Stem Cell Reviews and Reports

, Volume 7, Issue 3, pp 703–713 | Cite as

Generation of Induced Pluripotent Stem Cell Lines from Friedreich Ataxia Patients

  • Jun Liu
  • Paul J. Verma
  • Marguerite V. Evans-Galea
  • Martin B. Delatycki
  • Anna Michalska
  • Jessie Leung
  • Duncan Crombie
  • Joseph P. Sarsero
  • Robert Williamson
  • Mirella Dottori
  • Alice PébayEmail author


Friedreich ataxia (FRDA) is an autosomal recessive disorder characterised by neurodegeneration and cardiomyopathy. It is caused by a trinucleotide (GAA) repeat expansion in the first intron of the FXN gene that results in reduced synthesis of FXN mRNA and its protein product, frataxin. We report the generation of induced pluripotent stem (iPS) cell lines derived from skin fibroblasts from two FRDA patients. Each of the patient-derived iPS (FA-iPS) cell lines maintain the GAA repeat expansion and the reduced FXN mRNA expression that are characteristic of the patient. The FA-iPS cells are pluripotent and form teratomas when injected into nude mice. We demonstrate that following in vitro differentiation the FA-iPS cells give rise to the two cell types primarily affected in FRDA, peripheral neurons and cardiomyocytes. The FA-iPS cell lines have the potential to provide valuable models to study the cellular pathology of FRDA and to develop high-throughput drug screening assays. We have previously demonstrated that stable insertion of a functional human BAC containing the intact FXN gene into stem cells results in the expression of frataxin protein in differentiated neurons. As such, iPS cell lines derived from FRDA patients, following correction of the mutated gene, could provide a useful source of immunocompatible cells for transplantation therapy.


Induced pluripotent stem cells Friedreich ataxia Frataxin 



The authors are grateful to Ms L Corben for her help in the preparation of the ethics documentation, M. Pera for provision of TG-30 and to L. Li, M. Denham and K. Upton for technical assistance and helpful discussions. This work was supported by the Friedreich Ataxia Research Association (Australasia) and Friedreich’s Ataxia Research Alliance.

Author Contributions

All authors contributed in: conception and design, collection of data, data analysis and interpretation, manuscript writing, final approval. Financial support provided by MD and AP. The authors declare no competing financial interests relevant to this research.

Supplementary material

12015_2010_9210_Fig7_ESM.gif (115 kb)
Supplementary Figure 1

Endogenous and exogenous expression of transgenes in iPS cell lines and fibroblasts. a RT-PCR showed that generated FA3-iPS cells and FA4-iPS cells expressed endogenous human pluripotent markers: OCT-4, SOX2, NANOG, and REX1. Transgene OCT-4 and SOX2 were effectively silenced, while the KLF4 and cMYC transgenes were still expressed. (Endo = endogenous genes, Tg = transgenes). b Integration of four transcription factors OCT4, SOX2, KLF4 and cMYC transgenes in the genome of generated iPS cells was confirmed by genomic PCR using transgene-specific primers, with parental fibroblasts as negative controls, and respective encoding constructs as positive controls. (GIF 114 kb)

12015_2010_9210_MOESM1_ESM.tif (1.7 mb)
High resolution image (TIFF 1734 kb)
12015_2010_9210_Fig8_ESM.gif (297 kb)
Supplementary Figure 2

FRDA-iPS cells form teratomas. Histology of teratoma with gut-like epithelium (a, d), cartilage (b, e) and neural rosettes (c, f) after injection of FA3-iPS cells (a–c) and FA4-iPS cells (d–e) into severe combined immunodeficiency mice. (GIF 296 kb)

12015_2010_9210_MOESM2_ESM.tif (593 kb)
High resolution image (TIFF 592 kb)
12015_2010_9210_Fig9_ESM.gif (245 kb)
Supplementary Figure 3

FRDA-iPS cells form EB with cells representative of the three germ layers. Immunostaining of EBs generated from FA3-iPS and FA4-iPS cells immunostained with markers for endoderm (AFP, a), mesoderm (c-kit or CD31, b) and ectoderm (nestin, c). (d): Isotype controls. (GIF 244 kb)

12015_2010_9210_MOESM3_ESM.tif (2.6 mb)
High resolution image (TIFF 2667 kb)
12015_2010_9210_Fig10_ESM.gif (194 kb)
Supplementary Figure 4

GAA expansion PCR for FA3- and FA4-iPS cells. The size of the GAA expansion was determined in control (FAC4) and FRDA (FA3 and FA4) cells by comparison to standard DNA markers (M1 and M2). Genomic DNA isolated from fibroblasts (lanes 1,3 and 6) and iPS cells (lanes 2, 4, 5 and 7–9) were used in long range PCR of the first intron of FXN. Non-expanded alleles yield a product of 810 bp. Positive (BACRP11-265B8 DNA containing the FXN gene; lane C) and negative controls (no DNA; lane N) were included. Multiple bands are observed in each sample since multiple sub-clones were pooled. (GIF 194 kb)

12015_2010_9210_MOESM4_ESM.tif (576 kb)
High resolution image (TIFF 576 kb)
Supplementary Movie 1

FRDA-iPS cells generate beating cardiomyocytes. Generation of functional cardiomyocytes obtained following FA3-iPS derived EB plated onto gelatine and spontaneous differentiation. (MPG 8895 kb)

Supplementary Movie 2

FRDA-iPS cells generate beating cardiomyocytes. Generation of functional cardiomyocytes obtained following FA4-iPS derived EB plated onto gelatine and spontaneous differentiation. (MPG 6509 kb)


  1. 1.
    Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 18(4), 399–404.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science (New York NY), 282(5391), 1145–1147.CrossRefGoogle Scholar
  3. 3.
    Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.PubMedCrossRefGoogle Scholar
  4. 4.
    Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedCrossRefGoogle Scholar
  5. 5.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRefGoogle Scholar
  6. 6.
    Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.PubMedCrossRefGoogle Scholar
  7. 7.
    Park, I. H., Zhao, R., West, J. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.PubMedCrossRefGoogle Scholar
  8. 8.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRefGoogle Scholar
  9. 9.
    Hu, B. Y., Weick, J. P., & Yu, J., et al. (2010). Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4335–4340.Google Scholar
  10. 10.
    Dimos, J. T., Rodolfa, K. T., Niakan, K. K., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221.PubMedCrossRefGoogle Scholar
  11. 11.
    Tat, P. A., Sumer, H., Jones, K. L., & Verma, P. J. (2009). Immuno-modulation strategies for ESC and ASC transplantation therapy. In K. Deb (Ed.), Stem Cells: (pp. 215–244). Basics and Applications: McGraw Hill.Google Scholar
  12. 12.
    Santoro, L., Perretti, A., Lanzillo, B., et al. (2000). Influence of GAA expansion size and disease duration on central nervous system impairment in Friedreich's ataxia: contribution to the understanding of the pathophysiology of the disease. Clinical Neurophysiology, 111(6), 1023–1030.PubMedCrossRefGoogle Scholar
  13. 13.
    Fillat, C., Simonaro, C. M., Yeyati, P. L., Abkowitz, J. L., Haskins, M. E., & Schuchman, E. H. (1996). Arylsulfatase B activities and glycosaminoglycan levels in retrovirally transduced mucopolysaccharidosis type VI cells. Prospects for gene therapy. Journal of Clinical Investigation, 98(2), 497–502.PubMedCrossRefGoogle Scholar
  14. 14.
    Delatycki, M. B., Paris, D. B., Gardner, R. J., et al. (1999). Clinical and genetic study of Friedreich ataxia in an Australian population. American Journal of Medical Genetics, 87(2), 168–174.PubMedCrossRefGoogle Scholar
  15. 15.
    Laird, P. W., Zijderveld, A., Linders, K., Rudnicki, M. A., Jaenisch, R., & Berns, A. (1991). Simplified mammalian DNA isolation procedure. Nucleic Acids Research, 19(15), 4293.PubMedCrossRefGoogle Scholar
  16. 16.
    Freberg, C. T., Dahl, J. A., Timoskainen, S., & Collas, P. (2007). Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Molecular Biology of the Cell, 18(5), 1543–1553.PubMedCrossRefGoogle Scholar
  17. 17.
    Bock, C., Reither, S., Mikeska, T., Paulsen, M., Walter, J., & Lengauer, T. (2005). BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics, 21(21), 4067–4068.PubMedCrossRefGoogle Scholar
  18. 18.
    Pera, M. F., Andrade, J., Houssami, S., et al. (2004). Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. Journal of Cell Science, 117(Pt 7), 1269–1280.PubMedCrossRefGoogle Scholar
  19. 19.
    Reubinoff, B. E., Itsykson, P., Turetsky, T., et al. (2001). Neural progenitors from human embryonic stem cells. Nature Biotechnology, 19(12), 1134–1140.PubMedCrossRefGoogle Scholar
  20. 20.
    Hotta, R., Pepdjonovic, L., Anderson, R. B., et al. (2009). Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem cells (Dayton Ohio), 27(12), 2896–2905.Google Scholar
  21. 21.
    Conley, B. J., Trounson, A. O., & Mollard, R. (2004). Human embryonic stem cells form embryoid bodies containing visceral endoderm-like derivatives. Fetal Diagnosis and Therapy, 19(3), 218–223.PubMedCrossRefGoogle Scholar
  22. 22.
    Pandolfo, M. (2009). Friedreich ataxia: the clinical picture. Journal of Neurology, 256(Suppl 1), 3–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Miranda, C. J., Santos, M. M., Ohshima, K., Tessaro, M., Sequeiros, J., & Pandolfo, M. (2004). Frataxin overexpressing mice. FEBS Letters, 572(1–3), 281–288.PubMedCrossRefGoogle Scholar
  24. 24.
    Coppola, G., Choi, S. H., Santos, M. M., et al. (2006). Gene expression profiling in frataxin deficient mice: microarray evidence for significant expression changes without detectable neurodegeneration. Neurobiology of Disease, 22(2), 302–311.PubMedCrossRefGoogle Scholar
  25. 25.
    Puccio, H., Simon, D., Cossee, M., et al. (2001). Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nature Genetics, 27(2), 181–186.PubMedCrossRefGoogle Scholar
  26. 26.
    Sturm, B., Bistrich, U., Schranzhofer, M., et al. (2005). Friedreich's ataxia, no changes in mitochondrial labile iron in human lymphoblasts and fibroblasts: a decrease in antioxidative capacity? The Journal of Biological Chemistry, 280(8), 6701–6708.PubMedCrossRefGoogle Scholar
  27. 27.
    Zaibak, F., Kozlovski, J., Vadolas, J., Sarsero, J. P., Williamson, R., & Howden, S. E. (2009). Integration of functional bacterial artificial chromosomes into human cord blood-derived multipotent stem cells. Gene Therapy, 16(3), 404–414.PubMedCrossRefGoogle Scholar
  28. 28.
    Park, I. H., Arora, N., Huo, H., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886.PubMedCrossRefGoogle Scholar
  29. 29.
    Lowry, W. E., Richter, L., Yachechko, R., et al. (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2883–2888.PubMedCrossRefGoogle Scholar
  30. 30.
    Loh, Y. H., Agarwal, S., Park, I. H., et al. (2009). Generation of induced pluripotent stem cells from human blood. Blood, 113(22), 5476–5479.PubMedCrossRefGoogle Scholar
  31. 31.
    Aasen, T., Raya, A., Barrero, M. J., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26(11), 1276–1284.PubMedCrossRefGoogle Scholar
  32. 32.
    Ezashi, T., Telugu, B. P., Alexenko, A. P., Sachdev, S., Sinha, S., & Roberts, R. M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 10993–10998.PubMedCrossRefGoogle Scholar
  33. 33.
    Esteban, M. A., Xu, J., Yang, J., et al. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. The Journal of Biological Chemistry, 284(26), 17634–17640.PubMedCrossRefGoogle Scholar
  34. 34.
    Adhikary, S., & Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nature Reviews. Molecular Cell Biology, 6(8), 635–645.PubMedCrossRefGoogle Scholar
  35. 35.
    Kharas, M. G., Yusuf, I., Scarfone, V. M., et al. (2007). KLF4 suppresses transformation of pre-B cells by ABL oncogenes. Blood, 109(2), 747–755.PubMedCrossRefGoogle Scholar
  36. 36.
    Al-Mahdawi, S., Pinto, R. M., Ismail, O., et al. (2008). The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Human Molecular Genetics, 17(5), 735–746.PubMedCrossRefGoogle Scholar
  37. 37.
    Al-Mahdawi, S., Pinto, R. M., Ruddle, P., Carroll, C., Webster, Z., & Pook, M. (2004). GAA repeat instability in Friedreich ataxia YAC transgenic mice. Genomics, 84(2), 301–310.PubMedCrossRefGoogle Scholar
  38. 38.
    De Biase, I., Rasmussen, A., Endres, D., et al. (2007). Progressive GAA expansions in dorsal root ganglia of Friedreich's ataxia patients. Annals of Neurology, 61(1), 55–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Machkhas, H., Bidichandani, S. I., Patel, P. I., & Harati, Y. (1998). A mild case of Friedreich ataxia: lymphocyte and sural nerve analysis for GAA repeat length reveals somatic mosaicism. Muscle & Nerve, 21(3), 390–393.CrossRefGoogle Scholar
  40. 40.
    Clark, R. M., De Biase, I., Malykhina, A. P., Al-Mahdawi, S., Pook, M., & Bidichandani, S. I. (2007). The GAA triplet-repeat is unstable in the context of the human FXN locus and displays age-dependent expansions in cerebellum and DRG in a transgenic mouse model. Human Genetics, 120(5), 633–640.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jun Liu
    • 1
  • Paul J. Verma
    • 1
  • Marguerite V. Evans-Galea
    • 2
  • Martin B. Delatycki
    • 2
    • 3
  • Anna Michalska
    • 4
  • Jessie Leung
    • 5
  • Duncan Crombie
    • 6
  • Joseph P. Sarsero
    • 2
  • Robert Williamson
    • 7
  • Mirella Dottori
    • 5
    • 8
  • Alice Pébay
    • 5
    • 6
    • 8
    Email author
  1. 1.Centre for Reproduction and Development, Monash Institute of Medical Research, Monash UniversityMelbourneAustralia
  2. 2.Bruce Lefroy Centre for Genetic Health ResearchMurdoch Childrens Research InstituteParkvilleAustralia
  3. 3.Department of Clinical GeneticsAustin HealthHeidelbergAustralia
  4. 4.Monash Immunology and Stem Cell LaboratoriesMonash UniversityMelbourneAustralia
  5. 5.Centre for NeuroscienceThe University of MelbourneMelbourneAustralia
  6. 6.O’ Brien InstituteFitzroyAustralia
  7. 7.Department of PaediatricsThe University of MelbourneMelbourneAustralia
  8. 8.Department of PharmacologyThe University of MelbourneMelbourneAustralia

Personalised recommendations