Cardiovascular Toxicology

, Volume 18, Issue 5, pp 482–491 | Cite as

Clopidogrel Pharmacogenetics in Iranian Patients Undergoing Percutaneous Coronary Intervention

  • Nejat Mahdieh
  • Ahmad Rabbani
  • Ata Firouzi
  • Ali Zahedmehr
  • Maryam Hoseinimoghaddam
  • Sedigheh Saedi
  • Hamidreza Sanati
  • Hosseinali Basiri
  • Feridoun Noohi
  • Bahareh RabbaniEmail author
  • Majid Maleki


Clopidogrel is used in patients with coronary syndromes and at risk of thrombotic events or receiving percutaneous coronary intervention (PCI) for reducing heart attack and stroke. Here we present genotype and phenotype study of Iranian patients undergoing PCI treated with clopidogrel during a 6-month period of follow-up; common variants of CYP2C19, CYP3A5, CYP3A4, and ABCB1 genes were determined as well as the patients’ cardiovascular outcomes to find out the effect of these variants individually and in combination. 388 individuals receiving PCI were enrolled in this study. Different pretreatment doses of clopidogrel were prescribed under the interventional cardiologists’ guidance. The patients were followed for a duration of 1 month, and 6 months. Six SNPs were selected for genotyping including CYP2C19*2 (c.681G > A), CYP2C19*3 (c.636G > A), CYP2C19*17 allele (c.−806C > T), ABCB1 (c.3435C > T), CYP3A5 (c.6986A > G), and CYP3A4 (c.1026 + 12G > A). The mean loading dose was 600 mg/day in 267 (68.8%) individuals, 300 mg/day in 121 (31.2%). 8 patients had cardiovascular events such as thrombosis, unstable angina, and non-STEMI. The studied alleles and genotypes were in Hardy–Weinberg equilibrium. None of the SNPs individually were significantly associated with outcome events. Our results indicate that combinations of different alleles of genes are involved in pharmacokinetic variability and joint factors are important; this means that genotyping and analysis of an individual variant may not be as straightforward in risk assessment and pharmacogenetics. This highlights the importance of personalized medicine in risk assessment and treatment.


Genetic variants Polymorphism Clopidogrel Cardiovascular event 



We would like to thank the staff of genetic laboratory at Rajaie Hospital. We would like to thank professor Edward Tuddenham for critical reading of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors have no conflict of interest to declare in relation to this manuscript.


  1. 1.
    Rabbani, B., Nakaoka, H., Akhondzadeh, S., Tekin, M., & Mahdieh, N. (2016). Next generation sequencing: Implications in personalized medicine and pharmacogenomics. Molecular BioSystems, 12, 1818–1830.CrossRefPubMedGoogle Scholar
  2. 2.
    Gros, P., Ben Neriah, Y. B., Croop, J. M., & Housman, D. E. (1986). Isolation and expression of a complementary DNA that confers multidrug resistance. Nature, 323, 728–731.CrossRefPubMedGoogle Scholar
  3. 3.
    Cattaneo, M. (2011). The platelet P2Y(1)(2) receptor for adenosine diphosphate: Congenital and drug-induced defects. Blood, 117, 2102–2112.CrossRefPubMedGoogle Scholar
  4. 4.
    Farid, N. A., Payne, C. D., Small, D. S., Winters, K. J., Ernest, C. S. 2nd, Brandt, J. T., et al. (2007). Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clinical Pharmacology & Therapeutics, 81, 735–741.CrossRefGoogle Scholar
  5. 5.
    Clarke, T. A., & Waskell, L. A. (2003). The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metabolism and Disposition, 31, 53–59.CrossRefPubMedGoogle Scholar
  6. 6.
    Kazui, M., Nishiya, Y., Ishizuka, T., Hagihara, K., Farid, N. A., Okazaki, O., et al. (2010). Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metabolism and Disposition, 38, 92–99.CrossRefPubMedGoogle Scholar
  7. 7.
    Geiger, J., Brich, J., Honig-Liedl, P., Eigenthaler, M., Schanzenbacher, P., Herbert, J. M., et al. (1999). Specific impairment of human platelet P2Y(AC) ADP receptor-mediated signaling by the antiplatelet drug clopidogrel. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 2007–2011.CrossRefPubMedGoogle Scholar
  8. 8.
    Kushner, F. G., Hand, M., Smith, S. C. Jr., King, S. B. 3rd, Anderson, J. L., Antman, E. M., et al. (2009). 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update): A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 120, 2271–2306.CrossRefPubMedGoogle Scholar
  9. 9.
    Scott, S. A., Sangkuhl, K., Stein, C. M., Hulot, J. S., Mega, J. L., Roden, D. M., et al. (2013). Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clinical Pharmacology & Therapeutics, 94, 317–323.CrossRefGoogle Scholar
  10. 10.
    Gurbel, P. A., Bliden, K. P., Hiatt, B. L., & O’Connor, C. M. (2003). Clopidogrel for coronary stenting: Response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation, 107, 2908–2913.CrossRefPubMedGoogle Scholar
  11. 11.
    Geisler, T., Schaeffeler, E., Dippon, J., Winter, S., Buse, V., Bischofs, C., et al. (2008). CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics, 9, 1251–1259.CrossRefPubMedGoogle Scholar
  12. 12.
    Brandt, J. T., Close, S. L., Iturria, S. J., Payne, C. D., Farid, N. A., Ernest, C. S. 2nd, et al. (2007). Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. Journal of Thrombosis and Haemostasis, 5, 2429–2436.CrossRefPubMedGoogle Scholar
  13. 13.
    De Morais, S. M., Wilkinson, G. R., Blaisdell, J., Meyer, U. A., Nakamura, K., & Goldstein, J. A. (1994). Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Molecular Pharmacology, 46, 594–598.PubMedGoogle Scholar
  14. 14.
    de Morais, S. M., Wilkinson, G. R., Blaisdell, J., Nakamura, K., Meyer, U. A., & Goldstein, J. A. (1994). The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. Journal of Biological Chemistry, 269, 15419–15422.PubMedGoogle Scholar
  15. 15.
    Suh, J. W., Koo, B. K., Zhang, S. Y., Park, K. W., Cho, J. Y., Jang, I. J., et al. (2006). Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel. Canadian Medical Association Journal, 174, 1715–1722.CrossRefPubMedGoogle Scholar
  16. 16.
    Mega, J. L., Close, S. L., Wiviott, S. D., Shen, L., Walker, J. R., Simon, T., et al. (2010). Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: A pharmacogenetic analysis. Lancet, 376, 1312–1319.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kimchi-Sarfaty, C., Oh, J. M., Kim, I. W., Sauna, Z. E., Calcagno, A. M., Ambudkar, S. V., et al. (2007). A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science, 315, 525–528.CrossRefPubMedGoogle Scholar
  18. 18.
    Angiolillo, D. J., Fernandez-Ortiz, A., Bernardo, E., Ramirez, C., Cavallari, U., Trabetti, E., et al. (2006). Contribution of gene sequence variations of the hepatic cytochrome P450 3A4 enzyme to variability in individual responsiveness to clopidogrel. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1895–1900.CrossRefPubMedGoogle Scholar
  19. 19.
    Shuldiner, A. R., O’Connell, J. R., Bliden, K. P., Gandhi, A., Ryan, K., Horenstein, R. B., et al. (2009). Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA, 302, 849–857.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Simon, T., Verstuyft, C., Mary-Krause, M., Quteineh, L., Drouet, E., Meneveau, N., et al. (2009). Genetic determinants of response to clopidogrel and cardiovascular events. The New England Journal of Medicine, 360, 363–375.CrossRefPubMedGoogle Scholar
  21. 21.
    Hoffmeyer, S., Burk, O., von Richter, O., Arnold, H. P., Brockmoller, J., Johne, A., et al. (2000). Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 3473–3478.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang, D., Johnson, A. D., Papp, A. C., Kroetz, D. L., & Sadee, W. (2005). Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C> T affects mRNA stability. Pharmacogenet Genomics, 15, 693–704.CrossRefPubMedGoogle Scholar
  23. 23.
    Karazniewicz-Lada, M., Danielak, D., Rubis, B., Burchardt, P., Oszkinis, G., & Glowka, F. (2014). The influence of genetic polymorphism of Cyp2c19 isoenzyme on the pharmacokinetics of clopidogrel and its metabolites in patients with cardiovascular diseases. The Journal of Clinical Pharmacology, 54, 874–880.CrossRefPubMedGoogle Scholar
  24. 24.
    Danielak, D., Karazniewicz-Lada, M., Wisniewska, K., Bergus, P., Burchardt, P., Komosa, A., et al. (2017). Impact of CYP3A4*1G Allele on clinical pharmacokinetics and pharmacodynamics of clopidogrel. The European Journal of Drug Metabolism and Pharmacokinetics, 42, 99–107.CrossRefPubMedGoogle Scholar
  25. 25.
    Amin, A. M., Sheau Chin L., Azri Mohamed Noor D., Kader S. A., Ali M., Kah Hay Y, et al. (2017). The personalization of clopidogrel antiplatelet therapy: The role of integrative pharmacogenetics and pharmacometabolomics. Cardiology Research and Practice 2017, 8062796.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shirai, N., Furuta, T., Moriyama, Y., Okochi, H., Kobayashi, K., Takashima, M., et al. (2001). Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH. Alimentary Pharmacology & Therapeutics, 15, 1929–1937.CrossRefGoogle Scholar
  27. 27.
    Furuta, T., Ohashi, K., Kosuge, K., Zhao, X. J., Takashima, M., Kimura, M., et al. (1999). CYP2C19 genotype status and effect of omeprazole on intragastric pH in humans. Clinical Pharmacology & Therapeutics, 65, 552–561.CrossRefGoogle Scholar
  28. 28.
    Schwab, M., Schaeffeler, E., Klotz, U., & Treiber, G. (2004). CYP2C19 polymorphism is a major predictor of treatment failure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicobacter pylori. Clinical Pharmacology & Therapeutics, 76, 201–209.CrossRefGoogle Scholar
  29. 29.
    Sim, S. C., Risinger, C., Dahl, M. L., Aklillu, E., Christensen, M., Bertilsson, L., et al. (2006). A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clinical Pharmacology & Therapeutics, 79, 103–113.CrossRefGoogle Scholar
  30. 30.
    Wallentin, L., James, S., Storey, R. F., Armstrong, M., Barratt, B. J., Horrow, J., et al. (2010). Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: A genetic substudy of the PLATO trial. Lancet, 376, 1320–1328.CrossRefPubMedGoogle Scholar
  31. 31.
    Evans, W. E., & McLeod, H. L. (2003). Pharmacogenomics–drug disposition, drug targets, and side effects. The New England Journal of Medicine, 348, 538–549.CrossRefPubMedGoogle Scholar
  32. 32.
    Patki, K. C., Von Moltke, L. L., & Greenblatt, D. J. (2003). In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: Role of cyp3a4 and cyp3a5. Drug Metabolism and Disposition, 31, 938–944.CrossRefPubMedGoogle Scholar
  33. 33.
    Gremmel, T., Steiner, S., Seidinger, D., Koppensteiner, R., Panzer, S., & Kopp, C. W. (2010). Calcium-channel blockers decrease clopidogrel-mediated platelet inhibition. Heart, 96, 186–189.CrossRefPubMedGoogle Scholar
  34. 34.
    Olesen, J. B., Gislason, G. H., Charlot, M. G., Fosbol, E. L., Andersson, C., Weeke, P., et al. (2011). Calcium-channel blockers do not alter the clinical efficacy of clopidogrel after myocardial infarction: A nationwide cohort study. Journal of the American College of Cardiology, 57, 409–417.CrossRefPubMedGoogle Scholar
  35. 35.
    Sarafoff, N., Neumann, L., Morath, T., Bernlochner, I., Mehilli, J., Schomig, A., et al. (2011). Lack of impact of calcium-channel blockers on the pharmacodynamic effect and the clinical efficacy of clopidogrel after drug-eluting stenting. American Heart Journal, 161, 605–610.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhou, S. F., Xue, C. C., Yu, X. Q., Li, C., & Wang, G. (2007). Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Therapeutic Drug Monitoring, 29, 687–710.CrossRefPubMedGoogle Scholar
  37. 37.
    Park, K. W., Kang, J., Park, J. J., Yang, H. M., Lee, H. Y., Kang, H. J., et al. (2012). Amlodipine, clopidogrel and CYP3A5 genetic variability: Effects on platelet reactivity and clinical outcomes after percutaneous coronary intervention. Heart, 98, 1366–1372.CrossRefPubMedGoogle Scholar
  38. 38.
    Gurbel, P. A., Tantry, U. S., Shuldiner, A. R., & Kereiakes, D. J. (2010). Genotyping: One piece of the puzzle to personalize antiplatelet therapy. Journal of the American College of Cardiology, 56, 112–116.CrossRefPubMedGoogle Scholar
  39. 39.
    Chan, N. C., Eikelboom, J. W., Ginsberg, J. S., Lauw, M. N., Vanassche, T., Weitz, J. I., et al. (2014). Role of phenotypic and genetic testing in managing clopidogrel therapy. Blood 124, 689–699.CrossRefPubMedGoogle Scholar
  40. 40.
    Mega, J. L., Close, S. L., Wiviott, S. D., Shen, L., Hockett, R. D., Brandt, J. T., et al. (2009). Cytochrome P450 genetic polymorphisms and the response to prasugrel: Relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation, 119, 2553–2560.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
Corrected publication August/2018

Authors and Affiliations

  • Nejat Mahdieh
    • 1
  • Ahmad Rabbani
    • 2
  • Ata Firouzi
    • 2
  • Ali Zahedmehr
    • 2
  • Maryam Hoseinimoghaddam
    • 1
  • Sedigheh Saedi
    • 2
  • Hamidreza Sanati
    • 2
  • Hosseinali Basiri
    • 2
  • Feridoun Noohi
    • 2
  • Bahareh Rabbani
    • 1
    • 3
    Email author
  • Majid Maleki
    • 1
  1. 1.Medical Genetics Laboratory, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
  2. 2.Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
  3. 3.Growth and Development ResearchTehran University of Medical SciencesTehranIran

Personalised recommendations