Advertisement

Phenolic Metabolites Modulate Cardiomyocyte Beating in Response to Isoproterenol

  • Daniela Dias-Pedroso
  • Joel Guerra
  • Andreia Gomes
  • Carole Oudot
  • Catherine Brenner
  • Cláudia N. Santos
  • Helena L. A. Vieira
Article
  • 70 Downloads

Abstract

Cardiovascular disease (CVD) is a public health concern, and the third cause of death worldwide. Several epidemiological studies and experimental approaches have demonstrated that consumption of polyphenol-enriched fruits and vegetables can promote cardioprotection. Thus, diet plays a key role in CVD development and/or prevention. Physiological β-adrenergic stimulation promotes beneficial inotropic effects by increasing heart rate, contractility and relaxation speed of cardiomyocytes. Nevertheless, chronic activation of β-adrenergic receptors can cause arrhythmias, oxidative stress and cell death. Herein the cardioprotective effect of human metabolites derived from polyphenols present in berries was assessed in cardiomyocytes, in response to chronic β-adrenergic stimulation, to disclose some of the underlying molecular mechanisms. Ventricular cardiomyocytes derived from neonate rats were treated with three human bioavailable phenolic metabolites found in circulating human plasma, following berries’ ingestion (catechol-O-sulphate, pyrogallol-O-sulphate, and 1-methylpyrogallol-O-sulphate). The experimental conditions mimic the physiological concentrations and circulating time of these metabolites in the human plasma (2 h). Cardiomyocytes were then challenged with the β-adrenergic agonist isoproterenol (ISO) for 24 h. The presence of phenolic metabolites limited ISO-induced mitochondrial oxidative stress. Likewise, phenolic metabolites increased cell beating rate and synchronized cardiomyocyte beating population, following prolonged β-adrenergic receptor activation. Finally, phenolic metabolites also prevented ISO-increased activation of PKA–cAMP pathway, modulating Ca2+ signalling and rescuing cells from an arrhythmogenic Ca2+ transients’ phenotype. Unexpected cardioprotective properties of the recently identified human-circulating berry-derived polyphenol metabolites were identified. These metabolites modulate cardiomyocyte beating and Ca2+ transients following β-adrenergic prolonged stimulation.

Keywords

Cardiomyocytes β-Adrenergic receptors Isoproterenol Human bioavailable phenolic metabolites Polyphenols 

Abbreviations

β-AR

β-Adrenergic receptors

BDP

Berry-derived polyphenols

CaMKII

Calcium calmodulin-dependent kinase II

cAMP

Cyclic adenosine monophosphate

CVD

Cardiovascular diseases

ISO

Isoproterenol

PKA

cAMP-dependent protein kinase A

ROS

Reactive oxidative species

RyR

Ryanodine receptors

SR

Sarcoplasmic reticulum

SERCA

Sarcoplasmic reticulum calcium-ATPase

GPCRs

G protein-coupled receptors

Notes

Acknowledgements

The authors would like to thank Pedro Sampaio, from Cilia Regulation and Disease lab, CEDOC, for technical support regarding the cardiomyocyte beating measurement.

Funding

The present work was supported by Fundação para a Ciência e Tecnologia (FCT, Portugal) [ANR-FCT/BEX-BCM/0001/2013], iNOVA4Health Unit (UID/Multi/04462/2013), the Agence National de la Recherche (France) [Grant ANR-13-ISV1-0001-01] and by the laBex LERMIT. Fundação para a Ciência e Tecnologia provided individual financial support to AG (SFRH/BD/103155/2014), HLAV (IF/00185/2012) and CNS (IF/01097/2013).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12012_2018_9485_MOESM1_ESM.tif (440 kb)
Supplementary Figure 1 Schematic representation of the different phenolic metabolites used. The compounds were present in the human plasma in different concentrations: catechol-O-sulphate: 12 µM; pyrogallol-O-sulphate: 6 µM; and 1-methylpyrogallol-O-sulphate: 3 µM. (TIF 439 KB)
12012_2018_9485_MOESM2_ESM.tif (482 kb)
Supplementary Figure 2 Cell Viability. Cell viability was detected using propidium iodide, of differentiated H9c2 cells, treated with phenolic metabolites for 2 h and exposed to ISO for 48 h. Data are mean ± SD. ****P < 0.0001 versus Control and ####P < 0.0001 versus ISO (ISO: Isoproterenol). (TIF 482 KB)

References

  1. 1.
    Baker, A. J. (2014). Adrenergic signaling in heart failure: A balance of toxic and protective effects. Pflugers Archiv European Journal of Physiology, 466(6), 1139–1150.  https://doi.org/10.1007/s00424-014-1491-5.CrossRefPubMedGoogle Scholar
  2. 2.
    Bers, D. M. (2008). Calcium cycling and signaling in cardiac myocytes. Annual Review of Physiology, 70, 23–49.  https://doi.org/10.1146/annurev.physiol.70.113006.100455.CrossRefPubMedGoogle Scholar
  3. 3.
    Najafi, A., Sequeira, V., Kuster, D. W., & van der Velden, J. (2016). β-Adrenergic receptor signalling and its functional consequences in the diseased heart. European Journal of Clinical Investigation, 46(4), 362–374.  https://doi.org/10.1111/eci.12598.CrossRefPubMedGoogle Scholar
  4. 4.
    El-Armouche, A., & Eschenhagen, T. (2009). β-Adrenergic stimulation and myocardial function in the failing heart. Heart Failure Reviews, 14(4), 225–241.  https://doi.org/10.1007/s10741-008-9132-8.CrossRefPubMedGoogle Scholar
  5. 5.
    Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 415(6868), 198–205.  https://doi.org/10.1038/415198a.CrossRefPubMedGoogle Scholar
  6. 6.
    Andersson, D. C., Fauconnier, J., Yamada, T., Lacampagne, A., Zhang, S.-J., Katz, A., et al. (2011). Mitochondrial production of reactive oxygen species contributes to the β-adrenergic stimulation of mouse cardiomycytes. The Journal of Physiology, 589(7), 1791–1801.  https://doi.org/10.1113/jphysiol.2010.202838.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Curran, J., Hinton, M. J., Rı, E., Bers, D. M., & Shannon, T. R. (2007). Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circulation Research, 100(3), 391–398.  https://doi.org/10.1161/01.RES.0000258172.74570.e6.CrossRefPubMedGoogle Scholar
  8. 8.
    Bovo, E., Lipsius, S. L., & Zima, A. V. (2012). Reactive oxygen species contribute to the development of arrhythmogenic Ca2+ waves during β-adrenergic receptor stimulation in rabbit cardiomyocytes. The Journal of Physiology, 590(14), 3291–3304.  https://doi.org/10.1113/jphysiol.2012.230748.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bovo, E., Mazurek, S. R., De Tombe, P. P., & Zima, A. V. (2015). Increased energy demand during adrenergic receptor stimulation contributes to Ca2+ wave generation. Biophysical Journal, 109(8), 1583–1591.  https://doi.org/10.1016/j.bpj.2015.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Branco, A. F., Sampaio, S. F., Wieckowski, M. R., Sardão, V. A., & Oliveira, P. J. (2013). Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways. International Journal of Biochemistry and Cell Biology, 45(11), 2379–2391.  https://doi.org/10.1016/j.biocel.2013.08.006.CrossRefPubMedGoogle Scholar
  11. 11.
    Branco, A. F., Pereira, S. L., & Oliveira, P. J. (2011). Isoproterenol cytotoxicity is dependent on the differentiation state of the cardiomyoblast H9c2 cell line. Cardiovascular Toxicology, 11, 191–203.  https://doi.org/10.1007/s12012-011-9111-5.CrossRefPubMedGoogle Scholar
  12. 12.
    Mendis, S., Puska, P., Norrving, B. (Eds.). (2011). Global Atlas on cardiovascular disease prevention and control. Geneva: World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization.Google Scholar
  13. 13.
    Arts, I. C. W., & Hollman, P. C. H. (2005). Polyphenols and disease risk in epidemiologic studies 1–4. The American Journal of Clinical Nutrition, 81(1), 317S–325S.CrossRefGoogle Scholar
  14. 14.
    Vauzour, D., Rodriguez-Mateos, A., Corona, G., Oruna-Concha, M. J., & Spencer, J. P. E. (2010). Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients, 2(11), 1106–1131.  https://doi.org/10.3390/nu2111106.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Johnson, S. A., Figueroa, A., Navaei, N., Wong, A., Kalfon, R., Ormsbee, L. T., et al. (2015). Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. Journal of the Academy of Nutrition and Dietetics, 115(3), 369–377.  https://doi.org/10.1016/j.jand.2014.11.001.CrossRefPubMedGoogle Scholar
  16. 16.
    Watson, R. R., Victor, P., & Zibadi, S. (2014). Polyphenols in human health and disease. San Diego: Academic Press.Google Scholar
  17. 17.
    Du, G., Sun, L., Zhao, R., Du, L., Song, J., Zhang, L., et al. (2016). Polyphenols: Potential source of drugs for the treatment of ischaemic heart disease. Pharmacology & Therapeutics, 162, 23–34.  https://doi.org/10.1016/j.pharmthera.2016.04.008.CrossRefGoogle Scholar
  18. 18.
    Dolinsky, V. W., Chakrabarti, S., Pereira, T. J., Oka, T., Levasseur, J., Beker, D., et al. (2013). Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832(10), 1723–1733.  https://doi.org/10.1016/j.bbadis.2013.05.018.CrossRefGoogle Scholar
  19. 19.
    Manach, C. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727–747.CrossRefGoogle Scholar
  20. 20.
    Rodriguez-Mateos, A., Heiss, C., Borges, G., & Crozier, A. (2014). Berry (poly)phenols and cardiovascular health. Journal of Agricultural and Food Chemistry, 62(18), 3842–3851.  https://doi.org/10.1021/jf403757g.CrossRefPubMedGoogle Scholar
  21. 21.
    Pimpão, R. C., Dew, T., Figueira, M. E., Mcdougall, G. J., Stewart, D., Ferreira, R. B., et al. (2014). Urinary metabolite profiling identifies novel colonic metabolites and conjugates of phenolics in healthy volunteers. Molecular Nutrition and Food Research, 58(7), 1414–1425.  https://doi.org/10.1002/mnfr.201300822.CrossRefPubMedGoogle Scholar
  22. 22.
    Pimpão, R. C., Ventura, M. R., Ferreira, R. B., Williamson, G., & Santos, C. N. (2015). Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. The British journal of nutrition, 113(3), 454–463.  https://doi.org/10.1017/S0007114514003511.CrossRefPubMedGoogle Scholar
  23. 23.
    Nicklas, W., Baneux, P., Boot, R., Decelle, T., Deeny, A. A., Fumanelli, M., et al. (2002). Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Laboratory Animals, 36(1), 20–42.  https://doi.org/10.1258/0023677021911740.CrossRefPubMedGoogle Scholar
  24. 24.
    Louch, W. E., Sheehan, K. A., & Wolska, B. M. (2011). Methods in cardiomyocyte isolation, culture, and gene transfer. Journal of Molecular and Cellular Cardiology, 51(3), 288–298.  https://doi.org/10.1016/j.yjmcc.2011.06.012.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682.  https://doi.org/10.1038/nmeth.2019.CrossRefPubMedGoogle Scholar
  26. 26.
    Willis, B. C., Salazar-Cantú, A., Silva-Platas, C., Fernández-Sada, E., Villegas, C., Rios-Argaiz, E., et al. (2015). Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy. American Journal of Physiology-Heart and Circulatory Physiology, 308(5), H467–H477.  https://doi.org/10.1152/ajpheart.00734.2013.CrossRefPubMedGoogle Scholar
  27. 27.
    Moore, M. J., Kanter, J. R., Jones, K. C., & Taylor, S. S. (2002). Phosphorylation of the catalytic subunit of protein kinase A. Journal of Biological Chemistry, 277(49), 47878–47884.  https://doi.org/10.1074/jbc.M204970200.CrossRefPubMedGoogle Scholar
  28. 28.
    Song, Y.-H., Choi, E., Park, S.-H., Lee, S.-H., Cho, H., Ho, W.-K., et al. (2011). Sustained CaMKII activity mediates transient oxidative stress-induced long-term facilitation of L-type Ca2+ current in cardiomyocytes. Free Radical Biology and Medicine, 51(9), 1708–1716.  https://doi.org/10.1016/j.freeradbiomed.2011.07.022.CrossRefPubMedGoogle Scholar
  29. 29.
    Mustroph, J., Neef, S., & Maier, L. S. (2017). CaMKII as a target for arrhythmia suppression. Pharmacology and Therapeutics.  https://doi.org/10.1016/j.pharmthera.2016.10.006.CrossRefPubMedGoogle Scholar
  30. 30.
    Dewenter, M., Neef, S., Vettel, C., Lämmle, S., Beushausen, C., Zelarayan, L. C., et al. (2017). Calcium/calmodulin-dependent protein kinase II activity persists during chronic β-adrenoceptor blockade in experimental and human heart failure. Circulation: Heart Failure, 10(5), e003840.  https://doi.org/10.1161/CIRCHEARTFAILURE.117.003840.CrossRefGoogle Scholar
  31. 31.
    Aratyn-Schaus, Y., Pasqualini, F. S., Yuan, H., McCain, M. L., Ye, G. J. C., Sheehy, S. P., et al. (2016). Coupling primary and stem cell-derived cardiomyocytes in an in vitro model of cardiac cell therapy. The Journal of Cell Biology, 212(4), 389–397.  https://doi.org/10.1083/jcb.201508026.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bito, V., Sipido, K. R., & Macquaide, N. (2015). Basic methods for monitoring intracellular Ca2+ in cardiac myocytes using Fluo-3. Cold Spring Harbor Protocols, 2015(4), 392–397.  https://doi.org/10.1101/pdb.prot076950.CrossRefPubMedGoogle Scholar
  33. 33.
    Dries, E., Santiago, D. J., Johnson, D. M., Gilbert, G., Holemans, P., Korte, S. M., et al. (2016). Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1 dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft. Journal of Chemical Information and Modeling, 53(9), 1689–1699.  https://doi.org/10.1017/CBO9781107415324.004.CrossRefGoogle Scholar
  34. 34.
    Vanni, S., Neri, M., Tavernelli, I., & Rothlisberger, U. (2011). Predicting novel binding modes of agonists to β adrenergic receptors using all-atom molecular dynamics simulations. PLoS Computational Biology, 7(1), e1001053.  https://doi.org/10.1371/journal.pcbi.1001053.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lefkowitz, R. J., & Williams, L. T. (1977). Catecholamine binding to the beta-adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America, 74(2), 515–519.CrossRefGoogle Scholar
  36. 36.
    Deng, H., & Fang, Y. (2013). The three catecholics benserazide, catechol and pyrogallol are GPR35 agonists. Pharmaceuticals, 6(12), 500–509.  https://doi.org/10.3390/ph6040500.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ambrosio, C., Molinari, P., Cotecchia, S., & Costa, T. (2000). Catechol-binding serines of beta(2)-adrenergic receptors control the equilibrium between active and inactive receptor states. Molecular Pharmacology, 57(1), 198–210PubMedGoogle Scholar
  38. 38.
    Moniotte, S., Kobzik, L., Feron, O., Trochu, J.-N., Gauthier, C., & Balligand, J.-L. (2001). Upregulation of 3-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation, 103(12), 1649–1655.  https://doi.org/10.1161/01.CIR.103.12.1649.CrossRefPubMedGoogle Scholar
  39. 39.
    Ufer, C., & Germack, R. (2009). Cross-regulation between β 1- and β 3-adrenoceptors following chronic β-adrenergic stimulation in neonatal rat cardiomyocytes. British Journal of Pharmacology, 158(1), 300–313.  https://doi.org/10.1111/j.1476-5381.2009.00328.x.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lohse, M. J., Engelhardt, S., Danner, S., & Böhm, M. (1996). Mechanisms of b-adrenergic receptor desensitization: From molecular biology to heart failure. Basic Research in Cardiology, 91(S1), 29–34.  https://doi.org/10.1007/BF00795359.CrossRefPubMedGoogle Scholar
  41. 41.
    Hausdorff, W. P., Caron, M. G., & Lefkowitz, R. J. (1990). Turning off the signal: Desensitization of beta-adrenergic receptor function. The FASEB Journal, 4(11), 2881–2889.  https://doi.org/10.1096/fasebj.4.11.2165947.CrossRefPubMedGoogle Scholar
  42. 42.
    Wallace, C. H. R., Baczkó, I., Jones, L., Fercho, M., & Light, P. E. (2006). Inhibition of cardiac voltage-gated sodium channels by grape polyphenols. British Journal of Pharmacology, 149(6), 657–665.  https://doi.org/10.1038/sj.bjp.0706897.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Belevych, A. E. (2002). Genistein inhibits cardiac L-Type Ca2+ channel activity by a tyrosine kinase-independent mechanism. Molecular Pharmacology, 62(3), 554–565.  https://doi.org/10.1124/mol.62.3.554.CrossRefPubMedGoogle Scholar
  44. 44.
    Obayashi, K., Horie, M., Washizuka, T., Nishimoto, T., & Sasayama, S. (1999). On the mechanism of genistein-induced activation of protein kinase A-dependent Cl—Conductance in cardiac myocytes. Pflügers Archiv European Journal of Physiologygers Archiv European Journal of Physiology, 438(3), 269–277.  https://doi.org/10.1007/s004240050909.CrossRefGoogle Scholar
  45. 45.
    Hool, L. C., Middleton, L. M., & Harvey, R. D. (1998). Genistein increases the sensitivity of cardiac ion channels to beta-adrenergic receptor stimulation. Circulation Research, 83(1), 33–42.CrossRefGoogle Scholar
  46. 46.
    LIEW, R., Macleod, K. T., & COLLINS, P. (2003). Novel stimulatory actions of the phytoestrogen genistein: Effects on the gain of cardiac excitation-contraction coupling. The FASEB Journal, 17(10), 1307–1309.  https://doi.org/10.1096/fj.02-0760fje.CrossRefPubMedGoogle Scholar
  47. 47.
    Bode, A. M., & Dong, Z. (2015). Toxic phytochemicals and their potential risks for human cancer. Cancer Prevention Research, 8(1), 1–8.  https://doi.org/10.1158/1940-6207.CAPR-14-0160.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CEDOC, NOVA Medical School, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
  2. 2.iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
  3. 3.INSERM UMR-S 1180, LabEx LERMITUniversité Paris-SudChâtenay MalabryFrance
  4. 4.ITQBUniversidade Nova de LisboaOeirasPortugal

Personalised recommendations