Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Effect of High Lactate Level on Mortality in Acute Heart Failure Patients With Reduced Ejection Fraction Without Cardiogenic Shock

  • 23 Accesses

Abstract

Background

We aimed to determine the effect of blood lactate levels on cardiovascular (CV) death and hospitalization for heart failure (HF) in acute HF patients with reduced left ventricular ejection fraction (EF).

Methods

Eighty-five acute HF patients with reduced ejection fraction were divided into two groups according to admission blood lactate levels. 48 of them had low blood lactate levels (< 2 mmol/l) and 37 of them had high blood lactate levels (≥ 2 mmol/l). Patients with acute coronary syndrome, cardiogenic shock, sepsis and low blood pressure at admission were excluded from the study. Primary endpoint is the composite of cardiovascular (CV) death and hospitalization for heart failure (HHF) in 6-month follow-up. Secondary endpoint is the change in NT-proBNP levels from admission to 72 h.

Results

Baseline characteristics of patients were similar in two groups. On baseline echocardiographic evaluation; patients with high lactate revealed a higher mitral E/A ratio (2.34 [0.43–3.31], p = 0.008) and a lower TAPSE ratio (14 [10–27], p = 0.008) than patients with low lactate levels. Over a median follow-up period of 6 months, the primary end point occurred in 28 (75.7%) of 37 patients assigned to high lactate group and in 20 (41.7%) of 48 patients assigned to low lactate group (p = 0.006). High lactate levels significantly increased the risk of CV death and HHF at 6 months by nearly 5.35-fold in acute HF patients with reduced EF. The change in NT-proBNP levels at 72nd hour after admission were similar between two groups.

Conclusion

Higher lactate levels at admission related with higher HHF at 6 months and may be related with higher risk of CV death in acute HF patients with reduced EF.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G. F., Coats, A. J. S., et al. (2016). 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal,37, 2129–2200.

  2. 2.

    Mosterd, A., & Hoes, A. W. (2007). Clinical epidemiology of heart failure. Heart,93, 1137–1146.

  3. 3.

    Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Executive summary: Heart disease and stroke statistics—2016 update: A report from the American Heart Association. Circulation,133, 447–454.

  4. 4.

    Writing Committee, M., Yancy, C. W., Jessup, M., Bozkurt, B., Butler, J., Casey, D. E., Jr., et al. (2013). 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation,128, e240–327.

  5. 5.

    Berry, C., Murdoch, D. R., & McMurray, J. J. (2001). Economics of chronic heart failure. European Journal of Heart Failure,3, 283–291.

  6. 6.

    Ural, D., Cavusoglu, Y., Eren, M., Karauzum, K., Temizhan, A., Yilmaz, M. B., et al. (2015). Diagnosis and management of acute heart failure. The Anatolian Journal of Cardiology,15, 860–889.

  7. 7.

    Farmakis, D., Parissis, J., Lekakis, J., & Filippatos, G. (2015). Acute heart failure: Epidemiology, risk factors, and prevention. Revista Española de Cardiología (English edition),68, 245–248.

  8. 8.

    Kociol, R. D., Hammill, B. G., Fonarow, G. C., Klaskala, W., Mills, R. M., Hernandez, A. F., et al. (2010). Generalizability and longitudinal outcomes of a national heart failure clinical registry: Comparison of Acute Decompensated Heart Failure National Registry (ADHERE) and non-ADHERE Medicare beneficiaries. American Heart Journal,160, 885–892.

  9. 9.

    Consoli, A., Nurjhan, N., Reilly, J. J., Jr., Bier, D. M., & Gerich, J. E. (1990). Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans. American Journal of Physiology,259, E677–684.

  10. 10.

    Adamo, L., Nassif, M. E., Novak, E., LaRue, S. J., & Mann, D. L. (2017). Prevalence of lactic acidaemia in patients with advanced heart failure and depressed cardiac output. European Journal of Heart Failure,19, 1027–1033.

  11. 11.

    Kawase, T., Toyofuku, M., Higashihara, T., Okubo, Y., Takahashi, L., Kagawa, Y., et al. (2015). Validation of lactate level as a predictor of early mortality in acute decompensated heart failure patients who entered intensive care unit. Journal of Cardiology,65, 164–170.

  12. 12.

    Zymlinski, R., Biegus, J., Sokolski, M., Siwolowski, P., Nawrocka-Millward, S., Todd, J., et al. (2018). Increased blood lactate is prevalent and identifies poor prognosis in patients with acute heart failure without overt peripheral hypoperfusion. European Journal of Heart Failure,20, 1011–1018.

  13. 13.

    Bakker, J., Coffernils, M., Leon, M., Gris, P., & Vincent, J. L. (1991). Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest,99, 956–962.

  14. 14.

    Jansen, T. C., van Bommel, J., & Bakker, J. (2009). Blood lactate monitoring in critically ill patients: A systematic health technology assessment. Critical Care Medicine,37, 2827–2839.

  15. 15.

    Khosravani, H., Shahpori, R., Stelfox, H. T., Kirkpatrick, A. W., & Laupland, K. B. (2009). Occurrence and adverse effect on outcome of hyperlactatemia in the critically ill. Critical Care,13, R90.

  16. 16.

    Gjesdal, G., Braun, O. O., Smith, J. G., Schersten, F., & Tyden, P. (2018). Blood lactate is a predictor of short-term mortality in patients with myocardial infarction complicated by heart failure but without cardiogenic shock. BMC Cardiovascular Disorders,18, 8.

  17. 17.

    Liang, D., Zhou, X., Hong, X., Feng, X., Shan, P., Xie, Q., et al. (2019). Association between admission lactate levels and mortality in patients with acute coronary syndrome: A retrospective cohort study. Coronary Artery Disease,30, 26–32.

  18. 18.

    Kliegel, A., Losert, H., Sterz, F., Holzer, M., Zeiner, A., Havel, C., et al. (2004). Serial lactate determinations for prediction of outcome after cardiac arrest. Medicine (Baltimore),83, 274–279.

  19. 19.

    Miro, O., Llorens, P., Martin-Sanchez, F. J., Herrero, P., Pavon, J., Perez-Dura, M. J., et al. (2009). Short-term prognostic factors in elderly patients seen in emergency departments for acute heart failure. Revista Espanola de Cardiologia,62, 757–764.

  20. 20.

    Biegus, J., Zymlinski, R., Sokolski, M., Gajewski, P., Banasiak, W., & Ponikowski, P. (2019). Clinical, respiratory, haemodynamic, and metabolic determinants of lactate in heart failure. Kardiologia Polska,77, 47–52.

  21. 21.

    Krumholz, H. M., Chen, Y. T., Vaccarino, V., Wang, Y., Radford, M. J., Bradford, W. D., et al. (2000). Correlates and impact on outcomes of worsening renal function in patients %3e or = 65 years of age with heart failure. American Journal of Cardiology,85, 1110–1113.

  22. 22.

    Khoury, J., Bahouth, F., Stabholz, Y., Elias, A., Mashiach, T., Aronson, D., et al. (2019). Blood urea nitrogen variation upon admission and at discharge in patients with heart failure. ESC Heart Failure,6, 809–816.

  23. 23.

    Jujo, K., Minami, Y., Haruki, S., Matsue, Y., Shimazaki, K., Kadowaki, H., et al. (2017). Persistent high blood urea nitrogen level is associated with increased risk of cardiovascular events in patients with acute heart failure. ESC Heart Failure,4, 545–553.

  24. 24.

    Ren, X., Qu, W., Zhang, L., Liu, M., Gao, X., Gao, Y., et al. (2018). Role of blood urea nitrogen in predicting the post-discharge prognosis in elderly patients with acute decompensated heart failure. Scientific Reports,8, 13507.

  25. 25.

    Cameli, M., Pastore, M. C., De Carli, G., Henein, M. Y., Mandoli, G. E., Lisi, E., et al. (2019). ACUTE HF score, a multiparametric prognostic tool for acute heart failure: A real-life study. International Journal of Cardiology,296, 103–108.

  26. 26.

    Cluzol, L., Cautela, J., Michelet, P., Roch, A., Kerbaul, F., Mancini, J., et al. (2017). Prehospital and in-hospital course of care for patients with acute heart failure: Features and impact on prognosis in "real life". Arch Cardiovasc Dis,110, 72–81.

  27. 27.

    Santas, E., Garcia-Blas, S., Minana, G., Sanchis, J., Bodi, V., Escribano, D., et al. (2015). Prognostic implications of tissue Doppler imaging-derived e/ea ratio in acute heart failure patients. Echocardiography,32, 213–220.

  28. 28.

    Hansen, A., Haass, M., Zugck, C., Krueger, C., Unnebrink, K., Zimmermann, R., et al. (2001). Prognostic value of Doppler echocardiographic mitral inflow patterns: Implications for risk stratification in patients with chronic congestive heart failure. Journal of the American College of Cardiology,37, 1049–1055.

  29. 29.

    Kagiyama, N., Kitai, T., Hayashida, A., Yamaguchi, T., Okumura, T., Kida, K., et al. (2019). Prognostic value of BNP reduction during hospitalization in patients with acute heart failure. Journal of Cardiac Failure,25, 712–721.

  30. 30.

    Khanam, S. S., Son, J. W., Lee, J. W., Youn, Y. J., Yoon, J., Lee, S. H., et al. (2017). Prognostic value of short-term follow-up BNP in hospitalized patients with heart failure. BMC Cardiovascular Disorders,17, 215.

  31. 31.

    Logeart, D., Thabut, G., Jourdain, P., Chavelas, C., Beyne, P., Beauvais, F., et al. (2004). Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. Journal of the American College of Cardiology,43, 635–641.

  32. 32.

    Fonarow, G. C., Peacock, W. F., Phillips, C. O., Givertz, M. M., & Lopatin, M. (2007). Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. Journal of the American College of Cardiology,49, 1943–1950.

  33. 33.

    Bettencourt, P., Azevedo, A., Pimenta, J., Frioes, F., Ferreira, S., & Ferreira, A. (2004). N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation,110, 2168–2174.

  34. 34.

    Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin, A., Knoblich, B., et al. (2001). Early goal-directed therapy in the treatment of severe sepsis and septic shock. New England Journal of Medicine,345, 1368–1377.

  35. 35.

    Abraham, W. T., Adams, K. F., Fonarow, G. C., Costanzo, M. R., Berkowitz, R. L., LeJemtel, T. H., et al. (2005). In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: An analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). Journal of the American College of Cardiology,46, 57–64.

  36. 36.

    Ancion, A., Allepaerts, S., Oury, C., Gori, A. S., Pierard, L. A., & Lancellotti, P. (2017). Serum albumin level and hospital mortality in acute non-ischemic heart failure. ESC Heart Failure,4, 138–145.

  37. 37.

    Ancion A, Allepaerts S, Robinet S, Oury C, Pierard LA, Lancellotti P. Serum albumin level and long-term outcome in acute heart failure. Acta Cardiol 2019:1–7.

  38. 38.

    Liu, M., Chan, C. P., Yan, B. P., Zhang, Q., Lam, Y. Y., Li, R. J., et al. (2012). Albumin levels predict survival in patients with heart failure and preserved ejection fraction. European Journal of Heart Failure,14, 39–44.

  39. 39.

    Biegus, J., Hillege, H. L., Postmus, D., Valente, M. A., Bloomfield, D. M., Cleland, J. G., et al. (2016). Abnormal liver function tests in acute heart failure: Relationship with clinical characteristics and outcome in the PROTECT study. European Journal of Heart Failure,18, 830–839.

  40. 40.

    Kim, S. H., Kim, H. J., Han, S., Yoo, B. S., Choi, D. J., Kim, J. J., et al. (2017). The limited prognostic role of echocardiograms in short-term follow-up after acute decompensated heart failure: An analysis of the Korean Heart Failure (KorHF) Registry. PLoS ONE,12, e0188938.

  41. 41.

    Yeh, J. K., Hsiao, Y. C., Jian, C. R., Wang, C. H., Wen, M. S., Kuo, C. T., et al. (2016). Comparison of baseline versus posttreatment left ventricular ejection fraction in patients with acute decompensated heart failure for predicting cardiovascular outcome: Implications from single-center systolic heart failure cohort. PLoS ONE,11, e0145514.

Download references

Funding

None.

Author information

Correspondence to Ahmet Celik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Dr. James Kang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uyar, H., Yesil, E., Karadeniz, M. et al. The Effect of High Lactate Level on Mortality in Acute Heart Failure Patients With Reduced Ejection Fraction Without Cardiogenic Shock. Cardiovasc Toxicol (2020). https://doi.org/10.1007/s12012-020-09563-9

Download citation

Keywords

  • Lactate
  • Acute heart failure
  • Hospitalization
  • Death