Advertisement

Cardiovascular Toxicology

, Volume 19, Issue 2, pp 136–146 | Cite as

Protective Effects of a Novel Agonist of Galanin Receptors Against Doxorubicin-Induced Cardiotoxicity in Rats

  • Irina Studneva
  • Marina Palkeeva
  • Oksana Veselova
  • Alexander Molokoedov
  • Michael Ovchinnikov
  • Maria Sidorova
  • Oleg PisarenkoEmail author
Article

Abstract

The clinical use of antineoplastic agent doxorubicin (DOX) is limited due to its cardiotoxic action. [βAla14, His15]-galanine (2–15) (G) is a novel synthetic agonist of galanin receptors GalR1-3 having cardioprotective properties in animal models in vivo. The aim of the present study was to explore effects of G on DOX-induced cardiotoxicity. Wistar rats were divided into four groups and treated with DOX (D group), DOX and G (D + G group), G (G group), and saline (control). Before treatment and at the end of the study, concentration of thiobarbituric acid reactive substances (TBARS) and activity of creatine kinase-MB (CK-MB) were determined in blood plasma, the animals were weighed, and cardiac function was evaluated by echocardiography. At the end of experiments, the hearts were used to determine energy metabolites and mitochondrial respiration in permeabilized fibers. After an 8-week study, D group exhibited a pronounced cardiac failure, the absence of weight gain, an increased plasma TBARS concentration, and CK-MB activity. These disorders were accompanied by a reduced myocardial content of high-energy phosphates and mitochondrial respiratory parameters. Co-administration of G with DOX significantly decreased plasma TBARS level and prevented an increase in plasma CK-MB activity. In D + G group, myocardial contents of ATP, PCr, total adenine nucleotides, and total creatine as well as myocardial PCr/ATP ratio and the respiratory control index were higher than in D group at the end of the experiments. Peptide G significantly improved parameters of left ventricular (LV) function and caused weight gain in animals of D + G group. These results suggest that peptide G may be a potential pharmacological agent that attenuates the cardiotoxic effects of DOX.

Keywords

Doxorubicin Cardiotoxicity Galanin receptor agonist Rats Cardiac function TBARS Myocardial bioenergetics 

Notes

Acknowledgements

The authors are grateful to Dr. A. Prosvirnin for carrying out echocardiography studies and processing the results. This study was supported by the Russian Foundation for Basic Research (Grant No. 18-015-00008).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international and national guidelines for the care and use of animals were followed. The experiments with animals were approved by the Bioethical Committee for Animal Care of National Medical Research Center for Cardiology (Permission No. 12 of 19 September 2017).

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Todaro, M. C., Oreto, L., Qamar, R., Paterick, T. E., Carerj, S., & Khandheria, B. K. (2013). Cardioncology: State of the heart. International Journal of Cardiology, 168(2), 680–687.  https://doi.org/10.1016/j.ijcard.2013.03.133.CrossRefGoogle Scholar
  2. 2.
    Wojtacki, J., Lewicka-Nowak, E., & Lesniewski-Kmak, K. (2000). Anthracycline-induced cardiotoxicity: Clinical course, risk factors, pathogenesis, detection and prevention—review of the literature. Medical Science Monitor, 6(2), 411–420.Google Scholar
  3. 3.
    Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer, 97(11), 2869–2879.  https://doi.org/10.1002/cncr.11407.CrossRefGoogle Scholar
  4. 4.
    Hayward, R., & Hydock, D. S. (2007). Doxorubicin cardiotoxicity in the rat: An in vivo characterization. Journal of the American Association for Laboratory Animal Science, 46(4), 20–32.Google Scholar
  5. 5.
    Legha, S. S., Benjamin, R. S., Mackay, B., Ewer, M., Wallace, S., Valdivieso, M., et al. (1982). Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Annals of Internal Medicine, 96(2), 133–139.CrossRefGoogle Scholar
  6. 6.
    Cusack, B. J., Gambliel, H., Musser, B., Hadjokas, N., Shadle, S. E., Charlier, H., & Olson, R. D. (2006). Prevention of chronic anthracycline cardiotoxicity in the adult Fischer 344 rat by dexrazoxane and effects on iron metabolism. Cancer Chemotherapy and Pharmacology, 58(4), 517–526.  https://doi.org/10.1007/s00280-006-0199-4.CrossRefGoogle Scholar
  7. 7.
    Li, T., Danelisen, I., Bello-Klein, A., & Singal, P. K. (2000). Effects of probucol on changes of antioxidant enzymes in adriamycin-induced cardiomyopathy in rats. Cardiovascular Research, 46(3), 523–530.CrossRefGoogle Scholar
  8. 8.
    Swenson, C. E., Bolcsak, L. E., Batist, G., Guthrie, T. H. Jr., Tkaczuk, K. H., Boxenbaum, H., et al. (2003). Pharmacokinetics of doxorubicin administered i.v. as Myocet (TLC D-99; liposome-encapsulated doxorubicin citrate) compared with conventional doxorubicin when given in combination with cyclophosphamide in patients with metastatic breast cancer. Anti-Cancer Drugs, 14(3), 239–246.  https://doi.org/10.1097/01.cad.0000060626.61556.da.CrossRefGoogle Scholar
  9. 9.
    Renu, K., & Arunachalam, S. (2018). Molecular mechanism of doxorubicin-induced cardiomyopathy—An update. European Journal of Pharmacology, 818(5), 241–253.  https://doi.org/10.1016/j.ejphar.2017.10.043.CrossRefGoogle Scholar
  10. 10.
    Faber, M., Coudray, C., Hida, H., Mousseau, M., & Favier, A. (1995). Lipid peroxidation products, and vitamin and trace element status in patients with cancer before and after chemotherapy, including adriamycin. A preliminary study. Biological Trace Element Research, 47(1–3), 117–123.  https://doi.org/10.1007/BF02790108.CrossRefGoogle Scholar
  11. 11.
    Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., & Yeh, E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18(11), 1639–1642.  https://doi.org/10.1038/nm.2919.CrossRefGoogle Scholar
  12. 12.
    Vejpongsa, P., & Yeh, E. T. (2014). Topoisomerase 2β: A promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clinical Pharmacology & Therapeutics, 95(1), 45–52.  https://doi.org/10.1038/clpt.2013.201.CrossRefGoogle Scholar
  13. 13.
    Deng, S., Yan, T., Jendrny, C., Nemecek, A., Vincetic, M., Gödtel-Armbrust, U., & Wojnowski, L. (2014). Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both Topoisomerase II isoforms. BMC Cancer, 14, 842.  https://doi.org/10.1186/1471-2407-14-842.CrossRefGoogle Scholar
  14. 14.
    Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52(6), 1213–1225.  https://doi.org/10.1016/j.yjmcc.2012.03.006.CrossRefGoogle Scholar
  15. 15.
    Tokarska-Schlattner, M., Zaugg, M., da Silva, R., Lucchinetti, E., Schaub, M. C., Wallimann, T., & Schlattner, U. (2005). Acute toxicity of doxorubicin on isolated perfused heart: Response of kinases regulating energy supply. American Journal of Physiology Heart and Circulatory Physiology, 289(1), H37–H47.  https://doi.org/10.1152/ajpheart.01057.2004.CrossRefGoogle Scholar
  16. 16.
    Nicolay, K., Aue, W. P., Seelig, J., van Echteld, C. J., Ruigrok, T. J., & de Kruijff, B. (1987). Effects of the anti-cancer drug adriamycin on the energy metabolism of rat heart as measured by in vivo 31P-NMR and implications for adriamycin-induced cardiotoxicity. Biochimica et Biophysica Acta, 929(1), 5–13.CrossRefGoogle Scholar
  17. 17.
    Chatham, J. C., Cousins, J. P., & Glickson, J. D. (1990). The relationship between cardiac function and metabolism in acute adriamycin-treated perfused rat hearts studied by 31P and 13C NMR spectroscopy. Journal of Molecular and Cellular Cardiology, 22(10), 1187–1197.CrossRefGoogle Scholar
  18. 18.
    Ueno, M., Kakinuma, Y., Yuhki, K., Murakoshi, N., Iemitsu, M., Miyauchi, T., & Yamaguchi, I. (2006). Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. Journal of Pharmacological Sciences, 101(2), 151–158.  https://doi.org/10.1254/jphs.FP0050980.CrossRefGoogle Scholar
  19. 19.
    Cassidy, S. C., Chan, D. P., Rowland, D. G., & Allen, H. D. (1998). Effects of doxorubicin on diastolic function, contractile reserve, and ventricular–vascular coupling in piglets. Pediatric Cardiology, 19(6), 450–457.  https://doi.org/10.1007/s002469900355.CrossRefGoogle Scholar
  20. 20.
    Mitsukawa, K., Lu, X., & Bartfai, T. (2008). Galanin, galanin receptors and drug targets. Cellular and Molecular Life Sciences, 65(12), 1796–1805.  https://doi.org/10.1007/s00018-008-8153-8.CrossRefGoogle Scholar
  21. 21.
    Timotin, A., Pisarenko, O., Sidorova, M., Studneva, I., Shulzhenko, V., Palkeeva, M., et al. (2017). Myocardial protection from ischemia/reperfusion injury by exogenous galanin fragment. Oncotarget, 8(13), 21241–21252.  https://doi.org/10.18632/oncotarget.15071.CrossRefGoogle Scholar
  22. 22.
    Serebryakova, L., Pal’keeva, M., Studneva, I., Molokoedov, A., Veselova, O., Ovchinnikov, M., et al. (2018). Galanin and its N-terminal fragments reduce acute myocardial infarction in rats. Peptides.  https://doi.org/10.1016/j.peptides.2018.05.001.Google Scholar
  23. 23.
    Pisarenko, O., Timotin, A., Sidorova, M., Studneva, I., Shulzhenko, V., Palkeeva, M., et al. (2017). Cardioprotective properties of N-terminal galanin fragment (2–15) in experimental ischemia/reperfusion injury. Oncotarget, 8(60), 101659–101671.  https://doi.org/10.18632/oncotarget.21503.CrossRefGoogle Scholar
  24. 24.
    Webling, K. E. B., Runesson, J., Bartfai, T., & Langel, Ü (2012). Galanin receptors and ligands. Frontiers in Endocrinology, 3, 146.  https://doi.org/10.3389/fendo.2012.00146.CrossRefGoogle Scholar
  25. 25.
    Kang, Y., Wang, W., Zhao, H., Qiao, Z., Shen, X., & He, B. (2017). Assessment of subclinical doxorubicin-induced cardiotoxicity in a rat model by speckle-tracking imaging. Arqiuvos Brasilieros de Cardiologia, 109(2), 132–139.  https://doi.org/10.5935/abc.20170097.Google Scholar
  26. 26.
    Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 27–31.  https://doi.org/10.4103/0976-0105.177703.CrossRefGoogle Scholar
  27. 27.
    Turner, P. V., Brabb, T., Pekow, C., & Vasbinder, M. A. (2011). Administration of substances to laboratory animals: Routes of administration and factors to consider. Journal of the American Association for Laboratory Animal Science, 50(5), 600–613.Google Scholar
  28. 28.
    Bergmeyer, H. U. (1974). Methods of enzymatic analysis (pp. 1464–1467 1772–1776, 1777–17781, 2127–2131). New York: Academic Press.Google Scholar
  29. 29.
    Kuznetsov, A. V., Veksler, V., Gellerich, F. N., Saks, V., Margreiter, R., & Kunz, W. S. (2008). Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nature Protocols, 3(6), 965–976.  https://doi.org/10.1038/nprot.2008.61.CrossRefGoogle Scholar
  30. 30.
    Curtis, M. J., Bond, R. A., Spina, D., Ahluwalia, A., Alexander, S. P., Giembycz, M. A., et al. (2015). Experimental design and analysis and their reporting: new guidance for publication in BJP. British Journal of Pharmacology, 172(14), 3461–3471.  https://doi.org/10.1111/bph.12856.CrossRefGoogle Scholar
  31. 31.
    Tabaczar, S., Koceva-Chyla, A., Czepas, J., Pieniazek, A., Piasecka-Zelga, J., & Gwozdzinski, K. (2012). Nitroxide pirolin reduces oxidative stress generated by doxorubicin and docetaxel in blood plasma of rats bearing mammary tumor. Journal of physiology and pharmacology, 63(2), 153–163.Google Scholar
  32. 32.
    Alimoradi, H., Barzegar-Fallah, A., Hassanzadeh, G., Mohammadi-Rick, S., Asadi, F., Delfan, B., et al. (2012). The cardioprotective effects of an antiemetic drug, tropisetron, on cardiomyopathy related to doxorubicin. Cardiovascular Toxicology, 12(4), 318–325.  https://doi.org/10.1007/s12012-012-9175-x.CrossRefGoogle Scholar
  33. 33.
    Williams, J. P., & Headrick, J. P. (1996). Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: Assessment by 31P-NMR spectroscopy. Biochimica et Biophysica Acta, 1276(1), 71–79.CrossRefGoogle Scholar
  34. 34.
    Zervou, S., Whittington, H. J., Russell, A. J., & Lygate, C. A. (2016). Augmentation of creatine in the heart. Mini-Reviews in Medicinal Chemistry, 16(1), 19–28.  https://doi.org/10.2174/1389557515666150722102151.CrossRefGoogle Scholar
  35. 35.
    Kakuyama, H., Kuwahara, A., Mochizuki, T., Hoshino, M., & Yanaihara, N. (1997). Role of N-terminal active sites of galanin in neurally evoked circular muscle contractions in the guinea-pig ileum. European Journal of Pharmacology, 329(1), 85–91.  https://doi.org/10.1016/S0014-2999(97)10109-1.CrossRefGoogle Scholar
  36. 36.
    Díaz-Cabiale, Z., Parrado, C., Vela, C., Razani, H., Coveñas, R., Fuxe, K., & Narváez, J. A. (2005). Role of galanin and galanin(1–15) on central cardiovascular control. Neuropeptides, 39(3), 185–190.  https://doi.org/10.1016/j.npep.2004.12.009.CrossRefGoogle Scholar
  37. 37.
    Liu, H. X., Brumovsky, P., Schmidt, R., Brown, W., Payza, K., Hodzic, L., et al. (2001). Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: Selective actions via GalR1 and GalR2 receptors. Proceedings of the National Academy of Sciences of the USA, 98(17), 9960–9964.  https://doi.org/10.1073/pnas.161293598.CrossRefGoogle Scholar
  38. 38.
    Lundstrom, L., Sollenberg, U. E., Bartfai, T., & Langel, U. (2007). Molecular characterization of the ligand binding site of the human galanin receptor type 2, identifying subtype selective interactions. Journal of Neurochemistry, 103(5), 1774–1784.  https://doi.org/10.1111/j.1471-4159.2007.04959.x.CrossRefGoogle Scholar
  39. 39.
    Kim, A., & Park, T. (2010). Diet-induced obesity regulates the galanin-mediated signaling cascade in the adipose tissue of mice. Molecular Nutrition & Food Research, 54(9), 1361–1370.  https://doi.org/10.1002/mnfr.200900317.CrossRefGoogle Scholar
  40. 40.
    Lang, R., Gundlach, A. L., & Kofler, B. (2007). The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacology & Therapeutics, 115(2), 177–207.  https://doi.org/10.1016/j.pharmthera.2007.05.009.CrossRefGoogle Scholar
  41. 41.
    Torres, V. M., & Simic, V. D. (2012). Doxorubicin-induced oxidative injury of cardiomyocytes—do we have right strategies for prevention? In M. Fiuzapp (Ed.), Cardiotoxicity of oncologic treatments (pp. 89–130). Rijeka: InTech Europe.Google Scholar
  42. 42.
    Lebrecht, D., Geist, A., Ketelsen, U.-P., Haberstroh, J., Setzer, B., & Walker, U. A. (2007). Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. British Journal of Pharmacology, 151(6), 771–778.  https://doi.org/10.1038/sj.bjp.0707294.CrossRefGoogle Scholar
  43. 43.
    QuanJun, Y., GenJin, Y., LiLi, W., YongLong, H., Yan, H., Jie, L., JinLu, H., Jin, L., Run, G., & Cheng, G. (2017). Protective effects of dexrazoxane against doxorubicin-induced cardiotoxicity: A Metabolomic study. PLoS ONE, 12(1), e0169567.  https://doi.org/10.1371/journal.pone.0169567.CrossRefGoogle Scholar
  44. 44.
    Héon, S., Bernier, M., Servant, N., Dostanic, S., Wang, C., Kirby, G. M., et al. (2003). Dexrazoxane does not protect against doxorubicin-induced damage in young rats. American Journal of Physiology Heart and Circulatory Physiology, 285(2), H499–H506.  https://doi.org/10.1152/ajpheart.00047.2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Myocardial MetabolismNational Medical Research Center for CardiologyMoscowRussian Federation

Personalised recommendations