Cell Biochemistry and Biophysics

, Volume 77, Issue 3, pp 261–272 | Cite as

Attenuation of cardiac ischemia-reperfusion injury by sodium thiosulfate is partially dependent on the effect of cystathione beta synthase in the myocardium

  • Srijanani Kannan
  • Sri Rahavi Boovarahan
  • Jeyashri Rengaraju
  • Priyanka Prem
  • Gino A. KurianEmail author
Original Paper


Our early studies have shown that sodium thiosulfate (STS) treatment attenuated the ischemia-reperfusion (IR)-induced injury in an isolated rat heart model by decreasing apoptosis, oxidative stress, and preserving mitochondrial function. Hydrogen sulfide, the precursor molecule is reported to have similar efficacy. This study aims to investigate the role of endogenous hydrogen sulfide in STS-mediated cardioprotection against IR in an isolated rat heart model. d, l-propargylglycine (PAG), an inhibitor of cystathionine γ-lyase was used as endogenous H2S blocker. In addition, we used the hypoxia-reoxygenation (HR) model to study the impact of STS in cardiomyocytes (H9C2) and fibroblast (3T3) cells. STS treatment to animal and cells prior to IR or HR decreased cell injury. The sensitivity of H9C2 and 3T3 cells towards HR (6 h hypoxia followed by 12 h reoxygenation) challenge varies, where, 3T3 cells exhibited higher cell death (54%). Cells treated with PAG prior to STS abrogate the protective effect in 3T3 (cell viability 61%) but not in H9C2 (cell viability 82%). Further evaluation in rat heart model showed partial recovery (46% RPP) of heart from those hearts pretreated with PAG prior to STS condition. In conclusion, we demonstrated that STS-mediated cardioprotection to IR-challenged rat heart is not fully dependent on endogenous H2S level and this dependency may be linked to higher fibroblast content in rat heart.



The authors would like to acknowledge the Indian Council for Medical Research (ICMR), Government of India, New Delhi, for supporting this research through grant-in-aid (No. 5/4/1-14/12-NCD-II).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


The study protocol involving experimentation on animals was approved by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), India, with prior approval of the Institutional Animal Ethical Committee (IAEC, SASTRA University, No.: 229/SASTRA/IAEC/RPP).


  1. 1.
    Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., & Deo, R., et al. (2017). Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation, 135, e146–e603.CrossRefGoogle Scholar
  2. 2.
    Prasad, A., Stone, G. W., Holmes, D. R., & Gersh, B. (2009). Reperfusion injury, microvascular dysfunction, and cardioprotection: the “dark side” of reperfusion. Circulation, 120, 2105–2112.CrossRefGoogle Scholar
  3. 3.
    Turer, A. T., & Hill, J. A. (2010). Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. The American Journal of Cardiology, 106, 360–368.CrossRefGoogle Scholar
  4. 4.
    Neri, M., & Riezzo, I. (2017). Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediators of Inflammation, 2017, 7018393.Google Scholar
  5. 5.
    Dirksen, M. T., Laarman, G. J., Simoons, M. L., & Duncker DJGM (2007). Reperfusion injury in humans: a review of clinical trials on reperfusion injury inhibitory strategies. Cardiovascular Research, 74, 343–355.CrossRefGoogle Scholar
  6. 6.
    Ravindran, S., Boovarahan, S. R., Shanmugam, K., Vedarathinam, R. C., & Kurian, G. A. (2017). Sodium thiosulfate preconditioning ameliorates ischemia/reperfusion injury in rat hearts via reduction of oxidative stress and apoptosis. Cardiovascular Drugs and Therapy, 31, 511–524.CrossRefGoogle Scholar
  7. 7.
    Hildebrandt, T. M., & Grieshaber, M. K. (2008). Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. The FEBS Journal, 275, 3352–3361.CrossRefGoogle Scholar
  8. 8.
    Tanizawa, K. (2011). Production of H2S by 3-mercaptopyruvate sulphurtransferase. The Journal of Biochemistry, 149, 357–359.CrossRefGoogle Scholar
  9. 9.
    Sen, U., Vacek, T. P., Hughes, W. M., Kumar, M., Moshal, K. S., & Tyagi, N., et al. (2008). Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation. Pharmacology, 82, 201–213.CrossRefGoogle Scholar
  10. 10.
    Zhang, Q., Shang, M., Zhang, M., Wang, Y., Chen, Y., & Wu, Y., et al. (2016). Microvesicles derived from hypoxia/reoxygenation-treated human umbilical vein endothelial cells promote apoptosis and oxidative stress in H9c2 cardiomyocytes. BMC cell biology, 17, 25–25.CrossRefGoogle Scholar
  11. 11.
    Feoktistova, M., Geserick, P., & Leverkus, M. (2016) Crystal violet assay for determining viability of cultured cells. Cold Spring Harbour Protocols. 2016, pdb.prot087379.
  12. 12.
    Kasibhatla, S., Amarante-Mendes, G. P., Finucane, D., Brunner, T., Bossy-Wetzel, E., & Green, D. R. (2006). Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protocols, 2006, 2006.Google Scholar
  13. 13.
    Beebee, T. J., & Carty, D. S. (1983). A study of lactate dehydrogenase levels and turnover rates during postnatal development in the rat. Biochimica et Biophysica Acta, 757, 209–218.CrossRefGoogle Scholar
  14. 14.
    Tanzer, M. L., & Gilvarg, C. (1959). Creatine and creatine kinase measurement. Journal of Biological Chemistry, 234, 3201–3204.Google Scholar
  15. 15.
    Ytrehus, K., Liu, Y., Tsuchida, A., Miura, T., Liu, G. S., & Yang, X. M., et al. (1994). Rat and rabbit heart infarction: effects of anesthesia, perfusate, risk zone, and method of infarct sizing. American Journal of Physiology, 267, H2383–H2390.Google Scholar
  16. 16.
    Sharma, R., Singh Rathore, S., Sharma, P., & Sharma, A. (2009). Estimation of thiosulphate using sodium nitroprusside by a newer photochemical method. Journal of Chemical and Pharmaceutical Research, 1, 321–328.Google Scholar
  17. 17.
    Ang, A. D., Konigstorfer, A., Giles, G. I., & Bhatia, M. (2012). Measuring free tissue sulfide. Advances in Biological Chemistry, 02No.04, 6.Google Scholar
  18. 18.
    Palmer, J. W., Tandler, B., & Hoppel, C. L. (1977). Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. Journal of Biological Chemistry, 252, 8731–8739.Google Scholar
  19. 19.
    Fraga, C. G., Leibovitz, B. E., & Tappel, A. L. (1988). Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radical Biology and Medicine, 4, 155–161.CrossRefGoogle Scholar
  20. 20.
    Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science, 179, 588–590.CrossRefGoogle Scholar
  21. 21.
    Beutler, E., & Kelly, B. M. (1963). The effect of sodium nitrite on red cell GSH. Experientia, 19, 96–97.CrossRefGoogle Scholar
  22. 22.
    Kuntz, A. N., Davioud-Charvet, E., Sayed, A. A., Califf, L. L., Dessolin, J., & Arner, E. S., et al. (2007). Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Medicine, 4, e206.CrossRefGoogle Scholar
  23. 23.
    Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47, 389–394.CrossRefGoogle Scholar
  24. 24.
    Nandi, A., & Chatterjee, I. (1988). Assay of superoxide dismutase activity in animal tissues. Journal of Biosciences, 13, 305–315.CrossRefGoogle Scholar
  25. 25.
    Frazier, A. E., & Thorburn, D. R. (2012). Biochemical Analyses of the Electron Transport Chain Complexes by Spectrophotometry. In: Wong, L. J. (ed.), Mitochondrial Disorders. Methods in Molecular Biology (Methods and Protocols), Vol 837. Humana Press.Google Scholar
  26. 26.
    Banu, S. A., Ravindran, S., & Kurian, G. A. (2016). Hydrogen sulfide post-conditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury. Cell Stress and Chaperones, 21, 571–582.CrossRefGoogle Scholar
  27. 27.
    Lee, C.-Y., Hwang, J.-H., Lee, Y.-S., & Cho, K.-S. (1995). Purification and characterization of mouse liver rhodanese. Journal of Biochemistry and Molecular Biology, 28, 170–176.Google Scholar
  28. 28.
    Zhou, P., & Pu, W. T. (2016). Recounting cardiac cellular composition. Circulation Research, 118, 368–370.CrossRefGoogle Scholar
  29. 29.
    Ravindran, S., & Kurian, G. A. (2018). Effect of sodium thiosulfate postconditioning on ischemia-reperfusion injury induced mitochondrial dysfunction in rat heart. Journal of Cardiovascular Translational Research, 11, 246–258.CrossRefGoogle Scholar
  30. 30.
    Ravindran, S., Jahir Hussain, S., Boovarahan, S. R., & Kurian, G. A. (2017). Sodium thiosulfate post-conditioning protects rat hearts against ischemia reperfusion injury via reduction of apoptosis and oxidative stress. Chemico-Biological Interactions, 274, 24–34.CrossRefGoogle Scholar
  31. 31.
    Yang, G., Wu, L., Bryan, S., Khaper, N., Mani, S., & Wang, R. (2010). Cystathionine gamma-lyase deficiency and overproliferation of smooth muscle cells. Cardiovascular Research, 86, 487–495.CrossRefGoogle Scholar
  32. 32.
    van den Born, J. C., Mencke, R., Conroy, S., Zeebregts, C. J., van Goor, H., & Hillebrands, J. L. (2016). Cystathionine γ-lyase is expressed in human atherosclerotic plaque microvessels and is involved in micro-angiogenesis. Scientific Reports, 6, 34608.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical and BiotechnologySASTRA Deemed UniversityThanjavurIndia

Personalised recommendations