The Protective Effects of Pharmacologic Postconditioning of Hydroalcoholic Extract of Nigella sativa on Functional Activities and Oxidative Stress Injury During Ischemia–Reperfusion in Isolated Rat Heart

  • Mina Ghoreyshi
  • Maryam MahmoudabadyEmail author
  • Soleyman Bafadam
  • Saeed Niazmand


Oxidative stress is known to act as the trigger of cardiac damage during ischemia–reperfusion (I/R) injury. Postconditioning (PoC) is employed to minimize the consequences of ischemia at the onset of reperfusion. Regarding the well-known antioxidant properties of Nigella sativa (Ns), the aim of this study was to investigate whether Nigella sativa postconditioning (Ns-PoC) could reduce IRI by lowering the formation of reactive oxygen species (ROS). Isolated rat hearts were perfused with the Langendorff apparatus, which were subjected to 20 min of preperfusion, 20 min of global ischemia, followed by 40 min of reperfusion. At the onset of reperfusion, based on the type of intervention group, a 10-min period of Krebs flow was developed along with the treatment, and then the reperfusion with Krebs solution was conducted for 30 min. Heart rate (HR) and left ventricular pressure (LVP) were recorded by isometric transducers connected to a data acquisition system. Thiobarbituric acid reactive substances (TBARS), 4-hydroxynonenal (4-HNE) levels, total thiol groups (–SH) levels, superoxide anion dismutase (SOD), and catalase (CAT) activities in myocardial tissues were detected to evaluate the oxidative stress damage degree. Ns-PoC significantly improved cardiodynamic parameters including left ventricular developed pressure (LVDP), rate pressure product (RPP), and the maximum up/down rate of the left ventricular pressure (± dp/dt) as well as SH groups, SOD, and CAT activities. Moreover, it decreased MDA and 4-HNE levels during early reperfusion. The results of this study showed that Ns-PoC ameliorated cardiac functions in isolated rat heart during I/R injuries by improving myocardial oxidative stress states, which may be related to the antioxidant effect of Ns.


Nigella sativa Postconditioning Ischemia–reperfusion Oxidative stress Rat 



This paper was extracted from an M.Sc. thesis. The authors would like to thank Research Affairs of Mashhad University of Medical Sciences for their financial support (Grant No. 931367).

Compliance with Ethical Standards

Conflicts of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Hanson, M. A., Fareed, M. T., Argenio, S. L., Agunwamba, A. O., & Hanson, T. R. (2013). Coronary artery disease. Primary Care: Clinics in Office Practice, 40(1), 1–16.Google Scholar
  2. 2.
    Ovize, M., Baxter, G. F., Di Lisa, F., Ferdinandy, P., Garcia-Dorado, D., Hausenloy, D. J., et al. (2010). Postconditioning and protection from reperfusion injury: Where do we stand? Position paper from the working group of cellular biology of the heart of the European society of cardiology. Cardiovascular Research, 87(3), 406–423.Google Scholar
  3. 3.
    Kalogeris, T., Bao, Y., & Korthuis, R. J. (2014). Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion versus preconditioning. Redox Biology, 2, 702–714.Google Scholar
  4. 4.
    Kalogeris, T., Baines, C. P., Krenz, M., & Korthuis, R. J. (2012). Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology, 298, 229–317.Google Scholar
  5. 5.
    Poljsak, B., Šuput, D., & Milisav, I. (2013). Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxidative Medicine and Cellular Longevity, 2013, 956792.Google Scholar
  6. 6.
    Staat, P., Rioufol, G., Piot, C., Cottin, Y., Cung, T. T., L’Huillier, I., et al. (2005). Postconditioning the human heart. Circulation, 112(14), 2143–2148.Google Scholar
  7. 7.
    Zhao, Z. Q., Corvera, J. S., Halkos, M. E., Kerendi, F., Wang, N. P., Guyton, R. A., et al. (2003). Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Amercian Journal of Physiology Heart and Circulatory Physiology, 285(2), H579–H588.Google Scholar
  8. 8.
    Thibault, H., Piot, C., Staat, P., Bontemps, L., Sportouch, C., Rioufol, G., et al. (2008). Long-term benefit of postconditioning. Circulation, 117(8), 1037–1044.Google Scholar
  9. 9.
    Zheng, Y., Gu, S., Li, X., Tan, J., Liu, S., Jiang, Y., et al. (2017). Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death & Disease, 8(2), e2577.Google Scholar
  10. 10.
    Boengler, K., Heusch, G., & Schulz, R. (2011). Mitochondria in postconditioning. Antioxidants & Redox Signaling, 14(5), 863–880.Google Scholar
  11. 11.
    Krishnaiah, D., Sarbatly, R., & Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing, 89(3), 217–233.Google Scholar
  12. 12.
    Abbasnezhad, A., Hayatdavoudi, P., Niazmand, S., & Mahmoudabady, M. (2015). The effects of hydroalcoholic extract of Nigella sativa seed on oxidative stress in hippocampus of STZ-induced diabetic rats. Avicenna Journal of Phytomedicine, 5(4), 333–340.Google Scholar
  13. 13.
    Paarakh, P. M. (2010). Nigella sativa Linn.—A comprehensive review. Indian Journal of Natural Products and Resources, 1(4), 409–429.Google Scholar
  14. 14.
    Abbasnezhad, A., Niazmand, S., Mahmoudabady, M., Rezaee, S. A., Soukhtanloo, M., Mosallanejad, R., et al. (2019). Nigella sativa L. seed regulated eNOS, VCAM-1 and LOX-1 genes expression and improved vasoreactivity in aorta of diabetic rat. Journal of Ethnopharmacology, 228, 142–147.Google Scholar
  15. 15.
    Boskabady, M., Shafei, M., & Parsaee, H. (2005). Effects of aqueous and macerated extracts from Nigella sativa on guinea pig isolated heart activity. Pharmazie, 60(12), 943–948.Google Scholar
  16. 16.
    Shafei, M. N., Boskabady, M. H., & Parsaee, H. (2005). Effect of aqueous extract from Nigella sativa L. on guinea pig isolated heart. Indian Journal of Experimental Biology, 43(7), 635–639.Google Scholar
  17. 17.
    Zaoui, A., Cherrah, Y., Lacaille-Dubois, M., Settaf, A., Amarouch, H., & Hassar, M. (2000). Diuretic and hypotensive effects of Nigella sativa in the spontaneously hypertensive rat. Therapie, 55(3), 379–382.Google Scholar
  18. 18.
    Al-Hariri, M. T., Yar, T., Bamosa, A. O., & El-Bahai, M. N. (2009). Effects of 2-months Nigella sativa supplementation on cardiac haemodynamics and adrenergic responsiveness. Journal of the Pakistan Medical Association, 59(6), 363.Google Scholar
  19. 19.
    Gholamnezhad, Z., Keyhanmanesh, R., & Boskabady, M. H. (2015). Anti-inflammatory, antioxidant, and immunomodulatory aspects of Nigella sativa for its preventive and bronchodilatory effects on obstructive respiratory diseases: A review of basic and clinical evidence. Journal of Functional Foods, 17, 910–927.Google Scholar
  20. 20.
    Kooti, W., Hasanzadeh-Noohi, Z., Sharafi-Ahvazi, N., Asadi-Samani, M., & Ashtary-Larky, D. (2016). Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chinese Journal of Natural Medicines, 14(10), 732–745.Google Scholar
  21. 21.
    Gonca, E., & Kurt, C. (2015). Cardioprotective effect of thymoquinone: A constituent of Nigella sativa L., against myocardial ischemia/reperfusion injury and ventricular arrhythmias in anaesthetized rats. Pakistam Journal of Pharmaceutical Sciences, 28(4), 1267–1273.Google Scholar
  22. 22.
    Janero, D. R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology & Medicine, 9(6), 515–540.Google Scholar
  23. 23.
    Sharma, J. B., Sharma, A., Bahadur, A., Vimala, N., Satyam, A., & Mittal, S. (2006). Oxidative stress markers and antioxidant levels in normal pregnancy and pre-eclampsia. International Journal of Gynaecology and Obstetrics, 94(1), 23–27.Google Scholar
  24. 24.
    Madesh, M., & Balasubramanian, K. (1998). Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian Journal of Biochemistry & Biophysics, 35(3), 184–188.Google Scholar
  25. 25.
    Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.Google Scholar
  26. 26.
    Pourmorad, F., Hosseinimehr, S. J., & Shahabimajd, N. (2006). Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology, 5(11), 1142–1145.Google Scholar
  27. 27.
    Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654–660.Google Scholar
  28. 28.
    Takimoto, E., & Kass, D. A. (2007). Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension, 49(2), 241–248.Google Scholar
  29. 29.
    Seddon, M., Looi, Y. H., & Shah, A. M. (2007). Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart, 93(8), 903–907.Google Scholar
  30. 30.
    Yuan, X., Jing, S., Wu, L., Chen, L., & Fang, J. (2014). Pharmacological postconditioning with tanshinone IIA attenuates myocardial ischemia–reperfusion injury in rats by activating the phosphatidylinositol 3-kinase pathway. Experimental and Therapeutic Medicine, 8(3), 973–977.Google Scholar
  31. 31.
    Bayrak, O., Bavbek, N., Karatas, O. F., Bayrak, R., Catal, F., Cimentepe, E., et al. (2008). Nigella sativa protects against ischaemia/reperfusion injury in rat kidneys. Nephrology Dialysis Transplantation, 23(7), 2206–2212.Google Scholar
  32. 32.
    Mahmoudabady, M., Haghshenas, M., & Niazmand, S. (2018). Extract from Teucrium polium L. protects rat heart against oxidative stress induced by ischemic–reperfusion injury. Advanced Biomedical Research, 7, 15.Google Scholar
  33. 33.
    Mahmoudabady, M., Lashkari, M., Niazmand, S., & Soukhtanloo, M. (2017). Cardioprotective effects of Achillea wilhelmsii on the isolated rat heart in ischemia–reperfusion. Journal of Traditional and Complementary Medicine, 7(4), 501–507.Google Scholar
  34. 34.
    Cuzzocrea, S., Riley, D. P., Caputi, A. P., & Salvemini, D. (2001). Antioxidant therapy: A new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacological Reviews, 53(1), 135–159.Google Scholar
  35. 35.
    Shigematsu, S., Ishida, S., Hara, M., Takahashi, N., Yoshimatsu, H., Sakata, T., et al. (2003). Resveratrol, a red wine constituent polyphenol, prevents superoxide-dependent inflammatory responses induced by ischemia/reperfusion, platelet-activating factor, or oxidants. Free Radical Biology & Medicine, 34(7), 810–817.Google Scholar
  36. 36.
    Kurian, G. A., & Paddikkala, J. (2012). Methanol extract of Desmodium gangeticum DC root mimetic post-conditioning effect in isolated perfused rat heart by stimulating muscarinic receptors. Asian Pacific Journal of Tropical Medicine, 5(6), 448–454.Google Scholar
  37. 37.
    Ran, K., Yang, D. L., Chang, Y. T., Duan, K. M., Ou, Y. W., Wang, H. P., et al. (2014). Ginkgo biloba extract postconditioning reduces myocardial ischemia reperfusion injury. Genetics and Molecular Research, 13(2), 2703–2708.Google Scholar
  38. 38.
    Ojha, S., Azimullah, S., Mohanraj, R., Sharma, C., Yasin, J., Arya, D. S., et al. (2015). Thymoquinone protects against myocardial ischemic injury by mitigating oxidative stress and inflammation. Evidence Based Complementary Alternative Medicine, 2015, 143629.Google Scholar
  39. 39.
    Carocho, M., & Ferreira, I. C. (2013). A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, 51, 15–25.Google Scholar
  40. 40.
    Niazmand, S., Fereidouni, E., Mahmoudabady, M., & Mousavi, S. M. (2014). Endothelium-independent vasorelaxant effects of hydroalcoholic extract from Nigella sativa seed in rat aorta: the roles of Ca2 + and K + channels. BioMed Research International, 2014, 247054.Google Scholar
  41. 41.
    Sadeghi, N., Dianat, M., Badavi, M., & Malekzadeh, A. (2015). Cardioprotective effect of aqueous extract of Chichorium intybus on ischemia–reperfusion injury in isolated rat heart. Avicenna Journal of Phytomedicine, 5(6), 568–575.Google Scholar
  42. 42.
    Shabana, A., El-Menyar, A., Asim, M., Al-Azzeh, H., & Al, Thani H. (2013). Cardiovascular benefits of black cumin (Nigella sativa). Cardiovascular Toxicology, 13(1), 9–21.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  2. 2.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran

Personalised recommendations