Cell Biochemistry and Biophysics

, Volume 77, Issue 1, pp 79–87 | Cite as

Conformational Changes and Membrane Interaction of the Bacterial Phospholipase, ExoU: Characterization by Site-Directed Spin Labeling

  • Jimmy B. FeixEmail author
  • Samantha Kohn
  • Maxx H. Tessmer
  • David M. Anderson
  • Dara W. Frank
Original Paper


Numerous pathogenic bacteria produce proteins evolved to facilitate their survival and dissemination by modifying the host environment. These proteins, termed effectors, often play a significant role in determining the virulence of the infection. Consequently, bacterial effectors constitute an important class of targets for the development of novel antibiotics. ExoU is a potent phospholipase effector produced by the opportunistic pathogen Pseudomonas aeruginosa. Previous studies have established that the phospholipase activity of ExoU requires non-covalent interaction with ubiquitin, however the molecular details of the mechanism of activation and the manner in which ExoU associates with a target lipid bilayer are not understood. In this review we describe our recent studies using site-directed spin labeling (SDSL) and EPR spectroscopy to elucidate the conformational changes and membrane interactions that accompany activation of ExoU. We find that ubiquitin binding and membrane interaction act synergistically to produce structural transitions that occur upon ExoU activation, and that the C-terminal four-helix bundle of ExoU functions as a phospholipid-binding domain, facilitating the association of ExoU with the membrane surface.


Phospholipase EPR Spin labeling ExoU Pseudomonas aeruginosa 



This work is supported by National Institutes of Health grants GM114234 (J.B.F.) and AI104922 (D.W.F.). DEER instrumentation was supported by NIH grants S10RR022422 and S10OD011937.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest with the contents of this article. The contentis solely the responsibility of the authors and does not necessarily represent the official views of the NationalInstitutes of Health.


  1. 1.
    Wisplinghoff, H., et al. (2004). Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical Infectious Diseases, 39(3), 309–317.CrossRefGoogle Scholar
  2. 2.
    Moradall, M. F., Ghods, S., & Rehm, B. H. A. (2017). Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7, 1–29.Google Scholar
  3. 3.
    Galan, J. E., & Collmer, A. (1999). Type III secretion machines: Bacterial devices for protein delivery into host cells. Science, 284(5418), 1322–1328.CrossRefGoogle Scholar
  4. 4.
    Galan, J. E., Lara-Tejero, M., Marlovits, T. C., & Wagner, S. (2014). Bacterial type III secretion systems: Specialized nanomachines for protein delivery into target cells. Annual Review of Microbiology, 68, 415–438.CrossRefGoogle Scholar
  5. 5.
    Finck-Barbancon, V., et al. (1997). ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Molecular Microbiology, 25(3), 547–557.CrossRefGoogle Scholar
  6. 6.
    Roy-Burman, A., et al. (2001). Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. The Journal of Infectious Diseases, 183(12), 1767–1774.CrossRefGoogle Scholar
  7. 7.
    Hauser, A. R., et al. (2002). Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Critical Care Medicine, 30(3), 521–528.CrossRefGoogle Scholar
  8. 8.
    Sullivan, E., et al. (2014). Risk of developing pneumonia is enhanced by the combined traits of fluoroquinolone resistance and type III secretion virulence in respiratory isolates of Pseudomonas aeruginosa. Critical Care Medicine, 42(1), 48–56.CrossRefGoogle Scholar
  9. 9.
    Klug, C. S., & Feix, J. B. (2008). Methods and applications of site-directed spin labeling EPR spectroscopy. Methods in Cell Biology, 84, 617–658.CrossRefGoogle Scholar
  10. 10.
    Mchaourab, H. S., Steed, P. R., & Kazmier, K. (2011). Toward the fourth dimension of membrane protein structure: Insight into dynamics from spin-labeling EPR spectroscopy. Structure, 19(11), 1549–1561.CrossRefGoogle Scholar
  11. 11.
    Hubbell, W. L., Lopez, C. J., Altenbach, C., & Yang, Z. (2013). Technological advances in site-directed spin labeling of proteins. Current Opinion in Structural Biology, 23(5), 725–733.CrossRefGoogle Scholar
  12. 12.
    Fanucci, G. E., & Cafiso, D. S. (2006). Recent advances and applications of site-directed spin labeling. Current Opinion in Structural Biology, 16(5), 644–653.CrossRefGoogle Scholar
  13. 13.
    Mchaourab, H. S., & Perozo, E. (2000). Determination of protein folds and conformational dynamics using spin labeling EPR spectroscopy. In L. J. Berliner, S. S. Eaton & G. R. Eaton (Eds.), Biological magnetic resonance, volume 19, distance measurements in biological systems by EPR (pp. 185–247). New York, NY: Kluwer Academic/Plenum Publishers.Google Scholar
  14. 14.
    Altenbach, C., Lopez, C. J., Hideg, K., & Hubbell, W. L. (2015). Exploring structure, dynamics, and topology of nitroxide spin-labeled proteins using continuous-wave electron paramagnetic resonance spectroscopy. Methods in Enzymology, 564, 59–100.CrossRefGoogle Scholar
  15. 15.
    Claxton, D. P., Kazmier, K., Mishra, S., & McHaourab, H. S. (2015). Navigating membrane protein structure, dynamics, and energy landscapes using spin labeling and EPR spectroscopy. Methods in Enzymology, 564, 349–387.CrossRefGoogle Scholar
  16. 16.
    Sahu, I. D., McCarrick, R. M., & Lorigan, G. A. (2013). Use of electron paramagnetic resonance to solve biochemical problems. Biochemistry, 52(35), 5967–5984.CrossRefGoogle Scholar
  17. 17.
    Sato, H., et al. (2003). The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. The EMBO Journal, 22(12), 2959–2969.CrossRefGoogle Scholar
  18. 18.
    Stirling, F. R., Cuzick, A., Kelly, S. M., Oxley, D., & Evans, T. J. (2006). Eukaryotic localization, activation and ubiquitinylation of a bacterial type III secreted toxin. Cellular Microbiology, 8(8), 1294–1309.CrossRefGoogle Scholar
  19. 19.
    Phillips, R. M., Six, D. A., Dennis, E. A., & Ghosh, P. (2003). In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors. The Journal of Biological Chemistry, 278(42), 41326–41332.CrossRefGoogle Scholar
  20. 20.
    Anderson, D. M., et al. (2011). Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa T3SS cytotoxin, ExoU. Molecular Microbiology, 82(6), 1454–1467.CrossRefGoogle Scholar
  21. 21.
    Gendrin, C., et al. (2012). Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa. PLoS Pathogens, 8(4), e1002637.CrossRefGoogle Scholar
  22. 22.
    Halavaty, A. S., et al. (2012). Structure of the type III secretion effector protein ExoU in complex with its chaperone SpcU. PLoS ONE, 7(11), e49388.CrossRefGoogle Scholar
  23. 23.
    Tessmer, M. H., et al. (2018). Identification of a ubiquitin-binding interface using Rosetta and DEER. Proceedings of the National Academy of Sciences of the United States of America, 115(3), 525–530.CrossRefGoogle Scholar
  24. 24.
    Benson, M. A., et al. (2011). Induced conformational changes in the activation of the Pseudomonas aeruginosa type III Toxin, ExoU. Biophysical Journal, 100(5), 1335–1343.CrossRefGoogle Scholar
  25. 25.
    Geissler, B., Tungekar, R., & Satchell, K. J. (2010). Identification of a conserved membrane localization domain within numerous large bacterial protein toxins. Proceedings of the National Academy of Sciences of the United States of America, 107(12), 5581–5586.Google Scholar
  26. 26.
    Geissler, B., Ahrens, S., & Satchell, K. J. (2012). Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif. Cellular Microbiology, 14(2), 286–298.CrossRefGoogle Scholar
  27. 27.
    Rabin, S. D., & Hauser, A. R. (2005). Functional regions of the Pseudomonas aeruginosa cytotoxin ExoU. Infection and Immunity, 73(1), 573–582.CrossRefGoogle Scholar
  28. 28.
    Rabin, S. D., Veesenmeyer, J. L., Bieging, K. T., & Hauser, A. R. (2006). A C-terminal domain targets the Pseudomonas aeruginosa cytotoxin ExoU to the plasma membrane of host cells. Infection and Immunity, 74(5), 2552–2561.CrossRefGoogle Scholar
  29. 29.
    Veesenmeyer, J. L., et al. (2010). Role of the membrane localization domain of the Pseudomonas aeruginosa effector protein ExoU in cytotoxicity. Infection and Immunity, 78(8), 3346–3357.CrossRefGoogle Scholar
  30. 30.
    Schmalzer, K. M., Benson, M. A., & Frank, D. W. (2010). Activation of ExoU phospholipase activity requires specific C-terminal regions. Journal of Bacteriology, 192(7), 1801–1812.CrossRefGoogle Scholar
  31. 31.
    Tessmer, M. H., Anderson, D. M., Buchaklian, A., Frank, D. W., & Feix, J. B. (2017). Cooperative substrate-cofactor interactions and membrane localization of the bacterial phospholipase A2 (PLA2) enzyme, ExoU. The Journal of Biological Chemistry, 292(8), 3411–3419.CrossRefGoogle Scholar
  32. 32.
    Berliner, L. J., Grunwald, J., Hankovszky, H. O., & Hideg, K. (1982). A novel reversible thiol-specific spin label: Papain active site labeling and inhibition. Analytical Biochemistry, 119(2), 450–455.CrossRefGoogle Scholar
  33. 33.
    Mchaourab, H. S., Kalai, T., Hideg, K., & Hubbell, W. L. (1999). Motion of spin-labeled side chains in T4 lysozyme: Effect of side chain structure. Biochemistry, 38(10), 2947–2955.CrossRefGoogle Scholar
  34. 34.
    Columbus, L., Kalai, T., Jeko, J., Hideg, K., & Hubbell, W. L. (2001). Molecular motion of spin labeled side chains in alpha-helices: Analysis by variation of side chain structure. Biochemistry, 40(13), 3828–3846.CrossRefGoogle Scholar
  35. 35.
    Columbus, L., & Hubbell, W. L. (2004). Mapping backbone dynamics in solution with site-directed spin labeling: GCN4-58 bZip free and bound to DNA. Biochemistry, 43(23), 7273–7287.CrossRefGoogle Scholar
  36. 36.
    Altenbach, C., Greenhalgh, D.A., Khorana, H.G., & Hubbell W.L. (1994). A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: Application to spin-labeled mutants of bacteriorhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 91(5),1667–1671.Google Scholar
  37. 37.
    Altenbach, C., Froncisz, W., Hemker, R., McHaourab, H., & Hubbell, W. L. (2005). Accessibility of nitroxide side chains: Absolute Heisenberg exchange rates from power saturation EPR. Biophysical Journal, 89(3), 2103–2112.CrossRefGoogle Scholar
  38. 38.
    Pyka, J., Ilnicki, J., Altenbach, C., Hubbell, W. L., & Froncisz, W. (2005). Accessibility and dynamics of nitroxide side chains in T4 lysozyme measured by saturation recovery EPR. Biophysical Journal, 89(3), 2059–2068.CrossRefGoogle Scholar
  39. 39.
    Bhargava, K., & Feix, J. B. (2004). Membrane binding, structure, and localization of cecropin-mellitin hybrid peptides: A site-directed spin-labeling study. Biophysical Journal, 86(1 Part 1), 329–336.CrossRefGoogle Scholar
  40. 40.
    Pistolesi, S., Pogni, R., & Feix, J. B. (2007). Membrane insertion and bilayer perturbation by antimicrobial peptide CM15. Biophysical Journal, 93(5), 1651–1660.CrossRefGoogle Scholar
  41. 41.
    Frazier, A. A., et al. (2002). Membrane orientation and position of the C2 domain from cPLA2 by site-directed spin labeling. Biochemistry, 41(20), 6282–6292.CrossRefGoogle Scholar
  42. 42.
    Landgraf, K. E., Malmberg, N. J., & Falke, J. J. (2008). Effect of PIP2 binding on the membrane docking geometry of PKC alpha C2 domain: An EPR site-directed spin-labeling and relaxation study. Biochemistry, 47(32), 8301–8316.CrossRefGoogle Scholar
  43. 43.
    Frazier, A. A., Roller, C. R., Havelka, J. J., Hinderliter, A., & Cafiso, D. S. (2003). Membrane-bound orientation and position of the synaptotagmin I C2A domain by site-directed spin labeling. Biochemistry, 42(1), 96–105.CrossRefGoogle Scholar
  44. 44.
    Altenbach, C., Froncisz, W., Hyde, J. S., & Hubbell, W. L. (1989). Conformation of spin-labeled melittin at membrane surfaces investigated by pulse saturation recovery and continuous wave power saturation electron paramagnetic resonance. Biophysical Journal, 56(6), 1183–1191.CrossRefGoogle Scholar
  45. 45.
    Altenbach, C., Kusnetzow, A. K., Ernst, O. P., Hofmann, K. P., & Hubbell, W. L. (2008). High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proceedings of the National Academy of Sciences of the United States of America, 105(21), 7439–7444.Google Scholar
  46. 46.
    Cuello, L. G., Cortes, D. M., & Perozo, E. (2004). Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science, 306(5695), 491–495.CrossRefGoogle Scholar
  47. 47.
    Bavi, N., et al. (2017). Structural dynamics of the MscL C-terminal domain. Scientific Reports, 7(1), 17229.CrossRefGoogle Scholar
  48. 48.
    Klug, C. S., Su, W., & Feix, J. B. (1997). Mapping of the residues involved in a proposed beta-strand located in the ferric enterobactin receptor FepA using site-directed spin-labeling. Biochemistry, 36(42), 13027–13033.CrossRefGoogle Scholar
  49. 49.
    Sato, H., Feix, J. B., Hillard, C. J., & Frank, D. W. (2005). Characterization of phospholipase activity of the Pseudomonas aeruginosa type III cytotoxin, ExoU. Journal of Bacteriology, 187(3), 1192–1195.CrossRefGoogle Scholar
  50. 50.
    Tyson, G. H., & Hauser, A. R. (2013). Phosphatidylinositol 4,5-bisphosphate is a novel coactivator of the Pseudomonas aeruginosa cytotoxin ExoU. Infection and Immunity, 81(8), 2873–2881.CrossRefGoogle Scholar
  51. 51.
    Sato, H., & Frank, D. W. (2014). Intoxication of host cells by the T3SS phospholipase ExoU: PI(4,5)P2-associated, cytoskeletal collapse and late phase membrane blebbing. PLoS ONE, 9(7), e103127.CrossRefGoogle Scholar
  52. 52.
    Jeschke, G. (2012). DEER distance measurements on proteins. Annual Review of Physical Chemistry, 63, 419–446.CrossRefGoogle Scholar
  53. 53.
    Pannier, M., Veit, S., Godt, A., Jeschke, G., & Spiess, H. W. (2000). Dead-time free measurement of dipole–dipole interactions between electron spins. Journal of Magnetic Resonance, 142(2), 331–340.CrossRefGoogle Scholar
  54. 54.
    Jeschke, G. et al. (2006) DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Applied Magnetic Resonance, 30 473–498.Google Scholar
  55. 55.
    Ward, R., et al. (2010). EPR distance measurements in deuterated proteins. Journal of Magnetic Resonance, 207(1), 164–167.CrossRefGoogle Scholar
  56. 56.
    Schmidt, T., Walti, M. A., Baber, J. L., Hustedt, E. J., & Clore, G. M. (2016). Long distance measurements up to 160 A in the GroEL tetradecamer using Q-Band DEER EPR spectroscopy. Angewandte Chemie (International ed in English), 55(51), 15905–15909.CrossRefGoogle Scholar
  57. 57.
    Springer, T. I., Kohn, S., & Feix, J. B. (2018). Investigating structural properties of Pseudomonas aeruginosa ExoU toxin upon interaction with liposome and nanodisc bilayers by EPR spectroscopy. Biophysical Journal, 114(3), 614.CrossRefGoogle Scholar
  58. 58.
    Stepien, P., Polit, A., & Wisniewska-Becker, A. (2015). Comparative EPR studies on lipid bilayer properties in nanodiscs and liposomes. Biochimica et Biophysica Acta, 1848(1, Part A), 60–66.CrossRefGoogle Scholar
  59. 59.
    Zou, P., & Mchaourab, H. S. (2010). Increased sensitivity and extended range of distance measurements in spin-labeled membrane proteins: Q-band double electron–electron resonance and nanoscale bilayers. Biophysical Journal, 98(6), L18–L20.CrossRefGoogle Scholar
  60. 60.
    Van Eps, N., et al. (2017). Conformational equilibria of light-activated rhodopsin in nanodiscs. Proceedings of the National Academy of Sciences of the United States of America, 114(16), E3268–E3275.Google Scholar
  61. 61.
    Cho, W., & Stahelin, R. V. (2005). Membrane–protein interactions in cell signaling and membrane trafficking. Annual Review of Biophysics and Biomolecular Structure, 34, 119–151.CrossRefGoogle Scholar
  62. 62.
    Lemmon, M. A. (2008). Membrane recognition by phospholipid-binding domains. Nature Reviews Molecular Cell Biology, 9(2), 99–111.CrossRefGoogle Scholar
  63. 63.
    Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V., & Kokotos, G. (2011). Phospholipase A2 enzymes: Physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chemical Reviews, 111(10), 6130–6185.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jimmy B. Feix
    • 1
    Email author
  • Samantha Kohn
    • 1
  • Maxx H. Tessmer
    • 2
  • David M. Anderson
    • 3
  • Dara W. Frank
    • 2
  1. 1.Department of BiophysicsMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeUSA
  3. 3.Department of Pathology, Microbiology and ImmunologyVanderbilt UniversityNashvilleUSA

Personalised recommendations