Advertisement

Ischemic Preconditioning Efficacy Following Anabolic Steroid Usage: A Clear Difference Between Sedentary and Exercise-Trained Rat Hearts

  • Zahra Akbari
  • Mansour Esmailidehaj
  • Ebrahim Avarand
  • Mehrdad Shariati
  • Khalil Pourkhalili
Article
  • 11 Downloads

Abstract

Previous studies show that anabolic steroids impair innate cardioprotective mechanisms. Here, we investigated the effect of supraphysiological doses of nandrolone on ischemic preconditioning (IPC) as a potent cardioprotective tool against ischemia reperfusion (IR) injury in rat hearts. Male Wistar rats in two experimental settings of sedentary and exercise-trained (60 min/day swimming, 5 days/week, for 8 weeks) were either pretreated with intramuscular injections of arachis oil (Arach, n = 16) as vehicle or nandrolone decanoate (ND, n = 8), 10 mg/kg/week, for 8 weeks. At the end, the hearts were excised and perfused in a Langendorff system. Then, the vehicle-treated hearts subdivided into the IR (30 min of LAD coronary artery occlusion and 120 min reperfusion, n = 8) and IPC (three cycles of 3-min ischemia and 3-min reperfusion before test ischemia, n = 8) groups and nandrolone-treated hearts served as ND + IPC (nandrolone pretreatment before IR and IPC protocols, n = 8) group. Post-ischemic cardiac function and infarct size were assessed. Reperfusion arrhythmias were analyzed using a standard scoring system. In sedentary hearts, ND slightly increased heart-to-body weight ratio and increased baseline cardiac contractile function. In trained hearts, ND markedly increased heart-to-body weight ratio which was also associated with enhanced baseline cardiac function. ND pretreatment enhanced protective effects of IPC in sedentary group; however, abolished these effects in exercise-trained group. The arrhythmia score was not significantly different between nandrolone-treated groups vs. respective preconditioned groups. Our findings show that ND impairs IPC-induced cardioprotection in exercise-trained rat hearts. Cardiac hypertrophy seems to play a crucial role in this response.

Keywords

Ischemic preconditioning Nandrolone Hypertrophy Cardioprotection 

Notes

Acknowledgements

The authors appreciate the Vice Chancellor for Research and Technology, Bushehr University of Medical Sciences for financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hausenloy, D. J., & Yellon, D. M. (2013). Myocardial ischemia-reperfusion injury: A neglected therapeutic target. Journal of Clinical Investigation, 123, 92–100.CrossRefPubMedGoogle Scholar
  2. 2.
    Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74, 1124–1136.CrossRefPubMedGoogle Scholar
  3. 3.
    Lai, C. C., Tang, C. Y., Chiang, S. C., Tseng, K. W., & Huang, C. H. (2015). Ischemic preconditioning activates prosurvival kinases and reduces myocardial apoptosis. Journal of the Chinese Medical Association, 78, 460–468.CrossRefPubMedGoogle Scholar
  4. 4.
    Iliodromitis, E. K., Lazou, A., & Kremastinos, D. T. (2007). Ischemic preconditioning: Protection against myocardial necrosis and apoptosis. Vascular Health and Risk Management, 3, 629–637.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Li, Y. W., Whittaker, P., & Kloner, R. A. (1992). The transient nature of the effect of ischemic preconditioning on myocardial infarct size and ventricular arrhythmia. American Heart Journal, 123, 346–353.CrossRefPubMedGoogle Scholar
  6. 6.
    Galagudza, M. M., Sonin, D. L., Vlasov, T. D., Kurapeev, D. I., & Shlyakhto, E. V. (2016). Remote vs. local ischaemic preconditioning in the rat heart: Infarct limitation, suppression of ischaemic arrhythmia and the role of reactive oxygen species. International Journal of Experimental Pathology, 97, 66–74.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kersey, R. D., Elliot, D. L., Goldberg, L., Kanayama, G., Leone, J. E., Pavlovich, M., et al. (2012). National athletic trainers’ association position statement: Anabolic–androgenic steroids. Journal of Athletic Training, 47, 567–688.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Woerdeman, J., & de Ronde, W. (2011). Therapeutic effects of anabolic androgenic steroids on chronic diseases associated with muscle wasting. Expert Opinion on Investigational Drugs, 20, 87–97.CrossRefPubMedGoogle Scholar
  9. 9.
    Marqueti, R. C., Micocci, K. C., Leite, R. D., & Selistre-de-Araujo, H. S. (2012). Nandrolone inhibits MMP-2 in the left ventricle of rats. International Journal of Sports Medicine, 33, 181–185.CrossRefPubMedGoogle Scholar
  10. 10.
    Rosca, A. E., Stoian, I., Badiu, C., Gaman, L., Popescu, B. O., Iosif, L. et al. (2016). Impact of chronic administration of anabolic androgenic steroids and taurine on blood pressure in rats. Brazilian Journal of Medical and Biological Research.  https://doi.org/10.1590/1414-431X20165116.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pirompol, P., Teekabut, V., Weerachatyanukul, W., Bupha-Intr, T., & Wattanapermpool, J. (2016). Supra-physiological dose of testosterone induces pathological cardiac hypertrophy. Journal of Endocrinology, 229, 13–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Ammar, E. M., Said, S. A., & Hassan, M. S. (2004). Enhanced vasoconstriction and reduced vasorelaxation induced by testosterone and nandrolone in hypercholesterolemic rabbits. Pharmacological Research, 50, 253–259.CrossRefPubMedGoogle Scholar
  13. 13.
    Nascimento, J. H., & Medei, E. (2011). Cardiac effects of anabolic steroids: Hypertrophy, ischemia and electrical remodelling as potential triggers of sudden death. Mini Reviews in Medicinal Chemistry, 11, 425–429.CrossRefPubMedGoogle Scholar
  14. 14.
    Fineschi, V., Riezzo, I., Centini, F., Silingardi, E., Licata, M., Beduschi, G., et al. (2007). Sudden cardiac death during anabolic steroid abuse: Morphologic and toxicologic findings in two fatal cases of bodybuilders. International Journal of Legal Medicine, 121, 48–53.CrossRefPubMedGoogle Scholar
  15. 15.
    Du Toit, E. F., Rossouw, E., Van, Rooyen, J., & Lochner, A. (2005). Proposed mechanisms for the anabolic steroid-induced increase in myocardial susceptibility to ischaemia/reperfusion injury. Cardiovascular Journal of South Africa, 16, 21–28.PubMedGoogle Scholar
  16. 16.
    Chaves, E. A., Fortunato, R. S., Carvalho, D. P., Nascimento, J. H. M., & Oliveira, M. F. (2013). Exercise-induced cardioprotection is impaired by anabolic steroid treatment through a redox-dependent mechanism. The Journal of Steroid Biochemistry and Molecular Biology, 138, 267–272.CrossRefPubMedGoogle Scholar
  17. 17.
    Bissoli, N. S., Medeiros, A. R. S., Santos, M. C. S., Busato, V. C. W., Jarske, R. D., Abreu, G. R., et al. (2009). Long-term treatment with supraphysiological doses of nandrolone decanoate reduces the sensitivity of Bezold–Jarisch reflex control of heart rate and blood pressure. Pharmacological Research, 59, 379–384.CrossRefPubMedGoogle Scholar
  18. 18.
    Abdollahi, F., Joukar, S., Najafipour, H., Karimi, A., Masumi, Y., & Binayi, F. (2016). The risk of life-threatening ventricular arrhythmias in presence of high-intensity endurance exercise along with chronic administration of nandrolone decanoate. Steroids, 105, 106–112.CrossRefPubMedGoogle Scholar
  19. 19.
    Binayi, F., Joukar, S., Najafipour, H., Karimi, A., Abdollahi, F., & Masumi, Y. (2016). The effects of nandrolone decanoate along with prolonged low-intensity exercise on susceptibility to ventricular arrhythmias. Cardiovascular Toxicology, 16, 23–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Penna, C., Abbadessa, G., Mancardi, D., Tullio, F., Piccione, F., Spaccamiglio, A., et al. (2008). Synergistic effects against post-ischemic cardiac dysfunction by sub-chronic nandrolone pretreatment and postconditioning: Role of beta2-adrenoceptor. Journal of Physiology and Pharmacology, 59, 645–659.Google Scholar
  21. 21.
    Penna, C., Tullio, F., Perrelli, M. G., Moro, F., Abbadessa, G., Piccione, F., et al. (2011). Ischemia/reperfusion injury is increased and cardioprotection by a postconditioning protocol is lost as cardiac hypertrophy develops in nandrolone treated rats. Basic Research in Cardiology, 106, 409–420.CrossRefPubMedGoogle Scholar
  22. 22.
    Do Carmo, E. C., Fernandes, T., Koike, D., Da Silva, N. D., Mattos, K. C., Rosa, K. T., et al. (2011). Anabolic steroid associated to physical training induces deleterious cardiac effects. Medicine and Science in Sports and Exercise, 43, 1836–1848.CrossRefPubMedGoogle Scholar
  23. 23.
    Pereira-Junior, P. P., Chaves, E. A., Costa, E. S. R. H., Masuda, M. O., de Carvalho, A. C., & Nascimento, J. H. (2006). Cardiac autonomic dysfunction in rats chronically treated with anabolic steroid. European Journal of Applied Physiology, 96, 487–494.CrossRefPubMedGoogle Scholar
  24. 24.
    Tanno, A. P., Neves, V. J. d., Rosa, K. T., Cunha, T. S., Giordano, F. C. L., & Calil, C. M. (2011). Nandrolone and resistance training induce heart remodeling: Role of fetal genes and implications for cardiac pathophysiology. Life Sciences, 89, 631–637.CrossRefPubMedGoogle Scholar
  25. 25.
    Pope, Jr. H. G., Katz, D. L. (1988). Affective and psychotic symptoms associated with anabolic steroid use. American Journal of Psychiatry, 145, 487–490.CrossRefPubMedGoogle Scholar
  26. 26.
    Norton, G. R., Trifunovic, B., Woodiwiss, A. J. (2000). Attenuated beta-adrenoceptor-mediated cardiac contractile responses following androgenic steroid administration to sedentary rats. European Journal of Applied Physiology, 81, 310–316.CrossRefPubMedGoogle Scholar
  27. 27.
    Evans, N. A. (1997). Gym and tonic: A profile of 100 male steroid users. British Journal of Sports Medicine, 31, 54–58.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shokri, S., Aitken, R. J., Abdolvahhabi, M., Abolhasani, F., Ghasemi, F. M., Kashani, I., et al. (2009). Exercise and supraphysiological dose of nandrolone deconoate increase apoptosis in spermatogenic cells. Basic and Clinical Pharmacology and Toxicology, 106, 324–330.CrossRefPubMedGoogle Scholar
  29. 29.
    Schultz, J. E., Hsu, A. K., & Gross, G. J. (1998). Ischemic preconditioning in the intact rat heart is mediated by delta1- but not mu- or kappa-opioid receptors. Circulation, 97, 1282–1289.CrossRefPubMedGoogle Scholar
  30. 30.
    Walker, M. J., Curtis, M. J., Hearse, D. J., Campbell, R. W., Janse, M. J., Yellon, D. M., et al. (1988). The Lambeth Conventions: Guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovascular Research, 22, 447–455.CrossRefPubMedGoogle Scholar
  31. 31.
    Song, Y., Song, J. W., Lee, S., Jun, J. H., Kwak, Y. L., & Shim, J. K. (2017). Effects of remote ischemic preconditioning in patients with concentric myocardial hypertrophy: A randomized, controlled trial with molecular insights. International Journal of Cardiology, 249, 36–41.CrossRefPubMedGoogle Scholar
  32. 32.
    Seara, F. A. C., Barbosa, R. A. Q., de Oliveira, D. F., Gran da Silva, D. L. S., Carvalho, A. B., Ferreira, A. C. et al. (2017). Administration of anabolic steroid during adolescence induces long-term cardiac hypertrophy and increases susceptibility to ischemia/reperfusion injury in adult Wistar rats. Journal of Steroid Biochem Molecular Biology, 171, 34–42.CrossRefGoogle Scholar
  33. 33.
    Beutel, A., Bergamaschi, C. T., & Campos, R. R. (2005). Effects of chronic anabolic steroid treatment on tonic and reflex cardiovascular control in male rats. The Journal of Steroid Biochemistry and Molecular Biology, 93, 43–48.CrossRefPubMedGoogle Scholar
  34. 34.
    Rocha, F. L., Carmo, E. C., Roque, F. R., Hashimoto, N. Y., Rossoni, L. V., Frimm, C., et al. (2007). Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. American Journal of Physiology; Heart Circulation Physiology, 293, H3575–H3583.CrossRefGoogle Scholar
  35. 35.
    Lunz, W., Oliveira, E. C., Neves, M. T. D., Fontes, E. P. B., Dias, C. M. G. C., & Natali, A. J. (2006). Anabolic steroid and exercise induced cardiac stress protein (HSP72) in the rat. Brazillian Journal of Medical and Biological Research, 39, 889–893.CrossRefGoogle Scholar
  36. 36.
    Woodiwiss, A., Trifunovic, G., Philippides, M., & Norton, G. (2000). Effect of an androgenic steroid on exercise-induced cardiac remodeling in rats. Journal of Applied Physiology, 88, 409–415.CrossRefPubMedGoogle Scholar
  37. 37.
    Pergolizzi, B., Carriero, V., Abbadessa, G., Penna, C., Berchialla, P., De Francia, S., et al. (2017). Subchronic nandrolone administration reduces cardiac oxidative markers during restraint stress by modulating protein expression patterns. Molecular Cell Biochemistry, 434, 51–60.CrossRefGoogle Scholar
  38. 38.
    Chaves, E. A., Pereira-Junior, P. P., Fortunato, R. S., Masuda, M. O., de Carvalho, A. C., de Carvalho, D. P., et al. (2006). Nandrolone decanoate impairs exercise-induced cardioprotection: Role of antioxidant enzymes. Journals of Steroid Biochemistry Molecular Biology, 99, 223–230.CrossRefGoogle Scholar
  39. 39.
    Xiao, J., Xu, T., Li, J., Lv, D., Chen, P., Zhou, Q., et al. (2014). Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. International Journal of Clinical and Experimental Pathology, 7, 663–669.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Brasil, G. A., Lima, E. M., Nascimento, A. M., Caliman, I. F., Medeiros, A. R., Silva, M. S., et al. (2015). Nandrolone decanoate induces cardiac and renal remodeling in female rats, without modification in physiological parameters: The role of ANP system. Life Sciences, 137, 65–73.CrossRefPubMedGoogle Scholar
  41. 41.
    Iemitsu, M., Miyauchi, T., Maeda, S., Sakai, S., Kobayashi, T., Fujii, N., et al. (2001). Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281, R2029–R2036.CrossRefPubMedGoogle Scholar
  42. 42.
    Molgaard, S., Faricelli, B., Salomonsson, M., Engstrom, T., & Treiman, M. (2016). Increased myocardial vulnerability to ischemia–reperfusion injury in the presence of left ventricular hypertrophy. Journal of Hypertension, 34, 513–523.CrossRefPubMedGoogle Scholar
  43. 43.
    Yano, T., Miki, T., Tanno, M., Kuno, A., Itoh, T., Takada, A., et al. (2011). Hypertensive hypertrophied myocardium is vulnerable to infarction and refractory to erythropoietin-induced protection. Hypertension, 57, 110–115.CrossRefPubMedGoogle Scholar
  44. 44.
    Snoeckx, L. H., van der Vusse, G. J., van der Veen, F. H., Coumans, W. A., & Reneman, R. S. (1989). Recovery of hypertrophied rat hearts after global ischemia and reperfusion at different perfusion pressures. Pflugers Archiv, 413, 303–312.CrossRefPubMedGoogle Scholar
  45. 45.
    Friehs, I., Moran, A. M., Stamm, C., Choi, Y. H., Cowan, D. B., McGowan, F. X., et al. (2004). Promoting angiogenesis protects severely hypertrophied hearts from ischemic injury. The Annals of Thoracic Surgery, 77, 2004–2010.CrossRefPubMedGoogle Scholar
  46. 46.
    Chen, C. H., Wu, C. W., Shih, C. D., Lien, W. H., Huang, S. L., & Huang, C. C. (2016). Attenuation of isoflurane preconditioning-induced acute cardioprotection in hypertensive hypertrophied hearts. Journal of Cardiothorac Vascular Anesthesia, 30, 1317–1323.CrossRefGoogle Scholar
  47. 47.
    Wagner, C., Ebner, B., Tillack, D., Strasser, R. H., & Weinbrenner, C. (2013). Cardioprotection by ischemic postconditioning is abrogated in hypertrophied myocardium of spontaneously hypertensive rats. Journal of Cardiovascular Pharmacolology, 61, 35–41.CrossRefGoogle Scholar
  48. 48.
    Fineschi, V., Di Paolo, M., Neri, M., Bello, S., D’Errico, S., Dinucci, D., et al. (2011). Anabolic steroid- and exercise-induced cardio-depressant cytokines and myocardial beta1 receptor expression in CD1 mice. Current Pharmacology Biotechnology, 12, 275–284.CrossRefGoogle Scholar
  49. 49.
    Stelzer, J. E., Brickson, S. L., Locher, M. R., & Moss, R. L. (2007). Role of myosin heavy chain composition in the stretch activation response of rat myocardium. Journal of Physiology, 579, 161–173.CrossRefPubMedGoogle Scholar
  50. 50.
    Penna, C., Abbadessa, G., Mancardi, D., Spaccamiglio, A., Racca, S., & Pagliaro, P. (2007). Nandrolone-pretreatment enhances cardiac [beta]2-adrenoceptor expression and reverses heart contractile down-regulation in the post-stress period of acute-stressed rats. The Journal of Steroid Biochemistry and Molecular Biology, 107, 106–113.CrossRefPubMedGoogle Scholar
  51. 51.
    das Neves, V. J., Tanno, A. P., Cunha, T. S., Fernandes, T., Guzzoni, V., da Silva, C. A., et al. (2013). Effects of nandrolone and resistance training on the blood pressure, cardiac electrophysiology, and expression of atrial beta-adrenergic receptors. Life Science, 92, 1029–1035.CrossRefGoogle Scholar
  52. 52.
    Marques-Neto, S. R., Ferraz, E. B., Rodrigues, D. C., Njaine, B., Rondinelli, E., Campos de Carvalho, A. C., et al. (2014). AT1 and aldosterone receptors blockade prevents the chronic effect of nandrolone on the exercise-induced cardioprotection in perfused rat heart subjected to ischemia and reperfusion. Cardiovascular Drugs Therapy, 28, 125–135.CrossRefPubMedGoogle Scholar
  53. 53.
    Zhou, L. Y., Liu, J. P., Wang, K., Gao, J., Ding, S. L., Jiao, J. Q., et al. (2018). Mitochondrial function in cardiac hypertrophy. International Journal of Cardiology, 167, 1118–1125.CrossRefGoogle Scholar
  54. 54.
    Abeer, A. M., Noura, H. M., & Maha, Z. M. (2018). The Nandrolone effect on cardiac muscle of adult male albino rat and the possible role of nigella sativa: Light and electron microscopic studies. Journal of Biochemistry and Cell Biology, 1, 109.Google Scholar
  55. 55.
    Sun, M., Shen, W., Zhong, M., Wu, P., Chen, H., & Lu, A. (2013). Nandrolone attenuates aortic adaptation to exercise in rats. Cardiovascular Research, 97, 686–695.CrossRefPubMedGoogle Scholar
  56. 56.
    Hanan, A. E. E., Adel, A. E. A., Mona, A. E. E. S., & Afaf, T. A. (2018). Effect of anabolic steroids on the cardiac and skeletal muscles of adult male rats. International Journal of Clinical and Developmental Anatomy, 4, 1–14.Google Scholar
  57. 57.
    Hassan, N. A., Salem, M. F., & Sayed, M. A. (2009). Doping and effects of anabolic androgenic steroids on the heart: Histological, ultrastructural, and echocardiographic assessment in strength athletes. Human Experimental Toxicology, 28, 273–283.CrossRefPubMedGoogle Scholar
  58. 58.
    Achar, S., Rostamian, A., & Narayan, S. M. (2010). Cardiac and metabolic effects of anabolic-androgenic steroid abuse on lipids, blood pressure, left ventricular dimensions, and rhythm. American Journal of Cardiology, 106, 893–901.CrossRefPubMedGoogle Scholar
  59. 59.
    Phillis, B. D., Abeywardena, M. Y., Adams, M. J., Kennedy, J. A., & Irvine, R. J. (2007). Nandrolone potentiates arrhythmogenic effects of cardiac ischemia in the rat. Toxicology Science, 99, 605–611.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of MedicineBushehr University of Medical SciencesBushehrIran
  2. 2.Department of Physiology, Faculty of MedicineShahid Sadoughi University of Medical SciencesYazdIran
  3. 3.Department of BiologyIslamic Azad UniversityKazerunIran

Personalised recommendations