Advertisement

FOLFIRI-Mediated Toxicity in Human Aortic Smooth Muscle Cells and Possible Amelioration with Curcumin and Quercetin

  • Orkut Güçlü
  • Oğuzhan Doğanlar
  • Volkan Yüksel
  • Zeynep Banu DoğanlarEmail author
Article

Abstract

Systemic chemotherapy-mediated cell toxicity is a major risk factor for cardiovascular disease and atherosclerosis. Life-threatening acute events of the FOLFIRI (irinotecan, folinic acid and 5-fluorouracil) regimen are mainly due to DNA damage induced by antimetabolite and topoisomerase inhibition effects. However, the role of human aortic smooth muscle cells (HaVSMCs) in this process and the mechanisms of oxidative stress, DNA and protein damage and apoptosis have not been investigated. Therefore, the effects of curcumin and quercetin on HaVSMC survival in the generation of molecular and cellular toxicity by FOLFIRI treatment and the involvement of vital cellular signalling pathways were investigated. We analysed both FOLFIRI toxicity and the therapeutic potential of quercetin and curcumin in terms of HaVSMC damage using molecular probe and florescence staining, Random Amplified Polymorphic DNA (RAPD), qRT-PCR and Western blot assays. Our study presents two preliminary findings: (a) in HaVSMCs, FOLFIRI treatment significantly induces oxidative damage to both DNA and protein, leading to a dramatic increase in caspase-dependent apoptotic death through P53-mediated Caspase3-dependent mitochondrial apoptosis, and results in TNF-α/Caspase8-mediated necrotic death, and (b) flavonoids not only regulate the expression of genes encoding antioxidant enzymes and increase DNA damage but also limit programmed and necrotic cell death processes in HaVSMCs. Our results clearly indicate the potential for curcumin and, particularly, quercetin as preventative chemotherapeutic interventions for cardiovascular toxicity induced by the FOLFIRI regime in HaVSMCs.

Keywords

FOLFIRI Cardiotoxicity Genotoxicity Oxidative stress Human aortic smooth muscle cells 

Notes

Acknowledgements

This work was supported by a grant from the Trakya University Scientific Research Fund (TUBAP 2017/102). The author thanks Miss Ayten Doğan for the technical assistance.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yeh, E. T., & Bickford, C. L. (2009). Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management. Journal of the American College of Cardiology, 53, 2231–2247.  https://doi.org/10.1016/j.jacc.2009.02.050.CrossRefGoogle Scholar
  2. 2.
    Senkus, E., & Jassem, J. (2011). Cardiovascular effects of systemic cancer treatment. Cancer Treatment Reviews, 37, 300–311.  https://doi.org/10.1016/j.ctrv.2010.11.001.CrossRefGoogle Scholar
  3. 3.
    Monsuez, J. J., Charniot, J. C., Vignat, N., & Artigou, J. Y. (2010). Cardiac side-effects of cancer chemotherapy. International Journal of Cardiolology, 144, 3–15.  https://doi.org/10.1016/j.ijcard.2010.03.003.CrossRefGoogle Scholar
  4. 4.
    Hentic, O., Hammel, P., Couvelard, A., Rebours, V., Zappa, M., Palazzo, M., et al. (2012). FOLFIRI regimen, an effective second-line chemotherapy after failure of etoposide-platinum combination for patients with neuroendocrine carcinomas grade 3. Endocrine-Related Cancer, 19(6), 751–757.  https://doi.org/10.1530/ERC-12-0002.CrossRefGoogle Scholar
  5. 5.
    Zaniboni, A., Aitini, E., Barni, S., Ferrari, D., Cascinu, S., Catalano, V., et al. (2012). FOLFIRI as second-line chemotherapy for advanced pancreatic cancer: A GISCAD multicenter phase II study. Cancer Chemotherapy and Pharmacology, 69, 1641–1645.  https://doi.org/10.1007/s00280-012-1875-1.CrossRefGoogle Scholar
  6. 6.
    Erdem, G. U., Bozkaya, Y., Ozdemir, N. Y., Demirci, N. S., Yazici, O., & Zengin, N. (2018). 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) as a third-line chemotherapy treatment in metastatic gastric cancer, after failure of fluoropyrimidine, platinum, anthracycline, and taxane. Bosnian Journal of Basic Medical Sciences, 18, 170.  https://doi.org/10.17305/bjbms.2017.2258.Google Scholar
  7. 7.
    Sara, J. D., Kaur, J., Khodadadi, R., Rehman, M., Lobo, R., Chakrabarti, S., et al. (2018). 5-Fluorouracil and cardiotoxicity: A review. Therapeutic Advances in Medical Oncology, 10, 1758835918780140.  https://doi.org/10.1177/1758835918780140.CrossRefGoogle Scholar
  8. 8.
    Focaccetti, C., Bruno, A., Magnani, E., Bartolini, D., Principi, E., Dallaglio, K., et al. (2015). Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS ONE, 10, e0115686.  https://doi.org/10.1371/journal.pone.0115686.CrossRefGoogle Scholar
  9. 9.
    Carnaghi, C., Rimassa, L., Garassino, I., Zucali, P., Masci, G., Fallini, M., et al. (2002). Irinotecan and raltitrexed: An active combination in advanced colorectal cancer. Annals of Oncology, 13, 1424–1429.  https://doi.org/10.1093/annonc/mdf229.CrossRefGoogle Scholar
  10. 10.
    Huisman, S. A., Bijman-Lagcher, W., IJzermans, J. N., Smits, R., & de Bruin, R. W. (2015). Fasting protects against the side effects of irinotecan but preserves its anti-tumor effect in Apc15lox mutant mice. Cell Cycle, 14, 2333–2339.  https://doi.org/10.1080/15384101.2015.1044170.CrossRefGoogle Scholar
  11. 11.
    Lacolley, P., Regnault, V., Nicoletti, A., Li, Z., & Michel, J.-B. (2012). The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles. Cardiovascular Research, 95, 194–204.  https://doi.org/10.1093/cvr/cvs135.CrossRefGoogle Scholar
  12. 12.
    Clarke, M. C. H., Figg, N., Maguire, J. J., Davenport, A. P., Goddard, M., Littlewood, T. D., et al. (2006). Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nature Medicine, 12, 1075–1080.  https://doi.org/10.1038/nm1459.CrossRefGoogle Scholar
  13. 13.
    Salabei, J. K., & Hill, B. G. (2015). Autophagic regulation of smooth muscle cell biology. Redox Biology, 4, 97–103.  https://doi.org/10.1016/j.redox.2014.12.007.CrossRefGoogle Scholar
  14. 14.
    Qiu, J., Zheng, Y., Hu, J., Liao, D., Gregersen, H., Deng, X., et al. (2014). Biomechanical regulation of vascular smooth muscle cell functions: From in vitro to in vivo understanding. Journal of the Royal Society, Interface, 11(90), 20130852.  https://doi.org/10.1098/rsif.2013.0852.CrossRefGoogle Scholar
  15. 15.
    Bennett, M. R. (2002). Apoptosis in the cardiovascular system. Heart, 87, 480–487.  https://doi.org/10.1136/heart.87.5.480.CrossRefGoogle Scholar
  16. 16.
    Su, J., Li, J., Li, W., Altura, B. T., & Altura, B. M. (2004). Cocaine induces apoptosis in primary cultured rat aortic vascular smooth muscle cells: Possible relationship to aortic dissection, atherosclerosis, and hypertension. International Journal of Toxicology, 23(4), 233–237.  https://doi.org/10.1080/10915810490471361.CrossRefGoogle Scholar
  17. 17.
    Braganza, D., & Bennett, M. (2001). New insights into atherosclerotic plaque rupture. Postgraduate Medical Journal, 77, 94–98.  https://doi.org/10.1136/pmj.77.904.94.CrossRefGoogle Scholar
  18. 18.
    Bisht, K., Wagner, K.-H., & Bulmer, A. C. (2010). Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto-and DNA-protective dietary compounds. Toxicology, 278, 88–100.  https://doi.org/10.1016/j.tox.2009.11.008.CrossRefGoogle Scholar
  19. 19.
    Yousef, M. I., Omar, S. A., El-Guendi, M. I., & Abdelmegid, L. A. (2010). Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat. Food and Chemical Toxicology, 48, 3246–3261.  https://doi.org/10.1016/j.fct.2010.08.034.CrossRefGoogle Scholar
  20. 20.
    Greggi Antunes, L. M., Araújo, M. C. P., da Luz Dias, F., & Takahashi, C. S. (1999). Modulatory effects of curcumin on the chromosomal damage induced by doxorubicin in Chinese hamster ovary cells. Teratogenesis, Carcinogenesis, and Mutagenesis, 19, 1–8.  https://doi.org/10.1002/(SICI)1520-6866(1999)19:1%3c1:AID-TCM1%3e3.0.CO;2-7.CrossRefGoogle Scholar
  21. 21.
    Psotová, J., Chlopčíková, Š., Miketová, P., Hrbáč, J., & Šimánek, V. (2004). Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part III. Apigenin, baicalelin, kaempherol, luteolin and quercetin. Phytotherapy Research, 18, 516–521.  https://doi.org/10.1002/ptr.1462.CrossRefGoogle Scholar
  22. 22.
    Kaiserová, H., Šimůnek, T., Van Der Vijgh, W. J., Bast, A., & Kvasničková, E. (2007). Flavonoids as protectors against doxorubicin cardiotoxicity: role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1772, 1065–1074.  https://doi.org/10.1016/j.bbadis.2007.05.002.CrossRefGoogle Scholar
  23. 23.
    Perrone, D., Ardito, F., Giannatempo, G., Dioguardi, M., Troiano, G., Lo Russo, L., et al. (2015). Biological and therapeutic activities, and anticancer properties of curcumin. Experimental and Therapeutic Medicine, 10, 1615–1623.  https://doi.org/10.3892/etm.2015.2749.CrossRefGoogle Scholar
  24. 24.
    Falcone, A., Ricci, S., Brunetti, I., Pfanner, E., Allegrini, G., Barbara, C., et al. (2007). Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: The Gruppo Oncologico Nord Ovest. Journal of Clinical Oncology, 25, 1670–1676.  https://doi.org/10.1200/JCO.2006.09.0928.CrossRefGoogle Scholar
  25. 25.
    Li, X.-X., Zheng, H.-T., Peng, J.-J., Huang, L.-Y., Shi, D.-B., Liang, L., et al. (2014). RNA-seq reveals determinants for irinotecan sensitivity/resistance in colorectal cancer cell lines. International Journal of Clinical and Experimental Pathology, 7, 2729–2736.Google Scholar
  26. 26.
    Jang, H. J., Hong, E. M., Jang, J., Choi, J. E., Park, S. W., Byun, H. W., et al. (2016). Synergistic effects of simvastatin and irinotecan against colon cancer cells with or without irinotecan resistance. Gastroenterology Research and Practice..  https://doi.org/10.1155/2016/7891374.Google Scholar
  27. 27.
    Du, B., Jiang, L., Xia, Q., & Zhong, L. (2006). Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29. Chemotherapy, 52, 23–28.  https://doi.org/10.1159/000090238.CrossRefGoogle Scholar
  28. 28.
    Yang, L., Liu, Y., Wang, M., Qian, Y., Dong, X., Gu, H., et al. (2016). Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis. Molecular Medicine Reports, 14, 4559–4566.  https://doi.org/10.3892/mmr.2016.5818.CrossRefGoogle Scholar
  29. 29.
    McCloy, R. A., Rogers, S., Caldon, C. E., Lorca, T., Castro, A., & Burgess, A. (2014). Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle, 13, 1400–1412.  https://doi.org/10.4161/cc.28401.CrossRefGoogle Scholar
  30. 30.
    Doğanlar, Z. B., Uzun, M., Ovalı, M. A., Dogan, A., Ongoren, G., & Doğanlar, O. (2018). Melatonin attenuates caspase-dependent apoptosis in the thoracic aorta by regulating element balance and oxidative stress in pinealectomized rats. Applied Physiology, Nutrition and Metabolism, 44(2), 153–163.  https://doi.org/10.1139/apnm-2018-0205.CrossRefGoogle Scholar
  31. 31.
    Güçlü, H., Doganlar, Z. B., Gürlü, V. P., Özal, A., Dogan, A., Turhan, M. A., et al. (2018). Effects of cisplatin-5-fluorouracil combination therapy on oxidative stress, DNA damage, mitochondrial apoptosis, and death receptor signalling in retinal pigment epithelium cells. Cutaneous and Ocular Toxicology, 37(3), 291–304.  https://doi.org/10.1080/15569527.2018.1456548.CrossRefGoogle Scholar
  32. 32.
    Glaab, E., Garibaldi, J. M., & Krasnogor, N. (2009). ArrayMining: A modular web-application for microarray analysis combining ensemble and consensus methods with cross-study normalization. BMC Bioinformatics, 10, 358.  https://doi.org/10.1186/1471-2105-10-358.CrossRefGoogle Scholar
  33. 33.
    Rocco, L., Valentino, I., Scapigliati, G., & Stingo, V. (2014). RAPD-PCR analysis for molecular characterization and genotoxic studies of a new marine fish cell line derived from Dicentrarchus labrax. Cytotechnology, 66, 383–393.  https://doi.org/10.1007/s10616-013-9586-y.CrossRefGoogle Scholar
  34. 34.
    Ruzzo, A., Graziano, F., Loupakis, F., Santini, D., Catalano, V., Bisonni, R., et al. (2008). Pharmacogenetic profiling in patients with advanced colorectal cancer treated with first-line FOLFIRI chemotherapy. The Pharmacogenomics Journal, 8(4), 278–288.  https://doi.org/10.1038/sj.tpj.6500463.CrossRefGoogle Scholar
  35. 35.
    Kelly, H., & Goldberg, R. M. (2005). Systemic therapy for metastatic colorectal cancer: Current options, current evidence. Journal of Clinical Oncology, 23, 4553–4560.  https://doi.org/10.1200/JCO.2005.17.749.CrossRefGoogle Scholar
  36. 36.
    Curigliano, G., Mayer, E. L., Burstein, H. J., Winer, E. P., & Goldhirsch, A. (2010). Cardiac toxicity from systemic cancer therapy: A comprehensive review. Progress in Cardiovascular Diseases, 53(2), 94–104.  https://doi.org/10.1016/j.pcad.2010.05.006.CrossRefGoogle Scholar
  37. 37.
    Polk, A., Vistisen, K., Vaage-Nilsen, M., & Nielsen, D. L. (2014). A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacology and Toxicology, 15, 47.  https://doi.org/10.1186/2050-6511-15-47.CrossRefGoogle Scholar
  38. 38.
    Kweekel, D., Guchelaar, H.-J., & Gelderblom, H. (2008). Clinical and pharmacogenetic factors associated with irinotecan toxicity. Cancer Treatment Reviews, 34, 656–669.  https://doi.org/10.1016/j.ctrv.2008.05.002.CrossRefGoogle Scholar
  39. 39.
    Pommier, Y. (2006). Topoisomerase I inhibitors: Camptothecins and beyond. Nature Reviews Cancer, 6, 789.  https://doi.org/10.1038/nrc1977.CrossRefGoogle Scholar
  40. 40.
    Ma, Y., Gong, X., Mo, Y., & Wu, S. (2016). Polydatin inhibits the oxidative stress-induced proliferation of vascular smooth muscle cells by activating the eNOS/SIRT1 pathway. International Journal of Molecular Medicine, 37(6), 1652–1660.  https://doi.org/10.3892/ijmm.2016.2554.CrossRefGoogle Scholar
  41. 41.
    Byon, C. H., Heath, J. M., & Chen, Y. (2016). Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells. Redox Biology, 9, 244–253.  https://doi.org/10.1016/j.redox.2016.08.015.CrossRefGoogle Scholar
  42. 42.
    Clarke, M., & Bennett, M. (2006). Defining the role of vascular smooth muscle cell apoptosis in atherosclerosis. Cell Cycle, 5, 2329–2331.  https://doi.org/10.4161/cc.5.20.3383.CrossRefGoogle Scholar
  43. 43.
    Griendling, K. K., & Ushio-Fukai, M. (1998). Redox control of vascular smooth muscle proliferation. The Journal of Laboratory and Clinical Medicine, 132, 9–15.  https://doi.org/10.1016/S0022-2143(98)90019-1.CrossRefGoogle Scholar
  44. 44.
    Deshpande, N. N., Sorescu, D., Seshiah, P., Ushio-Fukai, M., Akers, M., Yin, Q., et al. (2002). Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle. Antioxidants & Redox Signaling, 4, 845–854.  https://doi.org/10.1089/152308602760599007.CrossRefGoogle Scholar
  45. 45.
    Triggle, C. R., Samuel, S. M., Ravishankar, S., Marei, I., Arunachalam, G., & Ding, H. (2012). The endothelium: Influencing vascular smooth muscle in many ways. Canadian Journal of Physiology and Pharmacology, 90, 713–738.  https://doi.org/10.1139/y2012-073.CrossRefGoogle Scholar
  46. 46.
    Meijles, D. N., & Pagano, P. J. (2016). Nox and inflammation in the vascular adventitia. Hypertension, 67, 14–19.  https://doi.org/10.1016/j.freeradbiomed.2009.07.022.CrossRefGoogle Scholar
  47. 47.
    Satoh, K., Godo, S., Saito, H., Enkhjargal, B., & Shimokawa, H. (2014). Dual roles of vascular-derived reactive oxygen species with a special reference to hydrogen peroxide and cyclophilin A. Journal of Molecular and Cellular Cardiology, 73, 50–56.  https://doi.org/10.1016/j.yjmcc.2013.12.022.CrossRefGoogle Scholar
  48. 48.
    Doğanlar, Z. B., Doğanlar, O., Tozkir, H., Gökalp, F. D., Doğan, A., Yamaç, F., et al. (2018). Nonoccupational exposure of agricultural area residents to pesticides: Pesticide accumulation and evaluation of genotoxicity. Archives of Environmental Contamination and Toxicology.  https://doi.org/10.1007/s00244-018-0545-7.Google Scholar
  49. 49.
    de Carvalho Filgueiras, M., Morrot, A., Soares, P. M. G., Costa, M. L., & Mermelstein, C. (2013). Effects of 5-fluorouracil in nuclear and cellular morphology, proliferation, cell cycle, apoptosis, cytoskeletal and caveolar distribution in primary cultures of smooth muscle cells. PLoS ONE, 8, e63177.  https://doi.org/10.1371/journal.pone.0063177.CrossRefGoogle Scholar
  50. 50.
    Gao, X., Kuo, J., Jiang, H., Deeb, D., Liu, Y., Divine, G., et al. (2004). Immunomodulatory activity of curcumin: Suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production in vitro. Biochemical Pharmacology, 68, 51–61.  https://doi.org/10.1016/j.bcp.2004.03.015.CrossRefGoogle Scholar
  51. 51.
    Min, K., & Ebeler, S. E. (2009). Quercetin inhibits hydrogen peroxide-induced DNA damage and enhances DNA repair in Caco-2 cells. Food and Chemical Toxicology, 47, 2716–2722.  https://doi.org/10.1016/j.fct.2009.07.033.CrossRefGoogle Scholar
  52. 52.
    Sottile, M. L., & Nadin, S. B. (2018). Heat shock proteins and DNA repair mechanisms: An updated overview. Cell Stress and Chaperones, 23, 303–315.  https://doi.org/10.1007/s12192-017-0843-4.CrossRefGoogle Scholar
  53. 53.
    Choi, Y.-J., Kang, J.-S., Park, J. H. Y., Lee, Y.-J., Choi, J.-S., & Kang, Y.-H. (2003). Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide–treated human vascular endothelial cells. The Journal of Nutrition, 133, 985–991.  https://doi.org/10.1093/jn/133.4.985.CrossRefGoogle Scholar
  54. 54.
    Jeong, Y.-J., Choi, Y.-J., Kwon, H.-M., Kang, S.-W., Park, H.-S., Lee, M., et al. (2005). Differential inhibition of oxidized LDL-induced apoptosis in human endothelial cells treated with different flavonoids. British Journal of Nutrition, 93, 581–591.  https://doi.org/10.1079/BJN20041397.CrossRefGoogle Scholar
  55. 55.
    Singh, S. (2015). Cytoprotective and regulatory functions of glutathione S-transferases in cancer cell proliferation and cell death. Cancer Chemotherapy and Pharmacology, 75, 1–15.  https://doi.org/10.1007/s00280-014-2566-x.CrossRefGoogle Scholar
  56. 56.
    Dasari, S., Ganjayi, M., Oruganti, L., Balaji, H., & Meriga, B. (2017). Glutathione S-transferases detoxify endogenous and exogenous toxic agents-minireview. Journal of Dairy, Veterinary and Animal Research, 5, 157–159.  https://doi.org/10.15406/jdvar.2017.05.00154.CrossRefGoogle Scholar
  57. 57.
    Sau, A., Tregno, F. P., Valentino, F., Federici, G., & Caccuri, A. M. (2010). Glutathione transferases and development of new principles to overcome drug resistance. Archives of Biochemistry and Biophysics, 500, 116–122.  https://doi.org/10.1016/j.abb.2010.05.012.CrossRefGoogle Scholar
  58. 58.
    Adler, V., Yin, Z., Fuchs, S. Y., Benezra, M., Rosario, L., Tew, K. D., et al. (1999). Regulation of JNK signaling by GSTp. The EMBO Journal, 18, 1321–1334.  https://doi.org/10.1093/emboj/18.5.1321.CrossRefGoogle Scholar
  59. 59.
    Cho, S.-G., Lee, Y. H., Park, H.-S., Ryoo, K., Kang, K. W., Park, J., et al. (2001). Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. Journal of Biological Chemistry, 276, 12749–12755.  https://doi.org/10.1074/jbc.M005561200.CrossRefGoogle Scholar
  60. 60.
    Wu, Y., Fan, Y., Xue, B., Luo, L., Shen, J., Zhang, S., et al. (2006). Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2–ASK1 signals. Oncogene, 25, 5787.  https://doi.org/10.1038/sj.onc.1209576.CrossRefGoogle Scholar
  61. 61.
    Noroozi, M., Angerson, W. J., & Lean, M. (1998). Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. The American Journal of Clinical Nutrition, 67, 1210–1218.  https://doi.org/10.1093/ajcn/67.6.1210.CrossRefGoogle Scholar
  62. 62.
    Pietta, P.-G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63, 1035–1042.  https://doi.org/10.1021/np9904509.CrossRefGoogle Scholar
  63. 63.
    Devipriya, N., Sudheer, A. R., Srinivasan, M., & Menon, V. P. (2008). Quercetin ameliorates gamma radiation-induced DNA damage and biochemical changes in human peripheral blood lymphocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 654, 1–7.  https://doi.org/10.1016/j.mrgentox.2008.03.003.CrossRefGoogle Scholar
  64. 64.
    Zhao, C., Shi, Y., Wang, W., Jia, Z., Yao, S., Fan, B., et al. (2003). Fast repair of deoxythymidine radical anions by two polyphenols: Rutin and quercetin. Biochemical Pharmacology, 65, 1967–1971.  https://doi.org/10.1016/S0006-2952(03)00196-5.CrossRefGoogle Scholar
  65. 65.
    Duthie, S., Collins, A., Duthie, G., & Dobson, V. (1997). Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 393, 223–231.  https://doi.org/10.1016/S1383-5718(97)00107-1.CrossRefGoogle Scholar
  66. 66.
    Sengupta, B., Uematsu, T., Jacobsson, P., & Swenson, J. (2006). Exploring the antioxidant property of bioflavonoid quercetin in preventing DNA glycation: A calorimetric and spectroscopic study. Biochemical and Biophysical Research Communications, 339, 355–361.  https://doi.org/10.1016/j.bbrc.2005.11.019.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cardiovascular surgery, Faculty of MedicineTrakya UniversityEdirneTurkey
  2. 2.Department of Medical Biology, Faculty of MedicineTrakya UniversityEdirneTurkey

Personalised recommendations