Advertisement

Parvalbumin and Ubiquitin as Potential Biomarkers of Mercury Contamination of Amazonian Brazilian Fish

  • José Cavalcante Souza VieiraEmail author
  • Grasieli de Oliveira
  • Camila Pereira Braga
  • Mileni da Silva Fernandes
  • Paula Martin de Moraes
  • Marília Afonso Rabelo Buzalaf
  • Lincoln Carlos Silva de Oliveira
  • Pedro de Magalhães Padilha
Article
  • 22 Downloads

Abstract

Recent studies have demonstrated the association of mercury (Hg) with some fish proteins, milk, and hair from individuals exposed to the element in the Amazon. However, few studies involve identifying biomarkers of mercury exposure. Therefore, the present study aimed to identify potential biomarkers of Hg exposure in fish. For this, the muscular tissues of two species of fish (Prochilodus lineatus and Mylossoma duriventre) that feed the Amazonian human population were analyzed. Through the analyses obtained by graphite furnace atomic absorption spectrometry (GFAAS), it was possible to identify four protein SPOTS where mercury was present. These SPOTS, identified by mass spectrometry (ESI-MS/MS), included parvalbumin and ubiquitin-40S ribosomal protein S27a, and these being metalloproteins with biomarker characteristics. In addition, the results show the intense Hg/protein ratio observed in the two proteins, which makes metalloproteins strong candidates for biomarkers of mercury exposure.

Graphical Abstract

Keywords

Mercury in the Amazon Biomarkers Fish Mercury-bound proteins Metalloproteins Proteomics 

Notes

Funding Information

The authors thank the Brazilian Research Funding Agencies (FAPESP) (processes 2013/21297-1 and 2014/02668-1), the Coordination of Improvement of Higher Level Personnel (Capes), and the National Electric Energy Agency (ANEEL).

Compliance with Ethical Standards

All the work involved with animal experimentation developed in this paper was approved by the Ethics Committee on the Use of Animals (CEUA) of the Faculty of Veterinary Medicine and Zootechnics (FMVZ) of the São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Brazil under the number of protocol 110/2015.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Berky AJ, Ryde IT, Feingold B et al (2018) Predictors of mitochondrial DNA copy number and damage in a mercury-exposed rural Peruvian population near artisanal and small-scale gold mining: an exploratory study. Environ Mol Mutagen.  https://doi.org/10.1002/em.22244 CrossRefGoogle Scholar
  2. 2.
    Hacon S, Barrocas PRG, de Vasconcellos ACS et al (2008) An overview of mercury contamination research in the Amazon basin with an emphasis on Brazil. Cad saúde pública 24:1479–1492CrossRefGoogle Scholar
  3. 3.
    Moraes PM, Santos FA, Cavecci B et al (2013) GFAAS determination of mercury in muscle samples of fish from Amazon, Brazil. Food Chem 141:2614–2617.  https://doi.org/10.1016/j.foodchem.2013.05.008 CrossRefPubMedGoogle Scholar
  4. 4.
    Passos CJS, Da Silva DS, Lemire M et al (2008) Daily mercury intake in fish-eating populations in the Brazilian Amazon. J Expo Sci Environ Epidemiol 18:76–87.  https://doi.org/10.1038/sj.jes.7500599 CrossRefPubMedGoogle Scholar
  5. 5.
    Bravo AG, Kothawala DN, Attermeyer K, Tessier E, Bodmer P, Ledesma JLJ, Audet J, Casas-Ruiz JP, Catalán N, Cauvy-Fraunié S, Colls M, Deininger A, Evtimova VV, Fonvielle JA, Fuß T, Gilbert P, Herrero Ortega S, Liu L, Mendoza-Lera C, Monteiro J, Mor JR, Nagler M, Niedrist GH, Nydahl AC, Pastor A, Pegg J, Gutmann Roberts C, Pilotto F, Portela AP, González-Quijano CR, Romero F, Rulík M, Amouroux D (2018) The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: a latitudinal study across Europe. Water Res 144:172–182.  https://doi.org/10.1016/j.watres.2018.06.064 CrossRefPubMedGoogle Scholar
  6. 6.
    Dórea JG, Farina M, Rocha JBT (2013) Toxicity of ethylmercury (and Thimerosal): a comparison with methylmercury. J Appl Toxicol 33:700–711.  https://doi.org/10.1002/jat.2855 CrossRefPubMedGoogle Scholar
  7. 7.
    Molina CI, Gibon F-M, Sánchez Y, et al (2010) Implicancia ambiental del mercurio en ecosistemas acuáticos de la Amazonía: Situación en Bolivia. Rev Virtual REDESMA Oct 4Google Scholar
  8. 8.
    Cristina M, Jardim WF (2004) O COMPORTAMENTO DO METILMERCÚRIO (METILHg) NO AMBIENTE Márcia. Quim Nova 27:593–600Google Scholar
  9. 9.
    Crespo-López ME, Macêdo GL, Pereira SID et al (2009) Mercury and human genotoxicity: critical considerations and possible molecular mechanisms. Pharmacol Res 60:212–220.  https://doi.org/10.1016/j.phrs.2009.02.011 CrossRefPubMedGoogle Scholar
  10. 10.
    Woods JS, Heyer NJ, Russo JE, Martin MD, Farin FM (2014) Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: summary findings from the casa Pia Children’s amalgam clinical trial. Neurotoxicology 44:288–302.  https://doi.org/10.1016/j.neuro.2014.07.010 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Arrifano GPF, de Oliveira MA, Souza-Monteiro JR, Paraense RO, Ribeiro-Dos-Santos A, Vieira JRDS, Silva ALDC, Macchi BM, do Nascimento JLM, Burbano RMRC-LM (2018) Role for apolipoprotein E in neurodegeneration and mercury intoxication. Front Biosci 1:229–241.  https://doi.org/10.2741/e819 CrossRefGoogle Scholar
  12. 12.
    Sakamoto M, Tatsuta N, Izumo K et al (2018) Health impacts and biomarkers of prenatal exposure to Methylmercury: lessons from Minamata, Japan. Toxics 6:45.  https://doi.org/10.3390/toxics6030045 CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Sakaue M, Mori N, Makita M, Fujishima K, Hara S, Arishima K, Yamamoto M (2009) Acceleration of methylmercury-induced cell death of rat cerebellar neurons by brain-derived neurotrophic factor in vitro. Brain Res 1273:155–162.  https://doi.org/10.1016/j.brainres.2009.03.035 CrossRefPubMedGoogle Scholar
  14. 14.
    Cavalcante J, Vieira S, Braga CP et al (2017) Mercury exposure : protein biomarkers of mercury exposure in Jaraqui fish from the Amazon region. Biol Trace Elem Res 183:164–171.  https://doi.org/10.1007/s12011-017-1129-5 CrossRefGoogle Scholar
  15. 15.
    Wallace MAG, Kormos TM, Pleil JD (2016) Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. J Toxicol Environ Health Part B 19:380–409.  https://doi.org/10.1080/10937404.2016.1215772 CrossRefGoogle Scholar
  16. 16.
    Branco V, Caito S, Farina M, Teixeira da Rocha J, Aschner M, Carvalho C (2017) Biomarkers of mercury toxicity: past, present, and future trends. J Toxicol Environ Health B Crit Rev 20:119–154.  https://doi.org/10.1080/10937404.2017.1289834 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yancheva V, Velcheva I, Stoyanova S, Georgieva (2016) Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: a review.  https://doi.org/10.15666/aeer/1401_047075 CrossRefGoogle Scholar
  18. 18.
    Bittarello AC, Vieira JCS, Braga CP, de Paula Araújo WL, da Cunha Bataglioli I, da Silva JM, Buzalaf MAR, Fleuri LF, de Magalhães Padilha P (2019) Characterization of molecular biomarkers of mercury exposure to muscle tissue of Plagioscion squamosissimus and Colossoma macropomum from the Amazon region. Food Chem 276:247–254.  https://doi.org/10.1016/j.foodchem.2018.10.002 CrossRefPubMedGoogle Scholar
  19. 19.
    Vieira JCS, Cavecci B, Queiroz JV, Braga CP, Padilha CCF, Leite AL, Figueiredo WS, Buzalaf MAR, Zara LF, Padilha PM (2015) Determination of the mercury fraction linked to protein of muscle and liver tissue of Tucunaré (Cichla spp.) from the Amazon region of Brazil. Arch Environ Contam Toxicol 69:422–430.  https://doi.org/10.1007/s00244-015-0160-9 CrossRefPubMedGoogle Scholar
  20. 20.
    Vieira JCS, Braga CP, de Oliveira G et al (2018) Correction to: mercury exposure: protein biomarkers of mercury exposure in Jaraqui fish from the Amazon region. Biol Trace Elem Res 183:172–172.  https://doi.org/10.1007/s12011-017-1195-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Vieira JCS, Braga CP, de Oliveira G et al (2017) Identification of protein biomarkers of mercury toxicity in fish. Environ Chem Lett 15:717–724.  https://doi.org/10.1007/s10311-017-0644-0 CrossRefGoogle Scholar
  22. 22.
    Braga CP, Bittarello a. C, Padilha CCF, et al (2015) Mercury fractionation in dourada (Brachyplatystoma rousseauxii) of the Madeira River in Brazil using metalloproteomic strategies. Talanta 132:239–244.  https://doi.org/10.1016/j.talanta.2014.09.021 CrossRefGoogle Scholar
  23. 23.
    UniProt (2016) Universal Protein Resource (UniProt). In: 2016Google Scholar
  24. 24.
    Cerbino MR, Vieira JCS, Braga CP, Oliveira G, Padilha IF, Silva TM, Zara LF, Silva NJ Jr, Padilha PM (2017) Metalloproteomics approach to analyze mercury in breast Milk and hair samples of lactating women in communities of the Amazon Basin, Brazil. Biol Trace Elem Res 181:1–11.  https://doi.org/10.1007/s12011-017-1057-4 CrossRefGoogle Scholar
  25. 25.
    de Castro NSS, Lima MDO (2014, 2014) Biomarkers of mercury exposure in the Amazon. Biomed Res Int.  https://doi.org/10.1155/2014/867069 Google Scholar
  26. 26.
    Gutiérrez-Mosquera H, Sujitha SB, Jonathan MP et al (2018) Mercury levels in human population from a mining district in Western Colombia. J Environ Sci 68:83–90.  https://doi.org/10.1016/j.jes.2017.12.007 CrossRefGoogle Scholar
  27. 27.
    Wolf SE, Swaddle JP, Cristol DA, Buchser WJ (2017) Methylmercury exposure reduces the auditory brainstem response of Zebra finches (Taeniopygia guttata ). J Assoc Res Otolaryngol 18:569–579.  https://doi.org/10.1007/s10162-017-0619-7 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhou F, Yin G, Gao Y et al (2019) Toxicity assessment due to prenatal and lactational exposure to lead, cadmium and mercury mixtures. Environ Int 133.  https://doi.org/10.1016/j.envint.2019.105192 CrossRefGoogle Scholar
  29. 29.
    de Queiroz JV, Vieira JCS, da Cunha BI et al (2018) Total mercury determination in muscle and liver tissue samples from Brazilian Amazon fish using slurry sampling. Biol Trace Elem Res 184:517–522.  https://doi.org/10.1007/s12011-017-1212-y CrossRefPubMedGoogle Scholar
  30. 30.
    Sénèque O, Rousselot-Pailley P, Pujol A, Boturyn D, Crouzy S, Proux O, Manceau A, Lebrun C, Delangle P (2018) Mercury trithiolate binding (HgS 3 ) to a de novo designed cyclic decapeptide with three preoriented cysteine side chains. Inorg Chem 57:2705–2713.  https://doi.org/10.1021/acs.inorgchem.7b03103 CrossRefPubMedGoogle Scholar
  31. 31.
    Fiati Kenston SS, Su H, Li Z, Kong L, Wang Y, Song X, Gu Y, Barber T, Aldinger J, Hua Q, Li Z, Ding M, Zhao J, Lin X (2018) The systemic toxicity of heavy metal mixtures in rats. Toxicol Res (Camb) 7:396–407.  https://doi.org/10.1039/c7tx00260b CrossRefGoogle Scholar
  32. 32.
    Vieira JCS, Braga CP, de Oliveira G et al (2017) Correction to: mercury exposure: protein biomarkers of mercury exposure in Jaraqui fish from the Amazon region. Biol Trace Elem Res 1.  https://doi.org/10.1007/s12011-017-1195-8 CrossRefGoogle Scholar
  33. 33.
    De Queiroz JV, Cavalcante J, Vieira S et al (2018) Identification of biomarkers of mercury contamination in Brachyplatystoma filamentosum of the Madeira River. Using Metalloproteomic Strategies, BrazilGoogle Scholar
  34. 34.
    Kumeta H, Nakayama H, Ogura K (2017) Solution structure of the major fish allergen parvalbumin Sco j 1 derived from the Pacific mackerel. Sci Rep 7:17160.  https://doi.org/10.1038/s41598-017-17281-6 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Freidl R, Gstöttner A, Baranyi U, et al (2019) Resistance of parvalbumin to gastrointestinal digestion is required for profound and long-lasting prophylactic oral tolerance. Allergy all.13994.  https://doi.org/10.1111/all.13994
  36. 36.
    Vologzhannikova AA, Khorn PA, Kazakov AS, Ismailov RG, Sokolov AS, Uversky VN, Permyakov EA, Permyakov SE (2017) In search for globally disordered apo-parvalbumins: case of parvalbumin β-1 from coho salmon. Cell Calcium 67:53–64.  https://doi.org/10.1016/j.ceca.2017.08.011 CrossRefPubMedGoogle Scholar
  37. 37.
    Dudev T, Lim C (2014) Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem Rev 114:538–556.  https://doi.org/10.1021/cr4004665 CrossRefPubMedGoogle Scholar
  38. 38.
    Kumar VD, Lee L, Edwards BFP (1991) Refined crystal structure of ytterbium-substituted carp parvalbumin 4.25 at 1.5 Å, and its comparison with the native and cadmium-substituted structures. FEBS Lett 283:311–316.  https://doi.org/10.1016/0014-5793(91)80616-B CrossRefPubMedGoogle Scholar
  39. 39.
    Svärd M, Drakenberg T (1986) Cation binding to parvalbumin studied by 113Cd and 23Na NMR. Peak assignment of rabbit (pI 5.5) parvalbumin. Acta Chem Scand B 40:689–693.  https://doi.org/10.3891/acta.chem.scand.40b-0689 CrossRefPubMedGoogle Scholar
  40. 40.
    (2018) rps27a - precursor da proteína S27a ribossômica ubiquitina-40S - Ictalurus punctatus (catfish canal) - gene rps27a & proteínaGoogle Scholar
  41. 41.
    Moraes PM, Santos FA, Padilha CCF et al (2012) A preliminary and qualitative Metallomics study of mercury in the muscle of fish from Amazonas, Brazil. Biol Trace Elem Res 150:195–199.  https://doi.org/10.1007/s12011-012-9502-x CrossRefPubMedGoogle Scholar
  42. 42.
    Han M-HJ, Hu Z, Chen CY et al (2014) Dysbindin-associated proteome in the p2 synaptosome fraction of mouse brain. J Proteome Res 13:4567–4580.  https://doi.org/10.1021/pr500656z CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Falini G, Fermani S, Tosi G, Arnesano F, Natile G (2008) Structural probing of Zn(II), cd(II) and hg(II) binding to human ubiquitin. Chem Commun:5960–5962.  https://doi.org/10.1039/b813463d
  44. 44.
    Furuchi T, Hwang GW, Naganuma A (2002) Overexpression of the ubiquitin-conjugating enzyme Cdc34 confers resistance to methylmercury in Saccharomyces cerevisiae. Mol Pharmacol 61:738–741.  https://doi.org/10.1124/mol.61.4.738 CrossRefPubMedGoogle Scholar
  45. 45.
    Kurita H, Hasegawa T, Seko Y, Nagase H, Tokumoto M, Lee JY, Satoh M (2018) Effect of gestational cadmium exposure on fetal growth, polyubiquitinated protein and monoubiqutin levels in the fetal liver of mice. J Toxicol Sci 43:19–24CrossRefGoogle Scholar
  46. 46.
    Ugone V, Sanna D, Sciortino G, Maréchal JD, Garribba E (2019) Interaction of vanadium(IV) species with ubiquitin: a combined instrumental and computational approach. Inorg Chem 58:8064–8078.  https://doi.org/10.1021/acs.inorgchem.9b00807 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • José Cavalcante Souza Vieira
    • 1
    • 2
    Email author
  • Grasieli de Oliveira
    • 1
  • Camila Pereira Braga
    • 3
  • Mileni da Silva Fernandes
    • 4
  • Paula Martin de Moraes
    • 5
  • Marília Afonso Rabelo Buzalaf
    • 4
  • Lincoln Carlos Silva de Oliveira
    • 2
  • Pedro de Magalhães Padilha
    • 1
  1. 1.São Paulo State University (UNESP), Institute of BiosciencesBotucatuBrazil
  2. 2.Federal University of Mato Grosso do Sul (UFMS)Campo GrandeBrazil
  3. 3.Biochemistry DepartmentUniversity of NebraskaLincolnUSA
  4. 4.University of São Paulo, (USP)BauruBrazil
  5. 5.Local DevelopmentDom Bosco Catholic University (UCDB)Campo GrandeBrazil

Personalised recommendations