Advertisement

Cardiovascular Toxicology

, Volume 19, Issue 6, pp 500–509 | Cite as

Coenzyme Q10 Alleviates Chronic Nucleoside Reverse Transcriptase Inhibitor-Induced Premature Endothelial Senescence

  • Yi-Fan Chen
  • Valeria Y. Hebert
  • Krisztian Stadler
  • Stephen Y. Xue
  • Kate Slaybaugh
  • Elliot Luttrell-Williams
  • Mitzi C. Glover
  • David M. Krzywanski
  • Tammy R. DugasEmail author
Article

Abstract

Human immunodeficiency virus (HIV)-infected patients undergoing antiretroviral therapy are afforded an increased lifespan but also exhibit an elevated incidence of cardiovascular disease. HIV therapy uses a combination drug approach, and nucleoside reverse transcriptase inhibitors (NRTI) are a backbone of this therapy. Endothelial dysfunction is an initiating event in cardiovascular disease etiology, and in our prior studies, NRTIs induced an endothelial dysfunction that was dependent upon mitochondrial oxidative stress. Moreover, short-term NRTI administration induced a mitophagy-associated endothelial toxicity and increased reactive oxygen species (ROS) production that was rescued by coenzyme Q10 (Q10) or overexpression of a mitochondrial antioxidant enzyme. Thus, our objective was to examine mitochondrial toxicity in endothelial cells after chronic NRTI treatment and evaluate Q10 as a potential adjunct therapy for preventing NRTI-induced mitochondrial toxicity. Human aortic endothelial cells (HAEC) were exposed to chronic NRTI treatment, with or without Q10. ROS production, cell proliferation rate, levels of senescence, and mitochondrial bioenergetic function were determined. Chronic NRTI increased ROS production but decreased population doubling. In addition, NRTI increased the accumulation of β-galactosidase, indicative of an accelerated rate of senescence. Moreover, ATP-linked respiration was diminished. Co-treatment with Q10 delayed the onset of NRTI-induced senescence, decreased ROS production and rescued the cells’ mitochondrial respiration rate. Thus, our findings may suggest antioxidant enrichment approaches for reducing the cardiovascular side effects of NRTI therapy.

Keywords

Nucleoside reverse transcriptase inhibitors (NRTI) Endothelial cells Senescence Mitochondria Coenzyme Q10 Human immunodeficiency virus (HIV) 

Notes

Acknowledgements

Funding for these studies was provided by discretionary sources within the Department of Comparative Biomedical Sciences (LSU School of Veterinary Medicine).

Compliance with Ethical Standards

Conflicts of interest

The authors have no conflicts of interest related to this study.

References

  1. 1.
    Beyer, R. E. (1992). An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochemistry and Cell Biology, 70, 390–403.CrossRefGoogle Scholar
  2. 2.
    Caron, M., Auclairt, M., Vissian, A., Vigouroux, C., & Capeau, J. (2008). Contribution of mitochondrial dysfunction and oxidative stress to cellular premature senescence induced by antiretroviral thymidine analogues. Antiviral Therapy, 13, 27–38.PubMedGoogle Scholar
  3. 3.
    Child, S., Montaner, J., Tsoukas, C., Fanning, M., Le, T., Wall, R. A., et al. (1991). Canadian multicenter azidothymidine trial: AZT pharmacokinetics. Journal of Acquired Immune Deficiency Syndromes, 4, 865–870.CrossRefGoogle Scholar
  4. 4.
    Clay, A. S., Behnia, M., & Brown, K. K. (2001). Mitochondrial disease: A pulmonary and critical-care medicine perspective. Chest, 120, 634–648.CrossRefGoogle Scholar
  5. 5.
    Cressey, T. R., Avihingsanon, A., Halue, G., Leenasirimakul, P., Sukrakanchana, P. O., Tawon, Y., et al. (2015). Plasma and intracellular pharmacokinetics of tenofovir disoproxil fumarate 300 mg every 48 hours vs 150 mg once daily in hiv-infected adults with moderate renal function impairment. Clinical Infectious Diseases, 61, 633–639.CrossRefGoogle Scholar
  6. 6.
    Cristofalo, V. J., Allen, R. G., Pignolo, R. J., Martin, B. G., & Beck, J. C. (1998). Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proceedings of the National Academy of Sciences of the United States of America, 95, 10614–10619.CrossRefGoogle Scholar
  7. 7.
    Dai, D. F., Rabinovitch, P. S., & Ungvari, Z. (2012). Mitochondria and cardiovascular aging. Circulation Research, 110, 1109–1124.CrossRefGoogle Scholar
  8. 8.
    De Bock, K., Georgiadou, M., Schoors, S., Kuchnio, A., Wong, B. W., Cantelmo, A. R., et al. (2013). Role of PFKFB3-driven glycolysis in vessel sprouting. Cell, 154, 651–663.CrossRefGoogle Scholar
  9. 9.
    Dranka, B. P., Benavides, G. A., Diers, A. R., Giordano, S., Zelickson, B. R., Reily, C., et al. (2011). Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radical Biology and Medicine, 51, 1621–1635.CrossRefGoogle Scholar
  10. 10.
    Droge, W., & Schipper, H. M. (2007). Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell, 6, 361–370.CrossRefGoogle Scholar
  11. 11.
    Ernster, L., & Dallner, G. (1995). Biochemical, physiological and medical aspects of ubiquinone function. Biochimica et Biophysica Acta, 1271, 195–204.CrossRefGoogle Scholar
  12. 12.
    Freiberg, M. S., Chang, C. C., Kuller, L. H., Skanderson, M., Lowy, E., Kraemer, K. L., et al. (2013). HIV infection and the risk of acute myocardial infarction. JAMA Internal Medicine, 173, 614–622.CrossRefGoogle Scholar
  13. 13.
    Glover, M., Hebert, V. Y., Nichols, K., Xue, S. Y., Thibeaux, T. M., Zavecz, J. A., et al. (2014). Overexpression of mitochondrial antioxidant manganese superoxide dismutase (MnSOD) provides protection against AZT- or 3TC-induced endothelial dysfunction. Antiviral Research, 111, 136–142.CrossRefGoogle Scholar
  14. 14.
    Hebert, V. Y., Crenshaw, B. L., Romanoff, R. L., Ekshyyan, V. P., & Dugas, T. R. (2004). Effects of HIV drug combinations on endothelin-1 and vascular cell proliferation. Cardiovascular Toxicology, 4, 117–131.CrossRefGoogle Scholar
  15. 15.
    Hill, B. G., Benavides, G. A., Lancaster, J. R., Jr., Ballinger, S., Dell’Italia, L., Jianhua, Z., et al. (2012). Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biological Chemistry, 393, 1485–1512.CrossRefGoogle Scholar
  16. 16.
    Huttemann, M., Lee, I., Samavati, L., Yu, H., & Doan, J. W. (2007). Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochimica et Biophysica Acta, 1773, 1701–1720.CrossRefGoogle Scholar
  17. 17.
    Islam, F. M., Wu, J., Jansson, J., & Wilson, D. P. (2012). Relative risk of cardiovascular disease among people living with HIV: A systematic review and meta-analysis. HIV Medicine, 13, 453–468.PubMedGoogle Scholar
  18. 18.
    Jiang, B., Hebert, V. Y., Li, Y., Mathis, J. M., Alexander, J. S., & Dugas, T. R. (2007). HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis. Toxicology and Applied Pharmacology, 224, 60–71.CrossRefGoogle Scholar
  19. 19.
    Jiang, B., Hebert, V. Y., Zavecz, J. H., & Dugas, T. R. (2006). Antiretrovirals induce direct endothelial dysfunction in vivo. Journal of Acquired Immune Deficiency Syndromes, 42, 391–395.CrossRefGoogle Scholar
  20. 20.
    Jiang, B., Khandelwal, A. R., Rogers, L. K., Hebert, V. Y., Kleinedler, J. J., Zavecz, J. H., et al. (2010). Antiretrovirals induce endothelial dysfunction via an oxidant-dependent pathway and promote neointimal hyperplasia. Toxicological Sciences, 117, 524–536.CrossRefGoogle Scholar
  21. 21.
    Kline, E. R., Bassit, L., Hernandez-Santiago, B. I., Detorio, M. A., Liang, B., Kleinhenz, D. J., et al. (2009). Long-term exposure to AZT, but not d4T, increases endothelial cell oxidative stress and mitochondrial dysfunction. Cardiovascular Toxicology, 9, 1–12.CrossRefGoogle Scholar
  22. 22.
    Kline, E. R., & Sutliff, R. L. (2008). The roles of HIV-1 proteins and antiretroviral drug therapy in HIV-1-associated endothelial dysfunction. Journal of Investigative Medicine, 56, 752–769.CrossRefGoogle Scholar
  23. 23.
    Kurz, D. J., Decary, S., Hong, Y., Trivier, E., Akhmedov, A., & Erusalimsky, J. D. (2004). Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. Journal of Cell Science, 117, 2417–2426.CrossRefGoogle Scholar
  24. 24.
    Lenaz, G., Baracca, A., Barbero, G., Bergamini, C., Dalmonte, M. E., Del Sole, M., et al. (2010). Mitochondrial respiratory chain super-complex I-III in physiology and pathology. Biochimica et Biophysica Acta, 1797, 633–640.CrossRefGoogle Scholar
  25. 25.
    Lund, K. C., Peterson, L. L., & Wallace, K. B. (2007). Absence of a universal mechanism of mitochondrial toxicity by nucleoside analogs. Antimicrobial Agents and Chemotherapy, 51, 2531–2539.CrossRefGoogle Scholar
  26. 26.
    McCarthy, C., & Kenny, L. C. (2016). Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia. Scientific Reports, 6, 32683.CrossRefGoogle Scholar
  27. 27.
    McComsey, G., Bai, R. K., Maa, J. F., Seekins, D., & Wong, L. J. (2005). Extensive investigations of mitochondrial DNA genome in treated HIV-infected subjects: Beyond mitochondrial DNA depletion. Journal of Acquired Immune Deficiency Syndromes, 39, 181–188.PubMedGoogle Scholar
  28. 28.
    Mookerjee, S. A., Goncalves, R. L. S., Gerencser, A. A., Nicholls, D. G., & Brand, M. D. (2015). The contributions of respiration and glycolysis to extracellular acid production. Biochimica et Biophysica Acta, 1847, 171–181.CrossRefGoogle Scholar
  29. 29.
    Nacarelli, T., Azar, A., & Sell, C. (2016). Mitochondrial stress induces cellular senescence in an mTORC1-dependent manner. Free Radical Biology and Medicine, 95, 133–154.CrossRefGoogle Scholar
  30. 30.
    Nolan, D., Hammond, E., Martin, A., Taylor, L., Herrmann, S., McKinnon, E., et al. (2003). Mitochondrial DNA depletion and morphologic changes in adipocytes associated with nucleoside reverse transcriptase inhibitor therapy. Aids, 17, 1329–1338.CrossRefGoogle Scholar
  31. 31.
    Pamukcu, B., Lip, G. Y., & Shantsila, E. (2011). The nuclear factor–kappa B pathway in atherosclerosis: a potential therapeutic target for atherothrombotic vascular disease. Thrombosis Research, 128, 117–123.CrossRefGoogle Scholar
  32. 32.
    Pinto, M., & Moraes, C. T. (2015). Mechanisms linking mtDNA damage and aging. Free Radical Biology and Medicine, 85, 250–258.CrossRefGoogle Scholar
  33. 33.
    Unterluggauer, H., Mazurek, S., Lener, B., Hutter, E., Eigenbrodt, E., Zwerschke, W., et al. (2008). Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology, 9, 247–259.CrossRefGoogle Scholar
  34. 34.
    Wang, L. H., Chittick, G. E., & McDowell, J. A. (1999). Single-dose pharmacokinetics and safety of abacavir (1592U89), zidovudine, and lamivudine administered alone and in combination in adults with human immunodeficiency virus infection. Antimicrobial Agents and Chemotherapy, 43, 1708–1715.CrossRefGoogle Scholar
  35. 35.
    Wang, H., Zhou, J., He, Q., Dong, Y., & Liu, Y. (2017). Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer. Molecular Medicine Reports, 15, 4055–4060.CrossRefGoogle Scholar
  36. 36.
    Widlansky, M. E., Gokce, N., Keaney, J. F., Jr., & Vita, J. A. (2003). The clinical implications of endothelial dysfunction. Journal of the American College of Cardiology, 42, 1149–1160.CrossRefGoogle Scholar
  37. 37.
    Wu, M., Neilson, A., Swift, A. L., Moran, R., Tamagnine, J., Parslow, D., et al. (2007). Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. American Journal of Physiology. Cell Physiology, 292, C125–136.CrossRefGoogle Scholar
  38. 38.
    Xue, S. Y., Hebert, V. Y., Hayes, D. M., Robinson, C. N., Glover, M., & Dugas, T. R. (2013). Nucleoside reverse transcriptase inhibitors induce a mitophagy-associated endothelial cytotoxicity that is reversed by coenzyme Q10 cotreatment. Toxicological Sciences, 134, 323–334.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yi-Fan Chen
    • 1
  • Valeria Y. Hebert
    • 2
  • Krisztian Stadler
    • 3
  • Stephen Y. Xue
    • 2
  • Kate Slaybaugh
    • 2
  • Elliot Luttrell-Williams
    • 2
  • Mitzi C. Glover
    • 4
  • David M. Krzywanski
    • 5
  • Tammy R. Dugas
    • 1
    Email author
  1. 1.Comparative Biomedical SciencesLSU School of Veterinary MedicineBaton RougeUSA
  2. 2.Pharmacology, Toxicology and NeuroscienceLSU Health Sciences CenterShreveportUSA
  3. 3.Oxidative Stress and Disease LaboratoryPennington Biomedical Research CenterBaton RougeUSA
  4. 4.Clinical Laboratory Sciences, School of Allied Health ProfessionsLSU Health Sciences CenterNew OrleansUSA
  5. 5.Cellular Biology and AnatomyLSU Health Sciences CenterShreveportUSA

Personalised recommendations