Advertisement

Cell Biochemistry and Biophysics

, Volume 77, Issue 3, pp 197–202 | Cite as

Biocompatibility of Oxygen-Sensing Paramagnetic Implants

  • Dan Tse
  • Periannan KuppusamyEmail author
Original Paper
  • 44 Downloads

Abstract

Oxygen-sensing implants, composed of paramagnetic microcrystals embedded in a biocompatible polymer, are increasingly being used for electron paramagnetic resonance (EPR) oximetry in animal models and human subjects. The implants are stable and designed to stay in the tissues for indefinite periods. However, it is not known whether the crystals that may be exposed on the surface of the implants or leached out from the implants will induce cytotoxicity thereby compromising their biocompatibility over the long term. The goal of the current study was to evaluate the cytotoxicity of the implants and crystalline particulates under in vitro conditions. Apoptosis and cell viability studies were performed using L6, a rat muscle cell line and AsPC-1, a cancer cell line derived from human pancreatic adenocarcinoma. The results indicated that neither the intact implants nor their components elicit cytotoxicity, thus establishing their biocompatibility for use in human subjects.

Keywords

OxyChip Particulates Cellular toxicity Cell survival Apoptosis 

Notes

Acknowledgements

This study was supported by the National Institutes of Health grants R01 EB004031 and P01 CA190193.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Ahmad, R., & Kuppusamy, P. (2010). Theory, instrumentation, and applications of electron paramagnetic resonance oximetry. Chemical Reviews, 110(5), 3212–3236.CrossRefGoogle Scholar
  2. 2.
    Swartz, H. M., Hou, H., Khan, N., Jarvis, L. A., Chen, E. Y., Williams, B. B., & Kuppusamy, P. (2014). Advances in probes and methods for clinical EPR oximetry. Advances in Experimental Medicine and Biology, 812, 73–79.CrossRefGoogle Scholar
  3. 3.
    Hou, H., Khan, N., Gohain, S., Kuppusamy, M. L., & Kuppusamy, P. (2018). Pre-clinical evaluation of OxyChip for long-term EPR oximetry. Biomedical Microdevices, 20(2), 29.CrossRefGoogle Scholar
  4. 4.
    Pandian, R. P., Parinandi, N. L., Ilangovan, G., Zweier, J. L., & Kuppusamy, P. (2003). Novel particulate spin probe for targeted determination of oxygen in cells and tissues. Free Radical Biology and Medicine, 35(9), 1138–1148.CrossRefGoogle Scholar
  5. 5.
    Kmiec, M. M., Tse, D., Mast, J. M., Ahmad, R., & Kuppusamy, P. (2019). Implantable microchip containing oxygen-sensing paramagnetic crystals for long-term, repeated, and multisite in vivo oximetry. Biomedical Microdevices, 21(3), 71.CrossRefGoogle Scholar
  6. 6.
    Kmiec, M. M., Hou, H., Lakshmi Kuppusamy, M., Drews, T. M., Prabhat, A. M., Petryakov, S. V., Demidenko, E., Schaner, P. E., Buckey, J. C., Blank, A., & Kuppusamy, P. (2019). Transcutaneous oxygen measurement in humans using a paramagnetic skin adhesive film. Magnetic Resonance in Medicine, 81(2), 781–794.CrossRefGoogle Scholar
  7. 7.
    Pandian, R. P., Raju, N. P., Gallucci, J. C., Woodward, P. M., Epstein, A. J., & Kuppusamy, P. (2010). A new tetragonal crystalline polymorph of lithium octa-n-butoxy-naphthalocyanine (LiNc-BuO) radical: structural, magnetic and oxygen-sensing properties. Chemistry of Materials, 22, 6254–6262.CrossRefGoogle Scholar
  8. 8.
    Mohan, I. K., Khan, M., Wisel, S., Selvendiran, K., Sridhar, A., Carnes, C. A., Bognar, B., Kalai, T., Hideg, K., & Kuppusamy, P. (2009). Cardioprotection by HO-4038, a novel verapamil derivative, targeted against ischemia and reperfusion-mediated acute myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 296(1), H140–H151.CrossRefGoogle Scholar
  9. 9.
    Chacko, S. M., Khan, M., Kuppusamy, M. L., Pandian, R. P., Varadharaj, S., Selvendiran, K., Bratasz, A., Rivera, B. K., & Kuppusamy, P. (2009). Myocardial oxygenation and functional recovery in infarct rat hearts transplanted with mesenchymal stem cells. American Journal of Physiology Heart and Circulatory Physiology, 296(5), H1263–H173.CrossRefGoogle Scholar
  10. 10.
    Fisher, E. M., Khan, M., Salisbury, R., & Kuppusamy, P. (2013). Noninvasive monitoring of small intestinal oxygen in a rat model of chronic mesenteric ischemia. Cell Biochemistry and Biophysics, 67(2), 451–459.CrossRefGoogle Scholar
  11. 11.
    Khan, M., Kutala, V. K., Vikram, D. S., Wisel, S., Chacko, S. M., Kuppusamy, M. L., Mohan, I. K., Zweier, J. L., Kwiatkowski, P., & Kuppusamy, P. (2007). Skeletal myoblasts transplanted in the ischemic myocardium enhance in situ oxygenation and recovery of contractile function. American Journal of Physiology Heart and Circulatory Physiology, 293(4), H2129–H2139.CrossRefGoogle Scholar
  12. 12.
    Khan, M., Meduru, S., Mohan, I. K., Kuppusamy, M. L., Wisel, S., Kulkarni, A., Rivera, B. K., Hamlin, R. L., & Kuppusamy, P. (2009). Hyperbaric oxygenation enhances transplanted cell graft and functional recovery in the infarct heart. Journal of Molecular and Cellular Cardiology, 47(2), 275–287.CrossRefGoogle Scholar
  13. 13.
    Khan, M., Meduru, S., Pandian, R. P., Rivera, B. K., & Kuppusamy, P. (2011). Effect of oxygenation on stem-cell therapy for myocardial infarction. Advances in Experimental Medicine and Biology, 701, 175–181.CrossRefGoogle Scholar
  14. 14.
    Khan, M., Mohan, I. K., Kutala, V. K., Kotha, S. R., Parinandi, N. L., Hamlin, R. L., & Kuppusamy, P. (2009). Sulfaphenazole protects heart against ischemia-reperfusion injury and cardiac dysfunction by overexpression of iNOS, leading to enhancement of nitric oxide bioavailability and tissue oxygenation. Antioxidants & Redox Signaling, 11(4), 725–738.CrossRefGoogle Scholar
  15. 15.
    Ohanyan, V., Yin, L., Bardakjian, R., Kolz, C., Enrick, M., Hakobyan, T., Kmetz, J., Bratz, I., Luli, J., Nagane, M., Khan, N., Hou, H., Kuppusamy, P., Graham, J., Fu, F. K., Janota, D., Oyewumi, M. O., Logan, S., Lindner, J. R., & Chilian, W. M. (2015). Requisite role of Kv1.5 channels in coronary metabolic dilation. Circulation Research, 117(7), 612–621.CrossRefGoogle Scholar
  16. 16.
    Prabhat, A. M., Kuppusamy, M. L., Naidu, S. K., Meduru, S., Reddy, P. T., Dominic, A., Khan, M., Rivera, B. K., & Kuppusamy, P. (2018). Supplemental oxygen protects heart against acute myocardial infarction. Frontiers in Cardiovascular Medicine, 5, 114.CrossRefGoogle Scholar
  17. 17.
    Zhao, X., He, G., Chen, Y. R., Pandian, R. P., Kuppusamy, P., & Zweier, J. L. (2005). Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport. Circulation, 111(22), 2966–2972.CrossRefGoogle Scholar
  18. 18.
    Meenakshisundaram, G., Eteshola, E., Pandian, R. P., Bratasz, A., Lee, S. C., & Kuppusamy, P. (2009). Fabrication and physical evaluation of a polymer-encapsulated paramagnetic probe for biomedical oximetry. Biomedical Microdevices, 11(4), 773–782.CrossRefGoogle Scholar
  19. 19.
    Belanger, M. C., & Marois, Y. (2001). Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. Journal of Biomedical Materials Research, 58(5), 467–477.CrossRefGoogle Scholar
  20. 20.
    Guys, J. M., Breaud, J., Hery, G., Camerlo, A., Le Hors, H., & De Lagausie, P. (2006). Endoscopic injection with polydimethylsiloxane for the treatment of pediatric urinary incontinence in the neurogenic bladder: Long-term results. The Journal of Urology, 175(3), 1106–1110.CrossRefGoogle Scholar
  21. 21.
    Khan, M., Kutala, V. K., Wisel, S., Chacko, S. M., Kuppusamy, M. L., Kwiatkowski, P., & Kuppusamy, P. (2008). Measurement of oxygenation at the site of stem cell therapy in a murine model of myocardial infarction. Advances in Experimental Medicine and Biology, 614, 45–52.CrossRefGoogle Scholar
  22. 22.
    Fujii, H., Itoh, K., Pandian, R. P., Sakata, M., Kuppusamy, P., & Hirata, H. (2007). Measuring brain tissue oxygenation under oxidative stress by ESR/MR dual imaging system. Magnetic Resonance in Medical Sciences, 6(2), 83–89.CrossRefGoogle Scholar
  23. 23.
    Jarvis, L. A., Williams, B. B., Schaner, P. E., Chen, E. Y., Angeles, C. V., Hou, H., Schreiber, W., Wood, V. A., Flood, A. B., Swartz, H. M., & Kuppusamy, P. (2016). Phase 1 clinical trial of OxyChip, an implantable absolute pO(2) sensor for tumor oximetry. International Journal of Radiation Oncology, Biology, Physics, 96(2), S109–S110.CrossRefGoogle Scholar
  24. 24.
    Kmiec, M. M., Hou, H., Kuppusamy, M. L., Drews, T. M., Prabhat, A. M., Petryakov, S. V., Demidenko, E., Schaner, P. E., Buckey, J. C., Blank, A., & Kuppusamy, P. (2019). Application of SPOT chip for transcutaneous oximetry. Magnetic Resonance in Medicine, 81(5), 2837–2840.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiology, Geisel School of MedicineDartmouth CollegeLebanonUSA

Personalised recommendations