Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Biochemical Properties and Effects on Mitochondrial Respiration of Aqueous Extracts of Basidiomycete Mushrooms

  • 4 Accesses

Abstract

There are different varieties of mushrooms not yet studied spread all over the planet. The objective of this study was to evaluate biochemical properties and effects on mitochondrial respiration of eight Basidiomycete mushrooms: Flaviporus venustus EF30, Hydnopolyporus fimbriatus EF41 and EF44, Inonotus splitgerberi EF46, Oudemansiella canarii EF72, Perenniporia sp. EF79, Phellinus linteus EF81, and Pleurotus albidus EF84. Total phenols, ABTS, TEAC, FRAP, and ORAC were measured in order to determine the antioxidant capacity. Antimicrobial potential was studied by disc-diffusion and microdilution method. Cytotoxicity was determined in murine peritoneal macrophages. The bioenergetic aspects were evaluated by the uncoupling of the oxidative phosphorylation in mitochondrias. The H. fimbriatus mushroom was the one that presented the most significant results for the antioxidant assays. Three mushrooms presented antimicrobial activity, indicating a potential for formulation of drugs. The results suggest that I. spligerberi has an uncoupling activity, even at the lowest concentration tested, dissipating the mitochondrial electrochemical gradient. On the other hand, P. albidus has effect only on succinate-oxidase activity without influencing mitochondrial respiratory efficiency. Therefore, both interfere negatively in mitochondrial respiration. In relation with the cytotoxicity in peritoneal macrophages, O. canarii and F. venustus were cytotoxic in this type of cells.

This is a preview of subscription content, log in to check access.

Fig. 1: Effect of I. splitgerberi EF46 on the respiratory activity of mitochondria isolated from liver.
Fig. 2: Effect of P. albidus EF84 on the respiratory activity of mitochondria isolated from liver.
Fig. 3: Effects of the aqueous extracts on the oxidation of succinate and NADH in ruptured mitochondria.

References

  1. 1.

    Reczek, C. R., & Chandel, N. S. (2014). ROS-dependent signal transduction. Current Opinion in Cell Biology, 33, 8–13.

  2. 2.

    Contato, A. G., Inácio, F. D., Araújo, C. A. V., Brugnari, T., Maciel, G. M., & Haminiuk, C. W. I. et al. (2019). Comparison between the aqueous extracts of mycelium and basidioma of the edible mushroom Pleurotus pulmonarius: chemical composition and antioxidant analysis. Journal of Food Measurement and Characterization, 2019, 1–8.

  3. 3.

    Sánchez, C.(2017). Reactive oxygen species and antioxidant properties from mushrooms. Synthetic and Systems Biotechnology, 2, 13–22.

  4. 4.

    Corrêa, R. C. G., Brugnari, T., Bracht, A., Peralta, R. M., & Ferreira, I. C. F. R. (2016). Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with chemical composition: a review on the past decade findings. Trends in Food Science and Technology, 50, 103–117.

  5. 5.

    Brugnari, T., Silva, P. H. A., Contato, A. G., Inácio, F. D., Nolli, M. M., & Kato, C. G. et al.(2018). Effects of cooking and in vitro digestion on antioxidant properties and cytotoxicity of the culinary-medicinal mushroom Pleurotus ostreatoroseus (Agaricomycetes). International Journal of Medicinal Mushrooms, 20, 259–270.

  6. 6.

    Corrêa, R. C. G., Souza, A. H. P., Calhelha, R. C., Barros, L., Glamoclija, J., & Peralta, R. M., et al. (2015). Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food and Function, 6, 2155–2164.

  7. 7.

    Blackwell, M. (2011). The fungi: 1,2,3 … 5.1 million species? American Journal of Botany, 98, 426–438.

  8. 8.

    Singleton, V. L., & Rossi Jr, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–154.

  9. 9.

    Corrêa, R. C. G., Haminiuk, C. W. I., Barros, L., Dias, M. I., Calhelha, R. C., & Kato, C. G. et al.(2017). Stability and biological activity of Merlot (Vitis vinifera) grape pomace phytochemicals after simulated in vitro gastrointestinal digestion and colonic fermentation. Journal of Functional Foods, 36, 410–417.

  10. 10.

    Koehnlein, E. A., Koehnlein, E. M., Corrêa, R. C. G., Nishida, V. S., Bracht, A., & Peralta, R. M. (2016). Analysis of whole diet in terms of phenolic content and antioxidant capacity: effects of a simulated gastrointestinal digestion. International Journal of Food Sciences and Nutrition, 67, 614–623.

  11. 11.

    Stojković, D. S., Kovačevic-Grujičić, N., Reis, F. S., Davidović, S., Barros, L., & Popović, J. et al.(2017). Chemical composition of the mushroom Meripilus giganteus Karst. and bioactive properties of its methanolic extract. LWT Food Science and Technology, 79, 454–462.

  12. 12.

    Voss, D. O., Campello, A. P., & Bacila, M. (1961). The respiratory chain and the oxidative phosphorylation of rat brain mitochondria. Biochemical Biophysical Research Communication, 25, 48–51.

  13. 13.

    Chance, B., & Williams, G. R. (1955). A simple and rapid assay of oxidative phosphorylation. Nature, 175, 1120–1121.

  14. 14.

    Lowry, O. H., Rosebrough, N. J., Farr, A. C., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J Biological Chemistry, 193, 265–275.

  15. 15.

    Simões, M. S., Bracht, L., Parizotto, A. V., Comar, J. F., Peralta, R. M., & Bracht, A. (2017). The metabolic effects of diuron in the rat liver. Environmental Toxicology Pharmacology, 54, 53–61.

  16. 16.

    Noleto, G. R., Mercê, A. L. R., Iacomini, M., Gorin, P. A. J., & Oliveira, M. B. M. (2004). Yeast mannan-vanadium (IV) complexes and their effect on peritoneal macrophages. Carbohydrate Polymers, 57, 113–122.

  17. 17.

    Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J. A., & Deemer, E. K. (2002). Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agricultural and Food Chemistry, 50, 3122–3128.

  18. 18.

    Ferreira, I. C., Barros, L., & Abreu, R. M. (2009). Antioxidants in wild mushrooms. Current Medicinal Chemistry, 16, 1543–1560.

  19. 19.

    Kozarski, M., Klaus, A., Jakovljevic, D., Todorovic, N., Vunduk, J., & Petrović, P., et al. (2015). Antioxidants of edible mushrooms. Molecules, 20, 19489–19525.

  20. 20.

    Glamočlija, J., Ćirić, A., Nikolić, M., Feranandes, A., Barros, L., & Calhelha, R. C., et al. (2015). Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”. Journal of Ethnopharmacology, 162, 323–332.

  21. 21.

    Kang, C. M., Han, D. H., Hwang, H. K., Choi, S. H., & Lee, W. J. (2013). Anticancer effect of Phellinus linteus; potential clinical application in treating pancreatic ductal adenocarcinoma. Journal of Carcinogenesis and Mutagenesis, 89, 1–8.

  22. 22.

    Sliva, D.(2010). Medicinal mushroom Phellinus linteus as an alternative cancer therapy (Review). Experimental and Therapeutic Medicine, 1, 407–411.

  23. 23.

    Zhu, T., Kim, S. H., & Chen, C. H. (2008). A medicine mushroom: Phellinus linteus. Current Medicinal Chemistry, 15, 1330–1335.

  24. 24.

    Suabjakyong, P., Nishimura, K., Toida, T., & van Griensven, L. J. (2015). Structural characterization and immunomodulatory effects of polysaccharides from Phellinus linteus and Phellinus igniarius on the IL-6/IL-10 cytokine balance of the mouse macrophage cell lines (RAW 264.7). Food and Function, 6, 2834–2845.

  25. 25.

    Song, K. S., Li, G., Kim, J. S., Jing, K., Kim, T. D., & Kim, J. P., et al. (2011). Protein-bond polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells. BMC Cancer, 22, 307–318.

  26. 26.

    Hsieh, P. W., Wu, J. B., & Wu, Y. C. (2013). Chemistry and biology of Phellinus linteus. BioMedicine, 3, 106–113.

  27. 27.

    Ayalla-Zavala, J. F., Silva-Espinoza, B. A., Cruz-Valenzuela, M. R., Villegas-Ochoa, M. A., Esqueda, M., & Gonzáles-Aguiar, G. A. et al.(2012). Antioxidant and antifungal potential of methanol extracts of Phellinus spp. from Sonora, Mexico. Revista iberoamericana de micologia, 29, 132–138.

  28. 28.

    Plata, K., Rosato, A. E., & Wegrzyn, G. (2009). Staphylococcus aureus as an infectious agent: overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochimica Polonica, 56, 597–612.

  29. 29.

    Lowy, F. D.(2003). Antimicrobial resistence: the example of Staphylococcus aureus. Journal of Clinical Investigation, 111, 1265–1273.

  30. 30.

    Gellatly, S. L., & Hancock, R. E. W. (2013). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens Disease, 67, 159–173.

  31. 31.

    Mesaros, N., Nordmann, P., Plésiat, P., Roussel-Delvallez, M., van Eldere, J., & Glupczynski, Y. et al.(2007). Pseudomonas aeruginosa: resistence and therapeutic options at the turn of the new millennium. Clinical Microbiology and Infection, 13, 560–578.

  32. 32.

    Petrusco, I., & Tarba, C. (1997). Uncoupling effects of diclofenac and aspirin in the perfused liver and isolated hepatic mitochondria of rat. Biochimica et Biophysica Acta, 1318, 385–394.

  33. 33.

    Petersen, R. H., Desjardin, D. E., & Krüger, D. (2008). Three types specimens designated in Oudemansiella. Fungal Diversity, 32, 81–96.

  34. 34.

    Rosa, L. H., Machado, K. M. G., Jacob, C. C., Capelari, M., Rosa, C. A., & Zani, C. L. (2003). Screening of Brazilian basidiomycetes for antimicrobial activity. Memórias do Instituto Oswaldo Cruz, 98, 967–974.

  35. 35.

    Rosa, L. H., Cota, B. B., Machado, K. M. G., Rosa, C. A., & Zani, C. L. (2005). Antifungal and other biological activities from Oudemansiella canarii (Basidiomycota). World Journal of Microbiology and Biotechnology, 21, 983–987.

Download references

Acknowledgements

The Conselho Nacional de Desenvolvimento Científico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

Author information

Correspondence to Alex Graça Contato.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Committee on Ethics in the Use of Animals of the State University of Maringá (CEUA/UEM) under the protocol no. 7669090317.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Contato, A.G., Brugnari, T., Sibin, A.P.A. et al. Biochemical Properties and Effects on Mitochondrial Respiration of Aqueous Extracts of Basidiomycete Mushrooms. Cell Biochem Biophys (2020). https://doi.org/10.1007/s12013-020-00901-w

Download citation

Keywords

  • Oxidative stress
  • Cytotoxicity
  • Mitochondrial respiration
  • Oxidative phosphorylation
  • Mushrooms