Skip to main content
Log in

Structural Insights into Genetic Variants of Na+/Glucose Cotransporter SGLT1 Causing Glucose–Galactose Malabsorption: vSGLT as a Model Structure

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Current advances in structural biology provide valuable insights into structure–function relationship of membrane transporters by solving crystal structures of bacterial homologs of human transporters. Therefore, scientists consider bacterial transporters as useful structural models for designing of drugs targeted in human diseases. The functional homology between Vibrio parahaemolyticus Na+/galactose transporter (vSGLT) and Na+/glucose cotransporter SGLT1 has been well established a decade ago. Now the crystal structure of vSGLT is considered quite valuable in explaining not only the cotransport mechanisms, but it also acts as a representative protein in understanding the protein stability and amino acid interactions within the core structure. We investigated the molecular mechanisms of genetic variations in SGLT1 that cause glucose–galactose malabsorption (GGM) defects using the crystal structure of vSGLT as a model sugar transporter. Our in silico mutagenesis and modeling analysis suggest that the GGM genetic variations lead to conformational changes either by structure destabilization or by formation of unnecessary interaction within the core structure of SGLT1 thereby explaining the genetic defects in Na+ dependent sugar translocation across the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Faham, S., Watanabe, A., Besserer, G. M., Cascio, D., Specht, A., Hirayama, B. A., et al. (2008). The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science, 321, 810–814.

    Article  PubMed  CAS  Google Scholar 

  2. Wright, E. M., & Turk, E. (2004). The sodium/glucose cotransport family SLC5. Pflügers Archiv, 447, 510–518.

    Article  PubMed  CAS  Google Scholar 

  3. Turk, E., & Wright, E. M. (1997). Membrane topology motifs in the SGLT cotransporter family. Journal of Membrane Biology, 159, 1–20.

    Article  PubMed  CAS  Google Scholar 

  4. Banerjee, S. K., McGaffin, K. R., Pastor-Soler, N. M., & Ahmad, F. (2009). SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovascular Research, 84, 111–118.

    Article  PubMed  CAS  Google Scholar 

  5. Martin, M. G., Turk, E., Lostao, M. P., Kerner, C., & Wright, E. M. (1996). Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose–galactose malabsorption. Nature Genetics, 12, 216–220.

    Article  PubMed  CAS  Google Scholar 

  6. Wright, E. M., Loo, D. D., Hirayama, B. A., & Turk, E. (2004). Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology (Bethesda), 19, 370–376.

    Article  CAS  Google Scholar 

  7. Taroni, C., Jones, S., & Thornton, J. M. (2000). Analysis and prediction of carbohydrate binding sites. Protein Engineering, 13, 89–98.

    Article  PubMed  CAS  Google Scholar 

  8. Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., & Iwata, S. (2003). Structure and mechanism of the lactose permease of Escherichia coli. Science, 301, 610–615.

    Article  PubMed  CAS  Google Scholar 

  9. Quiocho, F. A. (1989). Protein–Carbohydrate interactions—basic molecular-features. Pure and Applied Chemistry, 61, 1293–1306.

    Article  CAS  Google Scholar 

  10. Wright, E. M., Loo, D. D., & Hirayama, B. A. (2011). Biology of human sodium glucose transporters. Physiological Reviews, 91, 733–794.

    Article  PubMed  CAS  Google Scholar 

  11. Wright, E. M., Turk, E., & Martin, M. G. (2002). Molecular basis for glucose–galactose malabsorption. Cell Biochemistry and Biophysics, 36, 115–121.

    Article  PubMed  CAS  Google Scholar 

  12. Magen, D., Sprecher, E., Zelikovic, I., & Skorecki, K. (2005). A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney International, 67, 34–41.

    Article  PubMed  CAS  Google Scholar 

  13. Calado, J., Sznajer, Y., Metzger, D., Rita, A., Hogan, M. C., Kattamis, A., et al. (2008). Twenty-one additional cases of familial renal glucosuria: Absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrology, Dialysis, Transplantation, 23, 3874–3879.

    Article  PubMed  CAS  Google Scholar 

  14. Wright, E. M., Hirayama, B. A., & Loo, D. F. (2007). Active sugar transport in health and disease. Journal of Internal Medicine, 261, 32–43.

    Article  PubMed  CAS  Google Scholar 

  15. Lindquist, B., & Meeuwisse, G. W. (1962). Chronic diarrhoea caused by monosaccharide malabsorption. Acta Paediatrica, 51, 674–685.

    Article  PubMed  CAS  Google Scholar 

  16. Laplane, R., Polonovski, C., Lods, J. C., Debray, P., Etienne, M., & Pissarro, B. (1962). Lintolerance aux sucres a transfert intestinal actif–ses rapports avec lintolerance au lactose et le syndrome Coeliaque. Archives Francaises De Pediatrie, 19, 895.

    Google Scholar 

  17. Melin, K., & Meeuwisse, G. W. (1969). Glucose–galactose malabsorption. A genetic study. Acta Paediatrica Scandinavica,188, 19–24.

    Google Scholar 

  18. Abramson, J., & Wright, E. M. (2009). Structure and function of Na(+)-symporters with inverted repeats. Current Opinion in Structural Biology, 19, 425–432.

    Article  PubMed  CAS  Google Scholar 

  19. Sarker, R. I., Ogawa, W., Shimamoto, T., & Tsuchiya, T. (1997). Primary structure and properties of the Na+/glucose symporter (Sg1S) of Vibrio parahaemolyticus. Journal of Bacteriology, 179, 1805–1808.

    PubMed  CAS  Google Scholar 

  20. Sujatha, M. S., & Balaji, P. V. (2004). Identification of common structural features of binding sites in galactose-specific proteins. Proteins, 55, 44–65.

    Article  PubMed  CAS  Google Scholar 

  21. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., & Gouaux, E. (2005). Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature, 437, 215–223.

    Article  PubMed  CAS  Google Scholar 

  22. Raja, M. M., Tyagi, N. K., & Kinne, R. K. (2003). Phlorizin recognition in a C-terminal fragment of SGLT1 studied by tryptophan scanning and affinity labeling. The Journal of Biological Chemistry, 278, 49154–49163.

    Article  PubMed  CAS  Google Scholar 

  23. Xie, Z., Turk, E., & Wright, E. M. (2000). Characterization of the Vibrio parahaemolyticus Na+/Glucose cotransporter. A bacterial member of the sodium/glucose transporter (SGLT) family. The Journal of Biological Chemistry, 275, 25959–25964.

    Article  PubMed  CAS  Google Scholar 

  24. Oulianova, N., Falk, S., & Berteloot, A. (2001). Two-step mechanism of phlorizin binding to the SGLT1 protein in the kidney. Journal of Membrane Biology, 179, 223–242.

    Article  PubMed  CAS  Google Scholar 

  25. Tyagi, N. K., Kumar, A., Goyal, P., Pandey, D., Siess, W., & Kinne, R. K. (2007). d-Glucose-recognition and phlorizin-binding sites in human sodium/d-glucose cotransporter 1 (hSGLT1): A tryptophan scanning study. Biochemistry, 46, 13616–13628.

    Article  PubMed  CAS  Google Scholar 

  26. Kasahara, M., Maeda, M., Hayashi, S., Mori, Y., & Abe, T. (2001). A missense mutation in the Na+/glucose cotransporter gene SGLT1 in a patient with congenital glucose–galactose malabsorption: Normal trafficking but inactivation of the mutant protein. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1536, 141–147.

    Article  CAS  Google Scholar 

  27. Monne, M., Nilsson, I., Johansson, M., Elmhed, N., & von Heijne, G. (1998). Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix. Journal of Molecular Biology, 284, 1177–1183.

    Article  PubMed  CAS  Google Scholar 

  28. Raja, M. (2011). The potassium channel KcsA: A model protein in studying membrane protein oligomerization and stability of oligomeric assembly? Archives of Biochemistry and Biophysics, 510, 1–10.

    Article  PubMed  CAS  Google Scholar 

  29. Ozdirekcan, S., Nyholm, T. K., Raja, M., Rijkers, D. T., Liskamp, R. M., & Killian, J. A. (2008). Influence of trifluoroethanol on membrane interfacial anchoring interactions of transmembrane alpha-helical peptides. Biophysical Journal, 94, 1315–1325.

    Article  PubMed  Google Scholar 

  30. Hediger, M. A., Coady, M. J., Ikeda, T. S., & Wright, E. M. (1987). Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature, 330, 379–381.

    Article  PubMed  CAS  Google Scholar 

  31. Elsas, L. J. (1970). Glucose reabsorption in familial renal glycosuria and glucose–galactose malabsorption. Birth Defects Original Article Series, 6, 21–22.

    PubMed  CAS  Google Scholar 

  32. Wright, E. M. (1998). Genetic disorders of membrane transport I. Glucose galactose malabsorption. American Journal of Physiology-Gastrointestinal and Liver Physiology, 275, G879–G882.

    CAS  Google Scholar 

  33. Diez-Sampedro, A., Wright, E. M., & Hirayama, B. A. (2001). Residue 457 controls sugar binding and transport in the Na(+)/glucose cotransporter. The Journal of Biological Chemistry, 276, 49188–49194.

    Article  PubMed  CAS  Google Scholar 

  34. Mackenzie, B., Panayotova-Heiermann, M., Loo, D. D., Lever, J. E., & Wright, E. M. (1994). SAAT1 is a low affinity Na+/glucose cotransporter and not an amino acid transporter. A reinterpretation. The Journal of Biological Chemistry, 269, 22488–22491.

    PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mobeen Raja or Rolf K. H. Kinne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raja, M., Kinne, R.K.H. Structural Insights into Genetic Variants of Na+/Glucose Cotransporter SGLT1 Causing Glucose–Galactose Malabsorption: vSGLT as a Model Structure. Cell Biochem Biophys 63, 151–158 (2012). https://doi.org/10.1007/s12013-012-9352-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9352-3

Keywords

Navigation