays. In G. Parmigiani, E. S. Garrett, R. A. Irizarry, & S. L. Zeger (Eds.), The analysis of gene expression data (pp. 102–119). New York: Springer.

  24. 24.

    Pepper, S. D., Saunders, E. K., Edwards, L. E., Wilson, C. L., & Miller, C. J. (2007). The utility of MAS5 expression summary and detection call algorithms. Bmc Bioinformatics 8, 273.

  25. 25.

    Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, Article3.

  26. 26.

    Hochberg, Y., & Benjamini, Y. (1990). More powerful procedures for multiple significance testing. Statistics in Medicine, 9(7), 811–818.

  27. 27.

    Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14863–14868.

  28. 28.

    Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. London: Academic.

  29. 29.

    Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.

  30. 30.

    Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C. et al. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology 4(5), P3.

  31. 31.

    Liu, J., Fu, J. D., Siu, C. W., & Li, R. A. (2007). Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem Cells, 25(12), 3038–3044.

  32. 32.

    Germanguz, I., Sedan, O., Zeevi-Levin, N., Shtreichman, R., Barak, E., Ziskind, A. et al. (2011). Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. Journal of Cellular and Molecular Medicine, 15(1), 38–51.

  33. 33.

    Chase, A., Orchard, C. H. (2011). Ca efflux via the sarcolemmal Ca ATPase occurs only in the t-tubules of rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 50(1), 187–193.

  34. 34.

    Wu, M. Y., & Hill, C. S. (2009). TGF-[beta] superfamily signaling in embryonic development and homeostasis. Developmental Cell, 16(3), 329–343.

  35. 35.

    Banerjee, I., Fuseler, J. W., Price, R. L., Borg, T. K., & Baudino, T. A. (2007). Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. American Journal of Physiology. Heart and Circulatory Physiology, 293(3), H1883–H1891.

Download references

Sources of Funding

This work was supported by the grant, High Yield and Performance Stem Cell Lab (Hyperlab) from the European Community, FP7 Framework Programme, Thematic Priority, Life sciences, genomics and biotechnology for health (contract 223011).

Disclosures

None

Author information

Correspondence to Agapios Sachinidis.

Additional information

Shiva Prasad Potta and Xiaowu Sheng have equally contributed to the manuscript

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

(AVI 6666 kb)

Supplementary video 1

(AVI 154375 kb)

Supplementary video 2

(AVI 6666 kb)

Supplementary Figure 1

(PPT 210 kb)

Supplementary Table 1

(DOC 36 kb)

Supplementary Table 2

(XLS 122 kb)

Supplementary Table 3

(XLS 164 kb)

Supplementary Table 4

(XLS 45 kb)

Supplementary Table 5

(XLS 81 kb)

Supplementary Table 6

(XLS 405 kb)

Supplementary Table 7

(XLS 96 kb)

Supplementary Table 8

(XLS 111 kb)

Supplementary Table 9

(XLS 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Potta, S.P., Sheng, X., Gaspar, J.A. et al. Functional Characterization and Gene Expression Profiling of α-Smooth Muscle Actin Expressing Cardiomyocytes Derived from Murine Induced Pluripotent Stem Cells. Stem Cell Rev and Rep 8, 229–242 (2012). https://doi.org/10.1007/s12015-011-9271-5

Download citation

Keywords

  • Caffeine
  • Leukemia Inhibitory Factor
  • KEGG Pathway
  • Embryoid Body
  • Adult Heart