Advertisement

Cell Biochemistry and Biophysics

, Volume 77, Issue 1, pp 33–46 | Cite as

The Iron State in Spleen and Liver Tissues from Patients with Hematological Malignancies Studied Using Magnetization Measurements and Mössbauer Spectroscopy

  • I. V. Alenkina
  • A. V. Vinogradov
  • I. Felner
  • T. S. Konstantinova
  • E. Kuzmann
  • V. A. Semionkin
  • M. I. OshtrakhEmail author
Original Paper

Abstract

In this overview, we present the results of the study of spleen and liver tissues taken from healthy donors in comparison with those from patients with (i) non-Hodgkin B-cell lymphomas, namely, mantle cell lymphoma and marginal zone B-cell lymphoma, (ii) acute myeloid leukemia, and (iii) primary myelofibrosis. The study was carried out using Mössbauer spectroscopy and magnetization measurements for the analysis of ferritin-like iron in spleen and liver tissues. Magnetization measurements demonstrated small differences in the saturation magnetic moments and revealed additional paramagnetic components. Two liver samples demonstrated unusual behavior of the magnetic moment when the zero-field-cooled curve was over the field-cooled curve in the temperature range between ~40 and ~70 K. Relative iron content variations in the tissue cells as well as small variations in the 57Fe hyperfine parameters were demonstrated for healthy and patients’ spleen and liver tissues on the base of measured Mössbauer spectra. The results obtained permit us to suggest small differences in the ferritin iron core structure in spleen and liver tissues from healthy donors and patients with hematological malignancies.

Keywords

Mössbauer spectroscopy Magnetization measurements Ferritin-like iron Spleen and liver tissues Non-Hodgkin B-cell lymphoma, primary myelofibrosis, and acute myeloid leukemia 

Notes

Acknowledgements

The authors wish to thank Dr. S.E. Ioshchenko for the histochemical analysis and optical microphotographs of spleen samples (Sverdlovsk Regional Oncological Center, Ekaterinburg, Russian Federation) and Dr. A.L. Berkovsky (Hematological Research Center, Moscow, Russian Federation) for his help with lyophilization of spleen and liver tissues. This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 3.1959.2017/4.6) and Act 211 of the Government of the Russian Federation, contract no. 02.A03.21.0006. This work was carried out within the Agreement of Cooperation between the Ural Federal University (Ekaterinburg) and the Eötvös Loránd University (Budapest).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Arora, S. (Ed.) (2012). Iron metabolism, p. 186. Rijeka: InTech.Google Scholar
  2. 2.
    Crichton, R. (2016). Iron metabolism – from molecular mechanisms to clinical consequences, fourth edition, p. 556. John Wiley & Sons, Ltd.Google Scholar
  3. 3.
    Theil, E. C. (1987). Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annual Review of Biochemistry, 56, 289–315.CrossRefGoogle Scholar
  4. 4.
    Chasteen, N. D., & Harrison, P. M. (1999). Mineralization in ferritin: an efficient means of iron storage. Journal of Structural Biology, 126, 182–194.CrossRefGoogle Scholar
  5. 5.
    Bauminger, E. R., & Harrison, P. M. (2003). Ferritin, the path of iron into the core, as seen by Mössbauer spectroscopy. Hyperfine Interactions, 151/152, 3–19.CrossRefGoogle Scholar
  6. 6.
    Papaefthymiou, G. C. (2010). The Mössbauer and magnetic properties of ferritin cores. Biochimica et Biophysica Acta, 1800, 886–897.CrossRefGoogle Scholar
  7. 7.
    Kamnev, A. A., Kovács, K., Alenkina, I. V., & Oshtrakh, M. I. (2013). Mössbauer spectroscopy in biological and biomedical research. In V. K. Sharma, G. Klingelhofer, & T. Nishida (Eds.), Mössbauer spectroscopy: applications in chemistry, biology, and nanotechnology, first edition, (pp. 272–291). Hoboken, New Jersey: John Wiley & Sons, Inc.Google Scholar
  8. 8.
    Kamnev, A. A., & Tugarova, A. V. (2017). Sample treatment in Mössbauer spectroscopy for protein-related analyses: nondestructive possibilities to look inside metal-containing biosystems. Talanta, 174, 819–837.CrossRefGoogle Scholar
  9. 9.
    Andrews, N. C. (2000). Iron metabolism: iron deficiency and iron overload. Annual Review of Genomics and Human Genetics, 1, 75–98.CrossRefGoogle Scholar
  10. 10.
    Oshtrakh, M. I., Alenkina, I. V., Vinogradov, A. V., Konstantinova, T. S., & Semionkin, V. A. (2013). Differences of the 57Fe hyperfine parameters in both oxyhemoglobin and spleen from normal human and patient with primary myelofibrosis. Hyperfine Interactions, 222, 55–60.CrossRefGoogle Scholar
  11. 11.
    Oshtrakh, M. I., Alenkina, I. V., Vinogradov, A. V., Konstantinova, T. S., Kuzmann, E., & Semionkin, V. A. (2013). Mössbauer spectroscopy of the iron cores in human liver ferritin, ferritin in normal human spleen and ferritin in spleen from patient with primary myelofibrosis: preliminary results of comparative analysis. Biometals, 26, 229–239.CrossRefGoogle Scholar
  12. 12.
    Oshtrakh, M. I., Alenkina, I. V., Vinogradov, A. V., Konstantinova, T. S., & Semionkin, V. A. (2015). The 57Fe hyperfine interactions in iron storage proteins in liver and spleen tissues from normal human and two patients with mantle cell lymphoma and acute myeloid leukemia: a Mössbauer effect study. Hyperfine Interactions, 230, 123–130.CrossRefGoogle Scholar
  13. 13.
    Felner, I., Alenkina, I. V., Vinogradov, A. V., & Oshtrakh, M. I. (2016). Peculiar magnetic observations in pathological human liver. Journal of Magnetism and Magnetic Materials, 399, 118–122.CrossRefGoogle Scholar
  14. 14.
    Alenkina, I. V., Oshtrakh, M. I., Felner, I., Vinogradov, A. V., Konstantinova, T. S., & Semionkin, V. A. (2016). Iron in spleen and liver: some cases of normal tissues and tissues from patients with hematological malignancies. In J. Tuček, & M. Miglierini (Eds.), Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”. Melville, New York: AIP Publishing, Vol. 1781, 020010.Google Scholar
  15. 15.
    Alenkina, I. V., Vinogradov, A. V., Konstantinova, T. S., Felner, I., & Oshtrakh, M. I. (2018). Spleen tissues from patients with lymphoma: magnetization measurements and Mössbauer spectroscopy. Hyperfine Interactions, 239, 5.CrossRefGoogle Scholar
  16. 16.
    Oshtrakh, M. I., Semionkin, V. A., Milder, O. B., & Novikov, E. G. (2009). Mössbauer spectroscopy with high velocity resolution: an increase of analytical possibilities in biomedical research. Journal of Radioanalytical and Nuclear Chemistry, 281, 63–67.CrossRefGoogle Scholar
  17. 17.
    Semionkin, V. A., Oshtrakh, M. I., Milder, O. B., & Novikov, E. G. (2010). A high velocity resolution Mössbauer spectrometric system for biomedical research. Bulletin of the Russian Academy of Sciences: Physics, 74, 416–420.CrossRefGoogle Scholar
  18. 18.
    Oshtrakh, M. I., & Semionkin, V. A. (2013). Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 100, 78–87.CrossRefGoogle Scholar
  19. 19.
    Oshtrakh, M. I., & Semionkin, V. A. (2016). Mössbauer spectroscopy with a high velocity resolution: principles and applications. In J. Tuček, & M. Miglierini (Eds.). Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”. Melville, New York: AIP Publishing, Vol. 1781, 020019.Google Scholar
  20. 20.
    Blume, M., & Tjon, J. A. (1968). Mössbauer spectra in a fluctuating environment. Physical Review, 165, 446–456.CrossRefGoogle Scholar
  21. 21.
    Oshtrakh, M. I., Alenkina, I. V., Klencsár, Z., Kuzmann, E., & Semionkin, V. A. (2017). Different 57Fe microenvironments in the nanosized iron cores in human liver ferritin and its pharmaceutical analogues on the basis of temperature dependent Mössbauer spectroscopy. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 172, 14–24.CrossRefGoogle Scholar
  22. 22.
    Miglierini, M., Dekan, J., Kopáni, M., Lančok, A., Kohout, J., & Cieslar, M. (2012). Iron in spleen tissues. In J. Tuček, & L. Machala (Eds.), Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2012” (pp. 107–114). New York: AIP Publishing, Vol. 1489.Google Scholar
  23. 23.
    Kopáni, M., Miglierini, M., Lančok, A., Dekan, J., Čaplovicová, M., Jakubovský, J., Boča, R., & Mrazova, H. (2015). Iron oxides in human spleen. Biometals, 28, 913–928.CrossRefGoogle Scholar
  24. 24.
    Alenkina, I. V., Oshtrakh, M. I., Klepova, Y. V., Dubiel, S. M., Sadovnikov, N. V., & Semionkin, V. A. (2013). Comparative study of the iron cores in human liver ferritin, its pharmaceutical models and ferritin in chicken liver and spleen tissues using Mössbauer spectroscopy with a high velocity resolution. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 100, 88–93.CrossRefGoogle Scholar
  25. 25.
    Boča, R., Kopáni, M., Miglierini, M., Čaplovicová, M., Mrázová, V., & Dlháň, Ľ. (2013). Magnetic and non-magnetic iron-oxide deposits in basal ganglia. In A. Costa, & E. Villalba (Eds.), Horizons in neuroscience research (pp. 135–214). New York: Nova Science Publishers, Inc., Vol. 12.Google Scholar
  26. 26.
    St Pierre, T. G., Chua-anusorn, W., Webb, J., Macey, D., & Pootrakul, P. (1998). The form of iron oxide deposits in thalassemic tissues varies between different groups of patients: a comparison between Thai β-thalassemia/hemoglobin E patients and Australian β-thalassemia patients. Biochimica et Biophysica Acta, 1407, 51–60.CrossRefGoogle Scholar
  27. 27.
    Oshtrakh, M. I., Alenkina, I. V., & Semionkin, V. A. (2016). The 57Fe hyperfine interactions in human liver ferritin and its iron-polymaltose analogues: the heterogeneous iron core model. Hyperfine Interactions, 237, 145.CrossRefGoogle Scholar
  28. 28.
    Bandow, S., Yamaguchi, T., & Iijima, S. (2005). Magnetism of adsorbed oxygen on carbon nanohorns. Chemical Physics Letters, 401, 380–384.CrossRefGoogle Scholar
  29. 29.
    Kosterov, A. (2007). Magnetic properties, low-temperature. In D. Gubbins, & E. Herrero-Bervera (Eds.), Encyclopedia of geomagnetism and paleomagnetism (pp. 515–525). Dordrecht: Springer.Google Scholar
  30. 30.
    Felner, I. (2017). Superconductivity and unusual magnetic features in amorphous carbon and in other unrelated materials. Journal of Superconductivity and Novel Magnetism, 30, 55–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Experimental Physics, Institute of Physics and TechnologyUral Federal UniversityEkaterinburg 620002Russian Federation
  2. 2.Sverdlovsk Regional Ministry of HealthEkaterinburg 620014Russian Federation
  3. 3.Sverdlovsk Regional Clinical Hospital No. 1Ekaterinburg 620102Russian Federation
  4. 4.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael
  5. 5.Laboratory of Nuclear Chemistry, Institute of ChemistryEötvös Loránd UniversityBudapestHungary

Personalised recommendations