Advertisement

Cell Biochemistry and Biophysics

, Volume 77, Issue 4, pp 343–355 | Cite as

Carnosine Prevents Different Structural Damages Induced by Methylglyoxal in Lens Crystallins

  • Maryam Kianpour
  • Reza YousefiEmail author
Original Paper
  • 71 Downloads

Abstract

The elevated lenticular level of methylglyoxal (MGO) in diabetic patients is an important risk factor for the development of age-related (senile) cataract disorders. Carnosine (β-alanyl L-histidine), a natural antioxidant dipeptide product, has been indicated to prevent the development of cataract diseases. Therefore, it is possible that the anti-cataract activity of this naturally occurring compound is mediated by its anti-glycoxidation effect. In this study, the eye lens proteins were treated with MGO in the presence of carnosine. Then, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis and several spectroscopic evaluations were used with the aim to investigate the possible inhibitory activity of carnosine against the MGO-induced structural damages of eye lens proteins. Our results indicated that MGO causes a substantial structural alteration in the lens proteins. The results of fluorescence assessments also suggested that MGO-induced structural changes were accompanied with the formation of additional chromophores in the protein structure. Also, in the presence of carnosine, a notable reduction in the protein structural damages was observed. Our results may highlight an important protective role of carnosine against MGO-induced structural insults in the lens proteins. This study suggests carnosine supplementation as a possible preventive strategy against development of the diabetic cataracts in human.

Keywords

Lens crystallins Carnosine Methylglyoxal Diabetes Cataract 

Notes

Acknowledgements

We appreciatively acknowledge the financial support of Shiraz University Research Council, Iran National Science foundation (INSF) and National Institute for Medical Research Development (NIMAD).

Funding

This work was supported by INSF (grant number 96008461) and NIMAD (grant number 964854).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bloemendal, H., de Jong, W., Jaenicke, R., Lubsen, N. H., Slingsby, C., & Tardieu, A. (2004). Ageing and vision: structure, stability and function of lens crystallins. Progress in Biophysics and Molecular Biology, 86(3), 407–485.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Stadtman, E. R. (1992). Protein oxidation and aging. Science, 257(5074), 1220–1224.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813.CrossRefGoogle Scholar
  4. 4.
    Lyons, T. J., Silvestri, G., Dunn, J. A., Dyer, D. G., & Baynes, J. W. (1991). Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes, 40(8), 1010–1015.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Yim, G., & Wang, H. H. (2007). Antibiotics as signalling molecules. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1483), 1195–1200.CrossRefGoogle Scholar
  6. 6.
    Nita, M., & Grzybowski, A. (2016). The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Medicine and Cellular Longevity, 2016, 3164734.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kador, P., Akagi, Y., Terubayashi, H., Wyman, M., & Kinoshita, J. (1988). Prevention of pericyte ghost formation in retinal capillaries of galactose-fed dogs by aldose reductase inhibitors. Archives of Ophthalmology, 106(8), 1099–1102.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Varma, S., & Kinoshita, J. (1974). Sorbitol pathway in diabetic and galactosemic rat lens. Biochimica et Biophysica Acta (BBA)-General Subjects, 338(2), 632–640.CrossRefGoogle Scholar
  9. 9.
    Kinoshita, J. H. (1974). Mechanisms initiating cataract formation proctor lecture. Investigative Ophthalmology & Visual Science, 13(10), 713–724.Google Scholar
  10. 10.
    Ramasamy, R., Yan, S. F., & Schmidt, A. M. (2006). Methylglyoxal comes of AGE. Cell, 124(2), 258–260.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Seidler, N. W. (2012). GAPDH: biological properties and diversity. Springer, Dordrecht, 985, 1–36.Google Scholar
  12. 12.
    Ahmed, N., Thornalley, P. J., Dawczynski, J., Franke, S., Strobel, J., Stein, Gn, & Haik, G. M. (2003). Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Investigative Ophthalmology & Visual Science, 44(12), 5287–5292.CrossRefGoogle Scholar
  13. 13.
    Jack, M., & Wright, D. (2012). Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Translational Research, 159(5), 355–365.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Vicente Miranda, H., El‐Agnaf, O., & Outeiro, T. F. (2016). Glycation in Parkinson’s disease and Alzheimer’s disease. Movement Disorders, 31(6), 782–790.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Thornalley, P. J. (2008). Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems-role in ageing and disease. Drug Metabolism and Drug Interactions, 23(1-2), 125–150.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Vistoli, G., De Maddis, D., Cipak, A., Zarkovic, N., Carini, M., & Aldini, G. (2013). Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radical Research, 47, 3–27.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Boldyrev, A. (1993). Does carnosine possess direct antioxidant activity? The International Journal of Biochemistry, 25(8), 1101–1107.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Brownson, C., & Hipkiss, A. R. (2000). Carnosine reacts with a glycated protein. Free Radical Biology and Medicine, 28(10), 1564–1570.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hobart, L. J., Seibel, I., Yeargans, G. S., & Seidler, N. W. (2004). Anti-crosslinking properties of carnosine: significance of histidine. Life Sciences, 75(11), 1379–1389.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Boldyrev, A., Formazyuk, V., & Sergienko, V. D. (1994). Biological significance of histidine-containing dipeptides with special reference to carnosine: chemistry, distribution, metabolism and medical applications. Physicochem Biol, 13, 1–60.Google Scholar
  21. 21.
    Quinn, P. J., Boldyrev, A. A., & Formazuyk, V. E. (1992). Carnosine: its properties, functions and potential therapeutic applications. Molecular Aspects of Medicine, 13(5), 379–444.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hipkiss, A. R., Michaelis, J., & Syrris, P. (1995). Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent. FEBS Letters, 371(1), 81–85.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Khalili-Hezarjaribi, H., Yousefi, R., & Moosavi-Movahedi, A. A. (2012). Effect of temperature and ionic strength on structure and chaperone activity of glycated and non-glycated alpha-crystallins. Protein and Peptide Letters, 19(4), 450–457.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kumar, P. A., Kumar, M. S., & Reddy, G. B. (2007). Effect of glycation on α-crystallin structure and chaperone-like function. Biochemical Journal, 408(2), 251–258.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fayle, S. E., Healy, J. P., Brown, P. A., Reid, E. A., Gerrard, J. A., & Ames, J. M. (2001). Novel approaches to the analysis of the Maillard reaction of proteins. Electrophoresis, 22(8), 1518–1525.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Khazaei, S., Yousefi, R., & Alavian-Mehr, M. M. (2012). Aggregation and fibrillation of eye lens crystallins by homocysteinylation; implication in the eye pathological disorders. The Protein Journal, 31(8), 717–727.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Schägger, H., & Von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166(2), 368–379.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kumar, P. A., Reddy, P. Y., Srinivas, P., & Reddy, G. B. (2009). Delay of diabetic cataract in rats by the antiglycating potential of cumin through modulation of α-crystallin chaperone activity. The Journal of Nutritional Biochemistry, 20(7), 553–562.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Qadeer, A., Zaman, M., & Khan, R. (2014). Inhibitory effect of post-micellar SDS concentration on thermal aggregation and activity of papain. Biochemistry (Moscow), 79(8), 785–796.CrossRefGoogle Scholar
  30. 30.
    Musci, G., & Berliner, L. J. (1985). Probing different conformational states of bovine α-Lactalbumin: fluorescence studies with 4,4’-Bis[1-(phenylamino)-8-naphthalenesulfonate]. Biochemistry, 24(15), 3852–3856.PubMedCrossRefGoogle Scholar
  31. 31.
    Fan, X., & Monnier, V. M. (2008). Nucleophilic compounds decrease advanced glycation end products (AGEs) from ascorbic acid in the hSVCT2 transgenic mouse model of lenticular aging. Investigative Ophthalmology & Visual Science, 49(11), 4945.CrossRefGoogle Scholar
  32. 32.
    Kessel, L., Kalinin, S., Nagaraj, R. H., Larsen, M., & Johansson, L. B. A. (2002). Time‐resolved and steady‐state fluorescence spectroscopic studies of the human lens with comparison to Argpyrimidine, Pentosidine and 3‐OH‐kynurenine. Photochemistry and Photobiology, 76(5), 549–554.PubMedCrossRefGoogle Scholar
  33. 33.
    Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1751(2), 119–139.CrossRefGoogle Scholar
  34. 34.
    Bouchard, M., Zurdo, J., Nettleton, E. J., Dobson, C. M., & Robinson, C. V. (2000). Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Science, 9(10), 1960–1967.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zako, T., Sakono, M., Hashimoto, N., Ihara, M., & Maeda, M. (2009). Bovine insulin filaments induced by reducing disulfide bonds show a different morphology, secondary structure, and cell toxicity from intact insulin amyloid fibrils. Biophysical Journal, 96(8), 3331–3340.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Datiles, M. B., Ansari, R. R., Suh, K. I., Vitale, S., Reed, G. F., Zigler, J. S., & Ferris, F. L. (2008). Clinical detection of precataractous lens protein changes using dynamic light scattering. Archives of Ophthalmology, 126(12), 1687–1693.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhou, C., Qi, W., Lewis, E. N., & Carpenter, J. F. (2015). Concomitant raman spectroscopy and dynamic light scattering for characterization of therapeutic proteins at high concentrations. Analytical Biochemistry, 472, 7–20.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Ghahramani, M., Yousefi, R., Khoshaman, K., & Alavianmehr, M. M. (2015). The impact of calcium ion on structure and aggregation propensity of peroxynitrite-modified lens crystallins: new insights into the pathogenesis of cataract disorders. Colloids and Surfaces B: Biointerfaces, 125, 170–180.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ghahramani, M., Yousefi, R., Khoshaman, K., Moghadam, S. S., & Kurganov, B. I. (2016). Evaluation of structure, chaperone-like activity and protective ability of peroxynitrite modified human α-crystallin subunits against copper-mediated ascorbic acid oxidation. International Journal of Biological Macromolecules, 87, 208–221.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    DiMauro, M. A., Nandi, S. K., Raghavan, C. T., Kar, R. K., Wang, B., Bhunia, A., Nagaraj, R. H., & Biswas, A. (2014). Acetylation of Gly1 and Lys2 promotes aggregation of human γD-crystallin. Biochemistry, 53(46), 7269–7282.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Nagaraj, R. H., Nahomi, R. B., Shanthakumar, S., Linetsky, M., Padmanabha, S., Pasupuleti, N., Wang, B., Santhoshkumar, P., Panda, A. K., & Biswas, A. (2012). Acetylation of αA-crystallin in the human lens: Effects on structure and chaperone function. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(2), 120–129.CrossRefGoogle Scholar
  42. 42.
    Raman, B., Ramakrishna, T., & Rao, C.M. (1995). Rapid refolding studies on the chaperone-like α-crystallin effect of α-crystallin on refolding of β-and γ-crystallins. Journal of Biological Chemistry, 270(34), 19888–19892.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Khoshaman, K., Yousefi, R., Tamaddon, A. M., Saso, L., & Moosavi-Movahedi, A. A. (2015). The impact of hydrogen peroxide on structure, stability and functional properties of human R12C mutant αA-crystallin: the imperative insights into pathomechanism of the associated congenital cataract incidence. Free Radical Biology and Medicine, 89, 819–830.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Linetsky, M., Shipova, E., Cheng, R., & Ortwerth, B. J. (2008). Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1782(1), 22–34.CrossRefGoogle Scholar
  45. 45.
    Perry, R. E., Swamy, M., & Abraham, E. (1987). Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabetic rats. Experimental Eye Research, 44(2), 269–282.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Schmid, F. X. (2001). Biological macromolecules: UV‐visible spectrophotometry. Encyclopedia of Life Sciences; Macmillan Publisher Ltd, New York, 1–4.Google Scholar
  47. 47.
    Coussons, P. J., Jacoby, J., McKay, A., Kelly, S. M., Price, N. C., & Hunt, J. V. (1997). Glucose modification of human serum albumin: a structural study. Free Radical Biology and Medicine, 22(7), 1217–1227.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Münch, G., Keis, R., Weßels, A., Riederer, P., Bahner, U., Heidland, A., Niwa, T., Lemke, H. D., & Schinzel, R. (1997). Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Clinical Chemistry and Laboratory Medicine, 35(9), 669–678.CrossRefGoogle Scholar
  49. 49.
    Cheng, R., Feng, Q., Argirov, O. K., & Ortwerth, B. J. (2005). K2P—A novel cross‐link from human lens protein. Annals of the New York Academy of Sciences, 1043(1), 184–194.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Khan, M. A., Arif, Z., Khan, M. A., & Alam, K. (2018). Methylglyoxal produces more changes in biochemical and biophysical properties of human IgG under high glucose compared to normal glucose level. PLoS ONE, 13(1), e0191014.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hawe, A., Sutter, M., & Jiskoot, W. (2008). Extrinsic fluorescent dyes as tools for protein characterization. Pharmaceutical Research, 25(7), 1487–1499.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Plaxco, K. W., Simons, K. T., Ruczinski, I., & Baker, D. (2000). Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry, 39(37), 11177–11183.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nakamura, Y., Fukiage, C., Shih, M., Ma, H., David, L. L., Azuma, M., & Shearer, T. R. (2000). Contribution of calpain Lp82–induced proteolysis to experimental cataractogenesis in mice. Investigative Ophthalmology & Visual Science, 41(6), 1460–1466.Google Scholar
  54. 54.
    Biswas, S., Harris, F., Dennison, S., Singh, J. P., & Phoenix, D. (2005). Calpains: enzymes of vision? Medical Science Monitor, 11(9), 301–310.Google Scholar
  55. 55.
    Tamada, Y., Fukiage, C., Nakamura, Y., Azuma, M., Kim, Y., & Shearer, T. (2000). Evidence for apoptosis in the selenite rat model of cataract. Biochemical and Biophysical Research Communications, 275(2), 300–306.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Robertson, L. J., David, L. L., Riviere, M. A., Wilmarth, P. A., Muir, M. S., & Morton, J. D. (2008). Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract. Investigative Ophthalmology & Visual Science, 49(3), 1016–1022.CrossRefGoogle Scholar
  57. 57.
    Bellier, J., Nokin, M. J., Lardé, E., Karoyan, P., Peulen, O., Castronovo, V., & Bellahcène, A. (2019). Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Research and Clinical Practice, 148, 200–211.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Aydin, F., Kalaz, E. B., Kucukgergin, C., Coban, J., Dogru-Abbasoglu, S., & Uysal, M. (2018). Carnosine treatment diminished oxidative stress and glycation products in serum and tissues of D-galactose-treated rats. Current Aging Science, 11(1), 10–15.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Sahin, S., Uylaş, U., Sahinturk, V., & Alatas, O. (2018). Protective effect of carnosine on hepatic ischemia-reperfusion injury in rats. Osmangazi Tıp Dergisi,  https://doi.org/10.20515/otd.481714.
  60. 60.
    Javadi, S., Yousefi, R., Hosseinkhani, S., Tamaddon, A. M., & Uversky, V.N. (2017). Protective effects of carnosine on dehydroascorbate-induced structural alteration and opacity of lens crystallins: Important implications of carnosine pleiotropic functions to combat cataractogenesis. Journal of Biomolecular Structure and Dynamics, 35(8), 1766–1784.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Carroll, L., Karton, A., Radom, L., Davies, M. J., & Pattison, D. I. (2019). Carnosine and carcinine derivatives rapidly react with hypochlorous acid to form chloramines and dichloramines. Chemical Research in Toxicology, 32(3), 513–525.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Xing, L., Chee, M. E., Zhang, H., Zhang, W., & Mine, Y. (2019). Carnosine—a natural bioactive dipeptide: bioaccessibility, bioavailability and health benefits. Journal of Food Bioactives, 5, 8–17.CrossRefGoogle Scholar
  63. 63.
    Freund, M. A., Chen, B., & Decker, E. A. (2018). The inhibition of advanced glycation end products by carnosine and other natural dipeptides to reduce diabetic and age‐related complications. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1367–1378.CrossRefGoogle Scholar
  64. 64.
    Preedy, V. R. (2015). Imidazole dipeptides: chemistry, analysis, function and effects. In Royal Society of Chemistry. RSC Publishing, Cambridge, 217–237.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Protein Chemistry Laboratory (PCL), Department of Biology, College of SciencesShiraz UniversityShirazIran

Personalised recommendations