Skip to main content

Advertisement

Log in

Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Paraquat (1,1’-dim ethyl-4-4’-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca2+ handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca2+ defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cristovao, A. C., Choi, D. H., Baltazar, G., Beal, M. F., & Kim, Y. S. (2009). The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxidants & Redox Signaling, 11, 2105–2118.

    Article  CAS  Google Scholar 

  2. Jones, B. C., Huang, X., Mailman, R. B., Lu, L., & Williams, R. W. (2014). The perplexing paradox of paraquat: The case for host-based susceptibility and postulated neurodegenerative effects. Journal of Biochemical and Molecular Toxicology, 28, 191–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blanco-Ayala, T., Anderica-Romero, A. C., & Pedraza-Chaverri, J. (2014). New insights into antioxidant strategies against paraquat toxicity. Free Radical Research, 48, 623–640.

    Article  CAS  PubMed  Google Scholar 

  4. Niso-Santano, M., Bravo-San Pedro, J. M., Gomez-Sanchez, R., Climent, V., Soler, G., Fuentes, J. M., & Gonzalez-Polo, R. A. (2011). ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress. Toxicological Sciences, 119, 156–168.

    Article  CAS  PubMed  Google Scholar 

  5. McCormack, A. L., Thiruchelvam, M., Manning-Bog, A. B., Thiffault, C., Langston, J. W., Cory-Slechta, D. A., & Di Monte, D. A. (2002). Environmental risk factors and Parkinson’s disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiology of Diseases, 10, 119–127.

    Article  CAS  Google Scholar 

  6. Niso-Santano, M., Moran, J. M., Garcia-Rubio, L., Gomez-Martin, A., Gonzalez-Polo, R. A., Soler, G., & Fuentes, J. M. (2006). Low concentrations of paraquat induces early activation of extracellular signal-regulated kinase 1/2, protein kinase B, and c-Jun N-terminal kinase 1/2 pathways: Role of c-Jun N-terminal kinase in paraquat-induced cell death. Toxicological Sciences, 92, 507–515.

    Article  CAS  PubMed  Google Scholar 

  7. Peng, J., Mao, X. O., Stevenson, F. F., Hsu, M., & Andersen, J. K. (2004). The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. Journal of Biological Chemistry, 279, 32626–32632.

    Article  CAS  PubMed  Google Scholar 

  8. Dinis-Oliveira, R. J., Duarte, J. A., Sanchez-Navarro, A., Remiao, F., Bastos, M. L., & Carvalho, F. (2008). Paraquat poisonings: Mechanisms of lung toxicity, clinical features, and treatment. Critical Reviews in Toxicology, 38, 13–71.

    Article  CAS  PubMed  Google Scholar 

  9. Cherukuri, H., Pramoda, K., Rohini, D., Thunga, G., Vijaynarayana, K., Sreedharan, N., et al. (2014). Demographics, clinical characteristics and management of herbicide poisoning in tertiary care hospital. Toxicology International, 21, 209–213.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang, Q., Yang, L., Hua, Y., Nair, S., Xu, X., & Ren, J. (2014). AMP-activated protein kinase deficiency rescues paraquat-induced cardiac contractile dysfunction through an autophagy-dependent mechanism. Toxicological Sciences, 142, 6–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fahim, M. A., Howarth, F. C., Nemmar, A., Qureshi, M. A., Shafiullah, M., Jayaprakash, P., & Hasan, M. Y. (2013). Vitamin E ameliorates the decremental effect of paraquat on cardiomyocyte contractility in rats. PLoS ONE, 8, e57651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song, C., Kan, B., Yu, G., Jian, X., Wang, J., & Sun, J. (2014). Acute paraquat poisoning with sinus bradycardia: A case report. Experimental and Therapeutic Medicine, 8, 1459–1462.

    PubMed  PubMed Central  Google Scholar 

  13. Dong, X. S., Xu, X. Y., Sun, Y. Q., Wei, L., Jiang, Z. H., & Liu, Z. (2013). Toll-like receptor 4 is involved in myocardial damage following paraquat poisoning in mice. Toxicology, 312, 115–122.

    Article  CAS  PubMed  Google Scholar 

  14. Ge, W., Zhang, Y., Han, X., & Ren, J. (2010). Cardiac-specific overexpression of catalase attenuates paraquat-induced myocardial geometric and contractile alteration: Role of ER stress. Free Radical Biology and Medicine, 49, 2068–2077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez-Polo, R. A., Rodriguez-Martin, A., Moran, J. M., Niso, M., Soler, G., & Fuentes, J. M. (2004). Paraquat-induced apoptotic cell death in cerebellar granule cells. Brain Research, 1011, 170–176.

    Article  CAS  PubMed  Google Scholar 

  16. McCormack, A. L., Atienza, J. G., Johnston, L. C., Andersen, J. K., Vu, S., & Di Monte, D. A. (2005). Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. Journal of Neurochemistry, 93, 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  17. Alexi, T., Borlongan, C. V., Faull, R. L., Williams, C. E., Clark, R. G., Gluckman, P. D., & Hughes, P. E. (2000). Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Progress in Neurobiology, 60, 409–470.

    Article  CAS  PubMed  Google Scholar 

  18. Tawara, T., Fukushima, T., Hojo, N., Isobe, A., Shiwaku, K., Setogawa, T., & Yamane, Y. (1996). Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Archives of Toxicology, 70, 585–589.

    Article  CAS  PubMed  Google Scholar 

  19. Niso-Santano, M., Gonzalez-Polo, R. A., Bravo-San Pedro, J. M., Gomez-Sanchez, R., Lastres-Becker, I., Ortiz-Ortiz, M. A., et al. (2010). Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis. Free Radical Biology and Medicine, 48, 1370–1381.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, J. C., Park, C. Y., Choi, S. W., Kim, J. C., Lim, K. M., Kim, K., et al. (2008). Comparison of a pulsatile blood pump and a peristaltic roller pump during hemoperfusion treatment in a canine model of paraquat poisoning. Artificial Organs, 32, 541–546.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, W. H., Zhang, H., Yu, Y. L., Jiang, J. H., & Xue, C. (2005). Correlation of plasma endothelin and multiple organ dysfunction syndrome caused by acute paraquat poisoning. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 17, 293–295.

    CAS  PubMed  Google Scholar 

  22. Zhang, Z., Jian, X., Zhang, W., Wang, J., & Zhou, Q. (2013). Using Bosentan to treat paraquat poisoning-induced acute lung injury in rats. PLoS ONE, 8, e75943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Finck, B. N., & Kelly, D. P. (2006). PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. The Journal of Clinical Investigation, 116, 615–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schilling, J., & Kelly, D. P. (2011). The PGC-1 cascade as a therapeutic target for heart failure. Journal of Molecular and Cellular Cardiology, 51, 578–583.

    Article  CAS  PubMed  Google Scholar 

  25. Rey, B., Roussel, D., Romestaing, C., Belouze, M., Rouanet, J. L., Desplanches, D., et al. (2010). Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria. BMC physiology, 10, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Latchman, D. S. (2001). Heat shock proteins and cardiac protection. Cardiovascular Research, 51, 637–646.

    Article  CAS  PubMed  Google Scholar 

  27. Mymrikov, E. V., & Haslbeck, M. (2015). Medical implications of understanding the functions of human small heat shock proteins. Expert Review of Proteomics, 12, 295–308.

    Article  CAS  PubMed  Google Scholar 

  28. Kedzierski, R. M., Grayburn, P. A., Kisanuki, Y. Y., Williams, C. S., Hammer, R. E., Richardson, J. A., et al. (2003). Cardiomyocyte-specific endothelin A receptor knockout mice have normal cardiac function and an unaltered hypertrophic response to angiotensin II and isoproterenol. Molecular and Cellular Biology, 23, 8226–8232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Day, B. J., & Crapo, J. D. (1996). A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced lung injury in vivo. Toxicology and Applied Pharmacology, 140, 94–100.

    Article  CAS  PubMed  Google Scholar 

  30. Liang, L., Shou, X. L., Zhao, H. K., Ren, G. Q., Wang, J. B., Wang, X. H., et al. (2015). Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKbeta-AMPK-dependent regulation of autophagy. Biochimica et Biophysica Acta, 1852, 343–352.

    Article  CAS  PubMed  Google Scholar 

  31. Hu, N., Dong, M., & Ren, J. (2014). Hydrogen sulfide alleviates cardiac contractile dysfunction in an Akt2-knockout murine model of insulin resistance: role of mitochondrial injury and apoptosis. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 306, R761–R771.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Y., Xu, X., Ceylan-Isik, A. F., Dong, M., Pei, Z., Li, Y., & Ren, J. (2014). Ablation of Akt2 protects against lipopolysaccharide-induced cardiac dysfunction: role of Akt ubiquitination E3 ligase TRAF6. Journal of Molecular and Cellular Cardiology, 74, 76–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Garcia, A., Anandhan, A., Burns, M., Chen, H., Zhou, Y., & Franco, R. (2013). Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP(+)-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicological Sciences, 136, 166–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gonzalez-Polo, R. A., Niso-Santano, M., Ortiz-Ortiz, M. A., Gomez-Martin, A., Moran, J. M., Garcia-Rubio, L., et al. (2007). Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicological Sciences, 97, 448–458.

    Article  CAS  PubMed  Google Scholar 

  36. Clark, D. G., McElligott, T. F., & Hurst, E. W. (1966). The toxicity of paraquat. British Journal of Industrial Medicine, 23, 126–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bus, J. S., Aust, S. D., & Gibson, J. E. (1976). Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. Environmental Health Perspectives, 16, 139–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giri, S. N., Hollinger, M. A., & Schiedt, M. J. (1981). The effects of paraquat and superoxide dismutase on pulmonary vascular permeability and edema in mice. Archives of Environmental Health, 36, 149–154.

    Article  CAS  PubMed  Google Scholar 

  39. Li, Q., Yang, X., Sreejayan, N., & Ren, J. (2007). Insulin-like growth factor I deficiency prolongs survival and antagonizes paraquat-induced cardiomyocyte dysfunction: Role of oxidative stress. Rejuvenation Res, 10, 501–512.

    Article  PubMed  Google Scholar 

  40. Ceylan-Isik, A. F., Dong, M., Zhang, Y., Dong, F., Turdi, S., Nair, S., et al. (2013). Cardiomyocyte-specific deletion of endothelin receptor A rescues aging-associated cardiac hypertrophy and contractile dysfunction: role of autophagy. Basic Research in Cardiology, 108, 335.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang, Y., Li, L., Hua, Y., Nunn, J. M., Dong, F., Yanagisawa, M., & Ren, J. (2012). Cardiac-specific knockout of ET(A) receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction. Journal of Molecular Cell Biology, 4, 97–107.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ren, J., Pulakat, L., Whaley-Connell, A., & Sowers, J. R. (2010). Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. Journal of Molecular Medicine (Berl), 88, 993–1001.

    Article  CAS  Google Scholar 

  43. Zhang, Y., Xia, Z., La Cour, K. H., & Ren, J. (2011). Activation of Akt rescues endoplasmic reticulum stress-impaired murine cardiac contractile function via glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeation pore opening. Antioxidants & Redox Signaling, 15, 2407–2424.

    Article  CAS  Google Scholar 

  44. Kim, H. R., Park, B. K., Oh, Y. M., Lee, Y. S., Lee, D. S., Kim, H. K., et al. (2006). Green tea extract inhibits paraquat-induced pulmonary fibrosis by suppression of oxidative stress and endothelin-l expression. Lung, 184, 287–295.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China 81400198 and 81270171, as well as the Innovation Team Grant of Shaanxi Province (No. 2014KCT-20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingmei Zhang or Haichang Wang.

Additional information

Jiaxing Wang, Songhe Lu and Qijun Zheng have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lu, S., Zheng, Q. et al. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction. Cardiovasc Toxicol 16, 235–243 (2016). https://doi.org/10.1007/s12012-015-9331-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9331-1

Keywords

Navigation