Advertisement

Cell Biochemistry and Biophysics

, Volume 77, Issue 1, pp 15–32 | Cite as

Applications of Mössbauer Spectroscopy in Biomedical Research

  • M. I. OshtrakhEmail author
Original Paper

Abstract

A brief review on the applications of Mössbauer spectroscopy in biomedical research discusses the results of more than fifty years of experience in this field. Basing on the numerous results the main directions of biomedical applications of Mössbauer spectroscopy are considered as follows: 1) studies of the quantitative changes of iron-containing biomolecules related to pathological processes; 2) studies of the qualitative changes in iron-containing biomolecules related to pathological processes; 3) studies of the effect of various environmental factors (physical, chemical, and biological) on iron-containing biomolecules; 4) studies of metabolic processes by means of analysis of the Mössbauer nuclides pathways in organisms; 5) studies of dynamic processes; 6) studies of pharmaceutical compounds and blood substitutes containing Mössbauer nuclides; 7) miscellaneous studies. Some examples of biomedical research using 57Fe, 57Co, 119Sn, 153Sm, and 197Au Mössbauer nuclides are presented.

Keywords

Mössbauer spectroscopy Biomedical applications Biomolecules Cells Tissues 

Notes

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation (the Project # 3.1959.2017/4.6) and Act 211 of the Government of the Russian Federation, contract № 02.A03.21.0006.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mössbauer, R. L. (1958). Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Zeitschrift für Physik B, 151, 124–143.Google Scholar
  2. 2.
    Bernat, I. (1983). Iron Metabolism. New York: Akadémiai Kiadó, Budapest and Plenum Press.Google Scholar
  3. 3.
    Ferreira, G. C., Franco, R., & Moura, J. J. G. (Eds.), (1999). Iron metabolism: inorganic biochemistry and regulatory mechanisms. Weinheim, New York: Wiley-VCH.Google Scholar
  4. 4.
    Frauenfelder, H. (1963). The Mössbauer effect. New York: W.A. Benjamin.Google Scholar
  5. 5.
    Goldanskii, V. I., & Herber, R. H. (Eds.), (1968). Chemical applications of Mössbauer spectroscopy. New York, London: Academic Press.Google Scholar
  6. 6.
    Greenwood, N. N., & Gibb, T. C. (1971). Mössbauer spectroscopy. London: Chapman and Hall.Google Scholar
  7. 7.
    Gutlich, P., Link, R., & Trautwein, A. (1978). Mössbauer spectroscopy and transition metal chemistry. Berlin, Heidelberg, New York: Springer–Verlag.Google Scholar
  8. 8.
    Vértes, A., Korecz, L., & Burger, K. (1979). Mössbauer spectroscopy. Amsterdam, Budapest: Elsevier, Akadémiai Kiadó.Google Scholar
  9. 9.
    Cranshaw, T. E., Dale, B. W., Longworth, C. O., & Johnson, C. E. (1985). Mössbauer spectroscopy and its applications. Cambridge: Cambridge University Press.Google Scholar
  10. 10.
    Fujita, F. E. (Ed.), (1999). Introduction to the Mossbauer spectroscopy–principles and applications. Tokyo: Agune Gijutsu Center.Google Scholar
  11. 11.
    Gutlich, P., Bill, E., & Trautwein, A. (2011). Mössbauer spectroscopy and transition metal chemistry. Fundamentals and applications. Heidelberg, Dordrecht, London, New York: Springer.Google Scholar
  12. 12.
    Oshtrakh, M. I., & Semionkin, V. A. (2013). Mössbauer spectroscopy with a high velocity resolution: Advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochimica Acta, Part A, 100, 78–87.Google Scholar
  13. 13.
    Oshtrakh, M. I., & Semionkin, V. A. (2016). Mössbauer spectroscopy with a high velocity resolution: Principles and applications. In J. Tuček & M. Miglierini (Eds.), Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”. AIP Conference Proceedings. Melville, New York: AIP Publishing. Vol. 1781, 020019.Google Scholar
  14. 14.
    Gonser, U., & Grant, R. W. (1965). Mössbauer effect in hemoglobin and some iron-containing biological compounds. Biophysical Journal, 5, 823–844.Google Scholar
  15. 15.
    Lang, G., & Marshall, W. (1966). Mössbauer effect in some haemoglobin compounds. Journal of Molecular Biology, 18, 385–404.Google Scholar
  16. 16.
    Lang, G., & Marshall, W. (1966). Mössbauer effect in some haemoglobin compounds. Proceedings of the Physical Society, 87, 3–34.Google Scholar
  17. 17.
    Lang, G. (1970). Mössbauer spectroscopy of haem proteins. Quarterly Reviews of Biophysics, 3, 1–60.Google Scholar
  18. 18.
    McDermott, P., May, L., & Orlando, J. (1967). A Mössbauer study of ferri- and ferrocytochrome c. Biophysical Journal, 7, 615–620.Google Scholar
  19. 19.
    Boas, J. F., & Troup, G. J. (1971). Electron spin resonance and Mössbauer effect studies of ferritin. Biochimica et Biophysica Acta, 229, 68–74.Google Scholar
  20. 20.
    Fischbach, F. A., Gregory, D. W., Harrison, P. M., Hoy, T. G., & Williams, J. M. (1971). On the structure of hemosiderin and its relationship to ferritin. Journal of Ultrastructure Research, 37, 495–503.Google Scholar
  21. 21.
    Trautwein, A. (1974). Mössbauer spectroscopy on heme proteins. In Structure and Bonding. Berlin: Springer–Verlag (Vol. 20, pp. 101–164).Google Scholar
  22. 22.
    Johnson, C. E. (1975). Mössbauer spectroscopy in biology. In U. Gonser (Ed.), Mössbauer spectroscopy (pp. 139–166). Berlin-Heidelberg-New York: Springer.Google Scholar
  23. 23.
    Dickson, D. P. E., & Johnson, C. E. (1980). Physiological and medical applications. In R. L. Cohen (Ed.) Applications of Mössbauer spectroscopy (Vol. 2, pp. 209–248). New York: Academic Press.Google Scholar
  24. 24.
    Spartalian, K., & Lang, G. (1980). Oxygen transport and storage materials. In R. L. Cohen (Ed.), Applications of Mössbauer spectroscopy (Vol. 2, pp. 249–279). New York: Academic Press.Google Scholar
  25. 25.
    Trautwein, A., & Bill, E. (1981). Mössbauer studies in bioinorganic chemistry. In A. Müller & E. Diemann (Eds.), Proc. Workshop, Bielefeld, Germany, 14–17 July, 1980, Transition Metal Chemistry (pp. 239–263). Weinheim: Verlag Chimie.Google Scholar
  26. 26.
    Huynh, B. H., & Kent, T. A. (1983). Mössbauer studies of biomolecules. Studies in Physical and Theoretical Chemistry, 25, 490–560.Google Scholar
  27. 27.
    Dickson, D. P. E. (1984). Applications to biological systems. In G. J. Long (Ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry (Vol. 1, pp. 339–389). New York: Plenum Press.Google Scholar
  28. 28.
    Dickson, D. P. E., & Johnson, C. E. (1984). Mössbauer spectroscopy. In D. L. Rousseau (Ed.), Structural and Resonance Techniques in Biological Research (pp. 245–293). Orlando: Academic Press.Google Scholar
  29. 29.
    Bauminger, E. R., & Harrison, P. M. (2003). Ferritin, the path of iron into the core, as seen by Mössbauer spectroscopy. Hyperfine Interactions, 151/152, 3–19.Google Scholar
  30. 30.
    Papaefthymiou, G. C. (2010). The Mössbauer and magnetic properties of ferritin cores. Biochimica et Biophysica Acta, 1800, 886–897.Google Scholar
  31. 31.
    Kamnev, A. A., Kovács, K., Alenkina, I. V., & Oshtrakh, M. I. (2013). Mössbauer spectroscopy in biological and biomedical research. In V. K. Sharma, G. Klingelhofer, T. Nishida (Eds.), Mössbauer Spectroscopy: Applications in Chemistry, Biology and Nanotechnology (pp. 272–291). (1st ed.). John Wiley & Sons, Inc.Google Scholar
  32. 32.
    Kamnev, A. A., & Tugarova, A. V. (2017). Sample treatment in Mössbauer spectroscopy for protein-related analyses: Nondestructive possibilities to look inside metal-containing biosystems. Talanta, 174, 819–837.Google Scholar
  33. 33.
    Paulsen, H., Schünemann, V., Trautwein, A. X., & Winkler, H. (2005). Mössbauer studies of coordination compounds using synchrotron radiation. Coordination Chemistry Reviews, 249, 255–272.Google Scholar
  34. 34.
    Kamnev, A. A. (2005). Application of emission (57Co) Mössbauer spectroscopy in bioscience. Journal of Molecular Structure, 744–747, 161–167.Google Scholar
  35. 35.
    Oshtrakh, M. I., Semionkin, V. A., Milder, O. B., & Novikov, E. G. (2010). Possibilities of Mössbauer spectroscopy with a high velocity resolution in studying small variations in 57Fe hyperfine parameters of iron-containing proteins. Bulletin of the Russian Academy of Sciences, 74, 407–411.Google Scholar
  36. 36.
    Mintz, R. I., & Oshtrakh, M. I. (1986). [Study of pathological states of the body by nuclear gamma–resonance (Mössbauer) spectroscopy technique]. Arkhiv Pathologii, 48, 82–87.Google Scholar
  37. 37.
    Oshtrakh, M. I. (1991). Biomedical applications of the Mössbauer effect. Hyperfine Interactions, 66, 127–140.Google Scholar
  38. 38.
    Zhang, X. F. (1994). Mössbauer spectroscopy in biomedical physics research. Hyperfine Interactions, 91, 917–921.Google Scholar
  39. 39.
    Oshtrakh, M. I. (1996). Mössbauer effect in biomedical research: Variations of quadrupole splitting in relation to the qualitative changes of biomolecules. Zeitschrift für Naturforschung, 51a, 381–388.Google Scholar
  40. 40.
    Bauminger, E. R., & Nowik, I. (1998). Iron in Parkinson disease, blood diseases, malaria and ferritin. Hyperfine Interactions, 111, 159–170.Google Scholar
  41. 41.
    Oshtrakh, M. I. (1999). Mössbauer spectroscopy of iron containing biomolecules and model compounds in biomedical research. Journal of Molecular Structure, 480–481, 109–120.Google Scholar
  42. 42.
    Oshtrakh, M. I. (2004). Study of the relationship of small variations of the molecular structure and the iron state in iron containing proteins by Mössbauer spectroscopy: Biomedical approach. Spectrochimica Acta, Part A, 60, 217–234.Google Scholar
  43. 43.
    Oshtrakh, M. I. (2004). Mössbauer spectroscopy in biomedical research. Faraday Discussions, 126/10, 119–140.Google Scholar
  44. 44.
    Oshtrakh, M. I. (2004). The relationship of Mössbauer hyperfine parameters and structural variations of iron containing proteins and model compounds in biomedical research. Hyperfine Interactions, 159, 337–343.Google Scholar
  45. 45.
    Oshtrakh, M. I. (2005). Mössbauer spectroscopy: Application in biomedical research. Hyperfine Interactions, 165, 313–320.Google Scholar
  46. 46.
    Oshtrakh, M. I. (2006). Biomedical applications of Mössbauer spectroscopy. The Journal of Radioanalytical and Nuclear Chemistry, 269, 407–415.Google Scholar
  47. 47.
    Horst, A. (1991). Molecular Pathology. Boca Raton, Ann Arbor, Boston: CRC Press, p. 480.Google Scholar
  48. 48.
    Crichton, R. (2016). Iron metabolism – from molecular mechanisms to clinical consequences. John Wiley & Sons, Ltd. (4th ed., p. 556).Google Scholar
  49. 49.
    Andrews, N. C. (2000). Iron metabolism: Iron deficiency and iron overload. Annual Review of Genomics and Human Genetics, 1, 75–98.Google Scholar
  50. 50.
    Perutz, M. F., & Lehmann, H. (1968). Molecular pathology of human haemoglobin. Nature, 219, 902–909.Google Scholar
  51. 51.
    Carrell, R. W., & Lehmann, H. (1984). The haemoglobinopathies. In A. M. Dawson, N. D. Compston, & G. M. Besser (Eds.), Recent Advances in Medicine (pp. 223–255). Edinburgh-London-Melbourne-New York: Churchill Livingstone.Google Scholar
  52. 52.
    Steinberg, M. H., Forget, B. G., Higgs, D. R., & Weatherall, D. J. (2009). Disorders of Hemoglobin. Genetics, Pathophysiology, and Clinical Management. Cambridge, New York, Melbourne: Cambridge University Press. p. 826.Google Scholar
  53. 53.
    Ofer, S., Cohen, S. G., Bauminger, E. R., & Rachmilewitz, E. A. (1976). Recoil-free absorption in thalassemic red blood cells. Journal de Physique, 37(Suppl. 12), C6-199–C6-202.Google Scholar
  54. 54.
    Bauminger, E. R., Cohen, S. G., Ofer, S., & Rachmilewitz, E. A. (1979). Quantitative studies of ferritinlike iron in erythrocytes of thalassemia, sickle-cell anemia, and hemoglobin Hammersmith with Mössbauer spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 76, 939–943.Google Scholar
  55. 55.
    Jacobs, A., Peters, S. W., Bauminger, E. R., Eikelboom, J., Ofer, S., & Rachmilewitz, E. A. (1981). Concentration in normal and abnormal erythrocytes measured by immunoradiometric assay with antibodies to heart and spleen ferritin and Mössbauer spectroscopy. The British Journal of Haematology, 49, 201–207.Google Scholar
  56. 56.
    Bauminger, E. R., & Ofer, S. (1982). Mössbauer studies of diseased blood. In International Conference on the Applications of the Mössbauer Effect. Proceedings of the Indian National Science Academy (pp. 61–71). New Delhi: Indian National Science Academy.Google Scholar
  57. 57.
    Rachmilevitz, E. A., Bauminger, E. R., Eikelboom, J., Ofer, S., Peters, S. W., & Jacobs, A. (1982). Mössbauer spectroscopy and immunoradiometric assay with antibodies to heart and spleen ferritin of serum and red blood cells from patients with thalassemia and sickle cell anemia. In P. Saltman, J. Hegenauer (Eds.), The Biochemistry and Physiology of Iron (pp. 373–383). New York: Elsevier Biomedical.Google Scholar
  58. 58.
    Zeng, X. S., & Ren, B. Z. (1987). [Mössbauer spectra studies of several abnormal hemoglobins]. Jinan Liyi Xuebao, 1, 36–43.Google Scholar
  59. 59.
    Ding, X. Q., Hsia, Y. F., Shi, S. Y., Liu, R. C., Wang, S. X., Wang, H. B., Chen, Y., Chen, P. Z., & Liu, Y. T. (1988). Investigation of some anomalous hemoglobins. Hyperfine Interactions, 42, 893–896.Google Scholar
  60. 60.
    Xuanhui, G., Nanming, Zh., Xiufang, Zh., Naifei, G., Youwen, H., & Rongxin, W. (1988). Study on Mössbauer spectra of hemoglobin in thalassemia. Hyperfine Interactions, 42, 897–900.Google Scholar
  61. 61.
    Abreu, M. S., Sanchis, M. E., Penalver, J. A., & Kanter, F. (1989). Application of Mössbauer spectroscopy to the study of hemoglobinopathies. Preliminary experience. Sangre, 34, 325–328.Google Scholar
  62. 62.
    Kaufman, K. S., Papaefthymiou, G. C., Frankel, R. B., & Rosenthal, A. (1980). Nature of iron deposits on the cardiac walls in β–thalassemia by Mössbauer spectroscopy. Biochimica et Biophysica Acta, 629, 522–529.Google Scholar
  63. 63.
    Rimbert, J. N., Dumas, F., Kellershohn, C., Girot, R., & Brissot, P. (1985). Mössbauer spectroscopy study of iron overloaded livers. Biochime, 67, 663–668.Google Scholar
  64. 64.
    Rimbert, J. N., Dumas, F., Richardot, G., & Kellershohn, C. (1986). Magnetic and quadrupolar studies of the iron storage overload in livers. Hyperfine Interactions, 29, 1439–1442.Google Scholar
  65. 65.
    St. Pierre, T. G., Dickson, D. P. E., Kirkwood, J. K., Ward, R. J., & Peters, T. J. (1987). A Mössbauer spectroscopic study of the form of iron in iron overload. Biochimica et Biophysica Acta, 924, 447–451.Google Scholar
  66. 66.
    St. Pierre, T. G., Tran, K. C., Webb, J., Macey, D. J., Pootrakul, P., & Dickson, D. P. E. (1992). Core structures of haemosiderins deposited in various organs in β–thalassaemia/haemoglobin E disease. Hyperfine Interactions, 71, 1279–1282.Google Scholar
  67. 67.
    St. Pierre, T. G., Chua–anusorn, W., Webb, J., Macey, D. J., & Pootrakul, P. (1998). The form of iron oxide deposits in thalassemic tissues varies between different groups of patients: A comparison between Thai β–thalassemia/hemoglobin E patients and Australian β–thalassemia patients. Biochimica et Biophysica Acta, 1407, 51–60.Google Scholar
  68. 68.
    St. Pierre, T. G., Chua–anusorn, W., Webb, J., & Macey, D. J. (2000). Iron overload diseases: the chemical speciation of non–heme iron deposits in iron loaded mammalian tissues. Hyperfine Interactions, 126, 75–81.Google Scholar
  69. 69.
    Meyrick, D., Webb, J., & Cole, C. (2002). Iron and iron proteins found in the genetic disease, hereditary spherocytosis. Inorganica Chimica Acta, 339, 481–487.Google Scholar
  70. 70.
    Bauminger, E. R., Iancu, T. C., Link, G., Pinson, A., & Hershko, C. (1987). Iron overload in cultured rat myocardial cells. Hyperfine Interactions, 33, 249–262.Google Scholar
  71. 71.
    Shiloh, H., Iancu, T. C., Bauminger, E. R., Link, G., Pinson, A., & Hershko, C. (1992). Deferoxamine–induced iron mobilization and redistribution of myocardial iron in cultured rat heart cells: Studies of the chelatable iron pool by electron microscopy and Mössbauer spectroscopy. Journal of Laboratory and Clinical Medicine, 119, 428–436.Google Scholar
  72. 72.
    Zhang, X., Shen, L., Chen, S., Liu, Y., Gao, N., Zheng, Y., Ao, Z., & Shong, L. (1990). Mössbauer studies of hemoglobin in high altitude polycythemia. Hyperfine Interactions, 58, 2413–2418.Google Scholar
  73. 73.
    Chen, S. (1992). [Investigation on the incidence of high altitude polycythemia and its hemoglobin characteristics in a Tibetan population]. Chung Kuo I Hsueh Ko Hsueh Yuan Hsueh Pao, 14, 237–243.Google Scholar
  74. 74.
    Ofer, S., Fibach, E., Kessel, M., Bauminger, E. R., Cohen, S. G., Eikelboom, J., & Rachmilewitz, E. A. (1981). Iron incorporation into ferritin and hemoglobin during differentiation of murine erythroleukemia cells. Blood, 58, 255–262.Google Scholar
  75. 75.
    Fibach, E., Bauminger, E. R., Konijn, A. M., Ofer, S., & Rachmilewitz, E. A. (1983). Iron storage in ferritin following intracellular hemoglobin denaturation in erythroleukemic cells. Blood, 62, 928–930.Google Scholar
  76. 76.
    Fibach, E., Bauminger, E. R., Konijn, A. M., Ofer, S., & Rachmilewitz, E. A. (1983). The role of ferritin during hemoglobin synthesis and denaturation in erythroleukemia cells. In I. Urushizaki, P. Aisen, I. Listowski, & J. W. Drysdale (Eds.), Structure and Function of Iron Storage and Transport Proteins (pp. 129–132). Amsterdam, New York, Oxford: Elsevier Science Publisher B.V.Google Scholar
  77. 77.
    Fibach, E., Konijn, A. M., Bauminger, E. R., Ofer, S., & Rachmilewitz, E. A. (1987). Effect of extracellular hemin on hemoglobin and ferritin content of erythroleukemia cells. Journal of Cellular Physiology, 130, 460–465.Google Scholar
  78. 78.
    Oshtrakh, M. I., & Semionkin, V. A. (1989). Mössbauer study of red blood cells from patients with erythremia. FEBS Letters, 257, 41–44.Google Scholar
  79. 79.
    Oshtrakh, M. I., Alenkina, I. V., Vinogradov, A. V., Konstantinova, T. S., Kuzmann, E., & Semionkin, V. A. (2013). Mössbauer spectroscopy of the iron cores in human liver ferritin, ferritin in normal human spleen and ferritin in spleen from patient with primary myelofibrosis: Preliminary results of comparative analysis. Biometals, 26, 229–239.Google Scholar
  80. 80.
    Alenkina, I. V., Oshtrakh, M. I., Felner, I., Vinogradov, A. V., Konstantinova, T. S., & Semionkin, V. A. (2016). Iron in spleen and liver: Some cases of normal tissues and tissues from patients with hematological malignancies. In J. Tuček, M. Miglierini M. (Eds.), Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”. AIP Conference Proceedings. Melville, New York: AIP Publishing, Vol. 1781, 020010.Google Scholar
  81. 81.
    Alenkina, I. V., Vinogradov, A. V., Konstantinova, T. S., Felner, I., & Oshtrakh, M. I. (2018). Spleen tissues from patients with lymphoma: Magnetization measurements and Mössbauer spectroscopy. Hyperfine Interactions, 239, 5Google Scholar
  82. 82.
    Oshtrakh, M. I., Alenkina, I. V., Vinogradov, A. V., Kumar, A., Berkovsky, A. L., Zakharova, A. P., Konstantinova, T. S., Novikov, E. G., & Semionkin, V. A. (2016). The 57Fe hyperfine interactions in the life sciences: Application of Mössbauer spectroscopy with a high velocity resolution in the study of iron-containing biomolecules and pharmaceutical compounds. Journal of Radioanalytical and Nuclear Chemistry, 309, 317–332.Google Scholar
  83. 83.
    Bill, E., Di Iorio, E. E., Trautwein, A., & Winterhalter, K. (1982). Mössbauer investigation of the deoxy–, O2 and CO–form of hemoglobin Zürich. In International Conference on the Applications of the Mössbauer Effect, Proceedings of the Indian National Science Academy (pp. 648–650). New Delhi: Indian National Science Academy.Google Scholar
  84. 84.
    Oshtrakh, M. I., & Senionkin, V. A. (1986). Mössbauer spectroscopy of haemoglobins: study of the relationship of Fe2+ electronic and molecular structure of the active site. FEBS Letters, 208, 331–336.Google Scholar
  85. 85.
    Zeng, X., Lian, Y., & Ren, B. (1988). [Studies of structure and function in abnormal hemoglobins from Mössbauer spectra by changed temperature]. Jinan Liyi Xuebao, 3, 27–31.Google Scholar
  86. 86.
    Zeng, X. S., & Lian, Y. (1992). Features of dynamic crystal field effect in the Mössbauer spectra of human hemoglobins at zero field. Hyperfine Interactions, 71, 1327–1330.Google Scholar
  87. 87.
    Ortalli, I., Pedrazzi, G., & Varacca, V. (1988). Mössbauer investigation of hematological disease. Hyperfine Interactions, 42, 913–916.Google Scholar
  88. 88.
    Ortalli, I., & Pedrazzi, G. (1990). Investigation of oxyhemoglobin in leukaemic patients. Hyperfine Interactions, 58, 2377–2380.Google Scholar
  89. 89.
    Oshtrakh, M. I., Berkovsky, A. L., Kumar, A., Kundu, S., Vinogradov, A. V., Konstantinova, T. S., & Semionkin, V. A. (2010). 57Fe quadrupole splitting and isomer shift in various oxyhemoglobins: Study using Mössbauer spectroscopy. Hyperfine Interactions, 197, 301–307.Google Scholar
  90. 90.
    Oshtrakh, M. I., Kumar, A., Kundu, S., Berkovsky, A. L., & Semionkin, V. A. (2011). Study of human, rabbit and pig oxyhemoglobins using high velocity resolution Mössbauer spectroscopy in relation to their structural and functional variations. Journal of Molecular Structure, 993, 292–296.Google Scholar
  91. 91.
    Oshtrakh, M. I., Berkovsky, A. L., Kumar, A., Kundu, S., Vinogradov, A. V., Konstantinova, T. S., & Semionkin, V. A. (2011). Heme iron state in various oxyhemoglobins probed using Mössbauer spectroscopy with a high velocity resolution. Biometals, 24, 501–512.Google Scholar
  92. 92.
    Oshtrakh, M. I., Alenkina, I. V., Vinogradov, A. V., Konstantinova, T. S., & Semionkin, V. A. (2013). Differences of the 57Fe hyperfine parameters in both oxyhemoglobin and spleen from normal human and patient with primary myelofibrosis. Hyperfine Interactions, 222, 55–60.Google Scholar
  93. 93.
    Kellershohn, C., Rimbert, J. N., Chevalier, A., & Hubert, C. (1976). Comparative study of oxyhemoglobin radiolysis and thermolysis by Mössbauer spectroscopy. Journal de Physique, 37(Suppl. 12), C6-185–C6-189.Google Scholar
  94. 94.
    Chevalier, A., Kellershohn, C., & Rimbert, J. N. (1983). X–irradiation effect on human red cells: Hemoglobin study by Mössbauer spectrometry. Radiation Research, 94, 51–65.Google Scholar
  95. 95.
    Oshtrakh, M. I., & Semionkin, V. A. (1991). Mössbauer effect study of gamma–irradiated human oxyhemoglobin. Radiation and Environmental Biophysics, 30, 33–44.Google Scholar
  96. 96.
    Oshtrakh, M. I., Kopelyan, E. A., & Semionkin, V. A. (1996). Mössbauer and positron annihilation study of oxyhemoglobin exposed to γ–rays and electrons. Radiation Physics and Chemistry, 47, 399–403.Google Scholar
  97. 97.
    Oshtrakh, M. I., Semionkin, V. A., Kopelyan, E. A., & Milder, O. B. (1999). Mössbauer and positron life–time study of oxyhemoglobin solution irradiated by electrons. Radiation Physics and Chemistry, 55, 549–554.Google Scholar
  98. 98.
    Oshtrakh, M. I. (2001). Comparison of the oxyhemoglobin deoxygenation and radiolysis by γ-rays and electrons: Study by Mössbauer spectroscopy. Nuclear Instruments and Methods in Physics Research, B185, 129–135.Google Scholar
  99. 99.
    Garibov, R. E., Russkikh, E. V., & Khrapov, V. V. (1979). γ–Resonance spectroscopy of hydrazine and dimethylhydrazine with oxyhemoglobin. Dokl Acad Sci USSR, 245, 238–241.Google Scholar
  100. 100.
    Garibov, R. E., Khrapov, V. V., & Russkikh, E. V. (1980). γ–Resonance spectroscopy of phenylhydrazine with oxyhemoglobin. Dokl Acad Sci USSR, 252, 739–743.Google Scholar
  101. 101.
    Shahal, Y., Bauminger, E. R., Zmora, E., Katz, M., Mazor, D., Horn, S., & Meyerstein, N. (1991). Oxidative stress in newborn erythrocytes. Pediatric Research, 29, 119–122.Google Scholar
  102. 102.
    Croci, S., Ortalli, I., Pedrazzi, G., Passeri, G., & Piccolo, P. (2000). Hemoglobin oxidative stress. Hyperfine Interactions, 126, 47–52.Google Scholar
  103. 103.
    Croci, S., Pedrazzi, G., Passeri, G., Piccolo, P., & Ortalli, I. (2001). Acetylphenylhydrazine induced haemoglobin oxidation in erythrocytes studied by Mössbauer spectroscopy. Biochimica et Biophysica Acta, 1568, 99–104.Google Scholar
  104. 104.
    Bauminger, E. R., Ginsburg, H., Ofer, S., & Yayon, A. (1983). Mössbauer studies of malaria. Hyperfine Interactions, 15/16, 885–888.Google Scholar
  105. 105.
    Yayon, A., Bauminger, E. R., Ofer, S., & Ginsburg, H. (1984). The malarial pigment in rat infected erythrocytes and its interaction with chloroquine. A Mössbauer effect study. Journal of Biological Chemistry, 259, 8163–8167.Google Scholar
  106. 106.
    Blauer, G., Akkawi, M., & Bauminger, E. R. (1993). Further evidence for the interaction of the antimalarial drug amodiaquine with ferriprotoporphyrin IX. Biochemical Pharmacology, 46, 1573–1576.Google Scholar
  107. 107.
    Adams, P. A., Berman, P. A. M., Egan, T. J., Marsh, P. J., & Silver, J. (1996). The iron environment in heme and heme–antimalarial complexes of pharmacological interest. Journal of Inorganic Biochemistry, 63, 69–77.Google Scholar
  108. 108.
    Bauminger, E. R., Akkawi, M., & Blauer, G. (1999). Mössbauer studies of different types of hematin. Inorganica Chimica Acta, 286, 229–232.Google Scholar
  109. 109.
    Egan, T. J., Combrinck, J. M., Egane, J., Hearne, G. R., Marques, H. M., Ntenteni, S., Sewell, B. T., Smith, P. J., Taylor, D., van Schalkwyk, D. A., & Walden, J. C. (2002). Fate of haem iron in the malaria parasite Plasmodium falciparum. Biochemical Journal, 365, 343–347.Google Scholar
  110. 110.
    Friedman, A. M., Sullivan, J. C., Ruby, S. L., Lindenbaum, A., Russell, J. J., Zabransky, B. J., & Rayudu, G. V. S. (1976). Studies of tumor metabolism–I: By use of Mössbauer spectroscopy and autoradiography of 153Sm. International Journal of Nuclear Medicine and Biology, 3, 37–40.Google Scholar
  111. 111.
    Zalutsky, M. R., Friedman, A. M., Sullivan, J. C., Ruby, S. L., & Rayudu, G. V. S. (1977). Studies of tumor metabolism – II: Mössbauer spectroscopy of 57Co–bleomycin. International Journal of Nuclear Medicine and Biology, 4, 216–218.Google Scholar
  112. 112.
    Semin, B. K., Novakova, A. A., Aleksandrov, A., Yu., Ivanov, I. I., Rubin, A. B., & Kuzmin, R. N. (1982). Mössbauer spectroscopy of iron metabolism and iron intracellular distribution in liver of rats. Biochimica et Biophysica Acta, 715, 52–56.Google Scholar
  113. 113.
    Gabbasov, R. R., Cherepanov, V. M., Chuev, M. A., Lomov, A. A., Mischenko, I. N., Nikitin, M. P., Polikarpov, M. A., & Panchenko, V. Y. (2016). Mössbauer and X-ray study of biodegradation of 57Fe3O4 magnetic nanoparticles in rat brain. Hyperfine Interactions, 237, 54.Google Scholar
  114. 114.
    Gabbasov, R., Polikarpov, D., Cherepanov, V., Chuev, M., Mischenko, I., Loginiva, N., Loseva, E., Nikitin, M., & Panchenko, V. (2017). Exogenous iron redistribution between brain and spleen after the administration of the 57Fe3O4 ferrofluid into the ventricle of the brain. Journal of Magnetism and Magnetic Materials, 427, 41–47.Google Scholar
  115. 115.
    Johnstone, B. M., & Boyle, A. J. F. (1967). Basilar membrane vibration examined with the Mössbauer technique. Science, 158, 389–390.Google Scholar
  116. 116.
    Gummer, A. W., Smolders, J. W. T., & Klinke, R. (1987). Basilar membrane motion in the pigeon measured with the Mössbauer technique. Hearing Research, 29, 63–92.Google Scholar
  117. 117.
    Plachinda, A. S., Sedov, V. E., Khromov, V. I., Suzdalev, I. P., Goldanskii, V. I., Nienhaus, G. U., & Parak, F. (1992). Mössbauer studies of bound diffusion in a model polymer system. Physical Review B, 45, 7716–7723.Google Scholar
  118. 118.
    Young, R. D., Frauenfelder, H., & Fenimore, P. W. (2011). Mössbauer effect in proteins. Physical Review Letters, 107, 158102.Google Scholar
  119. 119.
    Bauminger, E. R., Cohen, S. G., Ofer, S., & Bachrach, U. (1982). Study of storage iron in cultured chick embryo fibroblasts and rat glioma cells using Mössbauer spectroscopy. Biochimica et Biophysica Acta, 720, 133–140.Google Scholar
  120. 120.
    Oshtrakh, M. I., Milder, O. B., & Semionkin, V. A. (2006). Determination of the iron state in ferrous iron containing vitamins and dietary supplements: Application of Mössbauer spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 40, 1281–1287.Google Scholar
  121. 121.
    Fodor, J., Kuzmann, E., Vértes, A., Homonnay, Z., Klencsár, Z., May, Z., & Szentmihályi, K. (2009). Mössbauer characterization of Fe-polygalacturonate as a medicine for human anaemia: The effect of iron concentration. Hyperfine Interactions, 190, 283–290.Google Scholar
  122. 122.
    Oshtrakh, M. I., Semionkin, V. A., Milder, O. B., & Novikov, E. G. (2009). Iron containing vitamins and dietary supplements: Control of the iron state using Mössbauer spectroscopy with high velocity resolution. Hyperfine Interactions, 190, 67–74.Google Scholar
  123. 123.
    Oshtrakh, M. I., Novikov, E. G., Dubiel, S. M., & Semionkin, V. A. (2010). Study of vitamins and dietary supplements containing ferrous fumarate and ferrous sulfate using Mössbauer spectroscopy. In J. Tuček, M. Miglierini (Eds.), Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2010”, AIP Conference Proceedings (pp. 75–81). Melville, New York. 1258.Google Scholar
  124. 124.
    Oshtrakh, M. I., Novikov, E. G., Dubiel, S. M., & Semionkin, V. A. (2010). Variations of 57Fe hyperfine parameters in medicaments containing ferrous fumarate and ferrous sulfate. Hyperfine Interactions, 197, 287–294.Google Scholar
  125. 125.
    Arredondo, P. I. S., Barrero, C. A., Garcia, K. E., & Greneche, J. M. (2016). Enhancing the possibilities of 57Fe Mössbauer spectrometry to the study of chemical and physical properties of iron in medicines. Polyhedron, 105, 27–34.Google Scholar
  126. 126.
    Oshtrakh, M. I., Novikov, E. G., Dubiel, S. M., & Semionkin, V. A. (2014). Comparative study of Ascofer® and ferrous gluconate using Mössbauer spectroscopy with a high velocity resolution. Hyperfine Interactions, 226, 451–457.Google Scholar
  127. 127.
    Oshtrakh, M. I., Semionkin, V. A., Prokopenko, P. G., Milder, O. B., Livshits, A. B., & Kozlov, A. A. (2001). Hyperfine interactions in the iron cores from various pharmaceutically important iron–dextran complexes and human ferritin: A comparative study by Mössbauer spectroscopy. International Journal of Biological Macromolecules, 29, 303–314.Google Scholar
  128. 128.
    Funk, F., Long, G. J., Hautot, D., Büchi, R., Christl, I., & Weidler, P. G. (2001). Physical and chemical characterization of therapeutic iron containing materials: A study of several superparamagnetic drug formulations with the β-FeOOH or ferrihydrite structure. Hyperfine Interactions, 136, 73–95.Google Scholar
  129. 129.
    Oshtrakh, M. I., Alenkina, I. V., Dubiel, S. M., & Semionkin, V. A. (2011). Structural variations of the iron cores in human liver ferritin and its pharmaceutically important models: A comparative study using Mössbauer spectroscopy with a high velocity resolution. Journal of Molecular Structure, 993, 287–291.Google Scholar
  130. 130.
    Alenkina, I. V., Oshtrakh, M. I., Klencsár, Z., Kuzmann, E., Chukin, A. V., & Semionkin, V. A. (2014). 57Fe Mössbauer spectroscopy and electron paramagnetic resonance studies of human liver ferritin, Ferrum Lek and Maltoferr®. Spectrochimica Acta, Part A, 130, 24–36.Google Scholar
  131. 131.
    Oshtrakh, M. I., Alenkina, I. V., Klencsár, Z., Kuzmann, E., & Semionkin, V. A. (2017). Different 57Fe microenvironments in the nanosized iron cores in human liver ferritin and its pharmaceutical analogues on the basis of temperature dependent Mössbauer spectroscopy. Spectrochimica Acta, Part A, 172, 14–24.Google Scholar
  132. 132.
    Nath, M., Pokharia, S., Eng, G., Song, X., & Kumar, A. (2005). New triorganotin (IV) derivatives of dipeptides as anti-inflammatory–antimicrobial agents. European Journal of Medicinal Chemistry, 40, 289–298.Google Scholar
  133. 133.
    Girasolo, M. A., Di Salvo, C., Schillaci, D., Barone, G., Silvestri, A., & Ruisi, G. (2005). Synthesis, characterization, and in vitro antimicrobial activity of organotin(IV) complexes with triazolo-pyrimidine ligands containing exocyclic oxygen atoms. Journal of Organometallic Chemistry, 690, 4773–4783.Google Scholar
  134. 134.
    Melnic, S., Prodius, D., Stoeckli-Evans, H., Shova, S., & Turta, C. (2010). Synthesis and anti-tuberculosis activity of new hetero(Mn, Co, Ni)trinuclear iron(III) furoates. European Journal of Medicinal Chemistry, 45, 1465–1469.Google Scholar
  135. 135.
    Tarallo, M. B., Urquiola, C., Monge, A., Costa, B. P., Ribeiro, R. R., Costa-Filho, A. J., Mercader, R. C., Pavan, F. R., Leite, C. Q. F., Torre, M. H., & Gambino, D. (2010). Design of novel iron compounds as potential therapeutic agents against tuberculosis. Journal of Inorganic Biochemistry, 104, 1164–1170.Google Scholar
  136. 136.
    Bonire, J. J., & Fricker, S. P. (2001). The in vitro antitumour profile of some 1,2–diaminocyclohexane organotin complexes. Journal of Inorganic Biochemistry, 83, 217–221.Google Scholar
  137. 137.
    Baul, T. S. B., Paul, A., Pellerito, L., Scopelliti, M., Singh, P., Verma, P., & de Vos, D. (2010). Triphenyltin(IV)2-[(E)-2-(aryl)-1-diazenyl]benzoates as anticancer drugs: synthesis, structural characterization, in vitro cytotoxicity and study of its influence towards the mechanistic role of some key enzymes. Investigational New Drugs, 28, 587–599.Google Scholar
  138. 138.
    Matzanke, B. E., Bill, E., Winkler, H., & Trautwein, A. X. (1992). The association between the antineoplastic drug Daunomycin and iron. Evidence for polynuclear aggregates. Hyperfine Interactions, 71, 1263–1266.Google Scholar
  139. 139.
    Brown, K., Parish, R. V., & McAuliffe, C. A. (1981). 197Au Mossbauer spectroscopic data for antiarthritic drugs and related gold(I) thiol derivatives. Journal of the American Chemical Society, 103, 4943–4945.Google Scholar
  140. 140.
    Canumalla, A., Shaw, III, C. F., & Wagner, F. E. (1999). 197Au Mössbauer characterization of the noncovalent adducts formed between serum albumin and Dicyanoaurate(I), a gold–drug metabolite. Inorganic Chemistry, 38, 3268–3269.Google Scholar
  141. 141.
    Jung, C. W., & Jacobs, P. (1995). Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides, Ferumoxtran, Ferumoxsil. Magnetic Resononance Imaging, 13, 661–674.Google Scholar
  142. 142.
    Imshennik, V. K., Suzdalev, I. P., Stavinskaya, O. N., Shklovskaya, N. I., Schünemann, V., Trautwein, A. X., & Winkler, H. (1997). Preparation and characterization of porous carbon loaded with iron particles: a possible magnetic carrier of medical drugs. Microporous Materials, 10, 225–230.Google Scholar
  143. 143.
    Lawaczeck, R., Menzel, M., & Pietsch, H. (2004). Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Applied Organometallic Chemistry, 18, 506–513.Google Scholar
  144. 144.
    Arelaro, A. D., Brandl, A. L., Lima, Jr., E., Gamarra, L. F., Brito, G. E. S., Pontuschka, W. M., & Goya, G. F. (2005). Interparticle interactions and surface contribution to the effective anisotropy in biocompatible iron oxide nanoparticles used for contrast agents. Journal of Applied Physics, 97, 10J316.Google Scholar
  145. 145.
    Ding, Y., Hu, Y., Zhang, L., Chen, Y., & Jiang, X. (2006). Synthesis and magnetic properties of biocompatible hybrid hollow spheres. Biomacromolecules, 7, 1766–1772.Google Scholar
  146. 146.
    Morais, P. C. (2008). Using Mössbauer spectroscopy as key technique in the investigation of nanosized magnetic particles for drug delivery. Hyperfine Interactions, 181, 1–12.Google Scholar
  147. 147.
    Majeed, J., Pradhan, L., Ningthoujam, R. S., Vatsa, R. K., Bahadur, D., & Tyagi, A. K. (2014). Enhanced specific absorption rate in silanol functionalized Fe3O4 core–shell nanoparticles: Study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells. Colloids and Surfaces B, 122, 396–403.Google Scholar
  148. 148.
    Oshtrakh, M. I., Ushakov, M. V., Šepelák, V., Semionkin, V. A., & Morais, P. C. (2016). Study of iron oxide nanoparticles using Mössbauer spectroscopy with a high velocity resolution. Spectrochimica Acta, Part A, 152, 666–679.Google Scholar
  149. 149.
    Ushakov, M. V., Oshtrakh, M. I., Felner, I., Semenova, A. S., Kellerman, D. G., Šepelák, V., Semionkin, V. A., & Morais, P. C. (2017). Magnetic properties of iron oxide-based nanoparticles: study using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements. Journal of Magnetism and Magnetic Materials, 431, 46–48.Google Scholar
  150. 150.
    Guillochon, D., Vijayalakshmi, M. W., Thiam–Sow, A., Thomas, D., & Chevalier, A. (1986). Effect of glutaraldehyde on hemoglobin: functional aspects and Mössbauer parameters. Biochemistry and Cell Biology, 64, 29–37.Google Scholar
  151. 151.
    Chevalier, A., Guillochon, D., Nedjar, N., Piot, J. M., Vijayalakshmi, M. W., & Thomas, D. (1990). Glutaraldehyde on hemoglobin: evidence for an ion environment modification based on electron paramagnetic resonance and Mössbauer spectroscopies. Biochemistry and Cell Biology, 68, 813–818.Google Scholar
  152. 152.
    Oshtrakh, M. I., Milder, O. B., Semionkin, V. A., Berkovsky, A. L., Azhigirova, M. A., & Vyazova, E. P. (2000). Characterization of the heme iron in pyridoxylated hemoglobin cross–linked by glutaraldehyde using Mössbauer spectroscopy. International Journal of Biological Macromolecules, 28, 51–58.Google Scholar
  153. 153.
    Mørup, S., & Johansen, C. (1986). Degradation of blood in the human digestive tract. Hyperfine Interactions, 29, 1443–1446.Google Scholar
  154. 154.
    Rimbert, J. N., Lafargue, C., Pachot, M., Dumas, F., Eugene, M., Brunelle, F., & Lallemand, D. (1990). Mössbauer study of the time evolution of the biochemical composition of the hematomas. Relationship with magnetic resonance imaging (MRI). Hyperfine Interactions, 58, 2393–2398.Google Scholar
  155. 155.
    Chua-anusorn, W., St. Pierre, T. G., Webb, J., Wang, K., & Lu, J. F. (1994). The form of iron in pigment gallstones. Hyperfine Interactions, 91, 911–916.Google Scholar
  156. 156.
    Wentrup-Byrne, E., Chua-anusorn, W., St. Pierre, T. G., Webb, J., Ramsay, A., & Rintoul, L. (1997). A spectroscopic study of thalassemic gallstones. Biospectroscopy, 3, 409–416.Google Scholar
  157. 157.
    Friedman, A., Bauminger, E. R., Galazka-Friedman, J., Barcikowska, M., Suwalski, J., Hechel, D., Dymecki, J., & Nowik, I. (1994). [Mössbauer spectroscopy of iron in Substantia nigra in Parkinson disease and control]. Neurologia i Neurochirurgia Polska, 28, 145–155.Google Scholar
  158. 158.
    Gerlach, M., Trautwein, A. X., Zecca, L., Youdim, M. B. H., & Riederer, P. (1995). Mössbauer spectroscopic studies of purified human neuromelanin isolated from the Substantia nigra. Journal of Neurochemistry, 65, 923–926.Google Scholar
  159. 159.
    Galazka-Friedman, J., Bauminger, E. R., Friedman, A., Barcikowska, M., Hechel, D., & Nowik, I. (1996). Iron in Parkinsonian and control Substantia nigra – a Mössbauer spectroscopy study. Movement Disorders, 11, 8–16.Google Scholar
  160. 160.
    Gerlach, M., Double, K., Riederer, P., Hirsch, E., Jellinger, K., Jenner, P., Trautwein, A. X., & Youdim, M. B. (1997). Iron in the Parkinsonian Substantia nigra. Movement Disorders, 12, 258–260.Google Scholar
  161. 161.
    Zecca, L., Gallorini, M., Schünemann, V., Trautwein, A. X., Gerlach, M., Riederer, P., Vezzoni, P., & Tampellini, D. (2001). Iron, neuromelanin and ferritin content in the Substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. Journal of Neurochemistry, 76, 1766–1773.Google Scholar
  162. 162.
    Gałazka-Friedman, J., Bauminger, E. R., Koziorowski, D., & Friedman, A. (2004). Mössbauer spectroscopy and ELISA studies reveal differences between Parkinson’s disease and control Substantia nigra. Biochimica et Biophysica Acta, 1688, 130–136.Google Scholar
  163. 163.
    Friedman, A., & Gałazka-Friedman, J. (2012). The history of the research of iron in parkinsonian Substantia nigra. Journal of Neural Transmission, 119, 1507–1510.Google Scholar
  164. 164.
    Kulinski, R., Bauminger, E. R., Friedman, A., Duda, P., & Gałazka-Friedman, J. (2016). Iron in typical and atypical parkinsonism – Mössbauer spectroscopy and MRI studies. Hyperfine Interactions, 237, 4.Google Scholar
  165. 165.
    Boča, R., Kopáni, M., Miglierini, M., Čaplovičová, M., Mrázová, V., & Dlháň, Ľ. (2013). Magnetic and non-magnetic iron-oxide deposits in Basal ganglia. In A. Costa, E. Villalba (Eds.) Horizons in Neuroscience Research (Vol. 12, pp. 135–214). New York: Nova Science Publishers, Inc.Google Scholar
  166. 166.
    Boča, R., Dlháň, Ľ., Kopáni, M., Miglierini, M., Mrázová, V., & Čaplovičová, M. (2013). Deposits of iron oxides in the human spleen. Polyhedron, 66, 65–69.Google Scholar
  167. 167.
    Kopáni, M., Miglierini, M., Lančok, A., Dekan, J., Čaplovičová, M., Jakubovsky, J., Boča, R., & Mrazova, H. (2015). Iron oxides in human spleen. Biometals, 28, 913–928.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Experimental Physics, Institute of Physics and TechnologyUral Federal UniversityEkaterinburgRussian Federation

Personalised recommendations