Calcium Deficiency in Diet Decreases the Magnesium Content in Bone and Affects Femur Physicochemical Properties in Growing Rats

  • Ezequiel Hernández-BecerraEmail author
  • Daniel Jímenez-Mendoza
  • Nathalia Mutis-Gonzalez
  • Posidia Pineda-Gomez
  • Isela Rojas-Molina
  • Mario E. Rodríguez-García


This study evaluates the effect of three calcium levels in the diet (normal, moderate, and severe calcium depletion) on bone metabolism of male Wistar rats during their growth period. Bone mineral density (BMD) and femur length were determined in vivo during the growth stage using a single X-ray transmission system. The apparent calcium absorption was calculated in the rat adolescent and adulthood stages. At the end of the experiment, calcium concentrations in serum and urine were analyzed. The bones were evaluated postmortem to corroborate in vivo analyses. Microstructural properties of cortical and trabecular tissues of femurs bones were assessed using scanning electron microscopy. Bone mineral contents (Mg, Ca, P, and K) were quantified by inductively coupled plasma. Severe calcium depletion in the diets in the development stage affects the bone quality parameters such as bone mineral density and mineral content. Moreover, it was found thinner cortical and trabecular bone areas. Additionally, it was found that severe calcium depletion increased the apparent absorption of calcium as a defense mechanism, but with the decrease of the BMD peak, and the thickness of cortical bone as well as trabecular bone porosity. The severe calcium depletion increased the efficiency of apparent absorption calcium as a defense mechanism, but, even so, decreases the BMD peak as well as the thickness of cortical bone and trabecular bone porosity.


Bone mineral density Bone microstructure Bone mineral content Single X-ray system Calcium depletion Trabecular and cortical bone 



Ezequiel Hernández Becerra wishes to thank Consejo Nacional de Ciencia y Tecnología (CONACYT, México) for his Postdoctoral position at CFATA-UNAM-Juriquilla. We want to thank M. en I.Q Alicia del Real for the SEM and Mayté Juárez Meneses (Investigación Aplicada, Centro Universitario de Vinculación-BUAP) for their technical support.

Funding Information

This project was supported by PAPIIT-UNAM project number IN112317.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of Mexican current regulation (NOM-062-ZOO-1999).


  1. 1.
    Hunt JR, Hunt CD, Zito CA, Idso JP, Johnson LK (2008) Calcium requirements of growing rats based on bone mass, structure, or biomechanical strength are similar. The J Nutr 138:1462–1468. CrossRefPubMedGoogle Scholar
  2. 2.
    Ito S, Ishida H, Uenishi K, Murakami K, Sasaki S (2011) The relationship between habitual dietary phosphorus and calcium intake, and bone mineral density in young Japanese women: a cross-sectional study. Asia Pac J Clin Nutr 20:411–717PubMedGoogle Scholar
  3. 3.
    Viguet-Carrin SV, Hoppler M, Membrez SF, Vuichoud J, Vigo M, Offord EA, Ammann P (2014) Peak bone strength is influenced by calcium intake in growing rats. Bone 68:85–91. CrossRefPubMedGoogle Scholar
  4. 4.
    Buchowski MS, Semenya J, Johnson AO (2002) Dietary calcium intake in lactose maldigesting intolerant and tolerant African-American women. J Amer Coll Nutr 21(1):47–54. CrossRefGoogle Scholar
  5. 5.
    Aguilera-Barreiro MDA, Rivera-Márquez JA, Trujillo-Arriaga HM, Tamayo-Orozco JA, Barreira-Mercado E, Rodríguez-García ME (2013) Intake of dehydrated nopal (Opuntia ficus índica) improves bone mineral density and calciuria in adult Mexican women. Food Nutr Res 57(1):19106–19115CrossRefGoogle Scholar
  6. 6.
    Calvo MS, Uribarri J (2013) Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population. Am J Clin Nutr 1:6–15CrossRefGoogle Scholar
  7. 7.
    Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y (2012) Dietary phosphorus in bone health and quality of life. Nutr Rev 70:311–321CrossRefGoogle Scholar
  8. 8.
    Anderson JJ (1996) Calcium, phosphorous and human bone development. J Nutr 126(4):1153S–1158SCrossRefGoogle Scholar
  9. 9.
    Koshihara M, Mayuzama R, Uehara M, Susuky K (2004) Effect of dietary calcium: phosphorus ratio on bone mineralization and intestinal calcium absorption in ovariectomized rats. Biofactors 22(1-4):39–42CrossRefGoogle Scholar
  10. 10.
    Peterson CA, Eurell JAC, Erdman JW (1995) Alterations in calcium intake on peak bone mass in the female rats. J Bone Miner Res 10(1):81–95CrossRefGoogle Scholar
  11. 11.
    Wachter WJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Hinzl L, Claes L, Augat P (2002) Correlation of bone mineral density with strength and microstructural parameters structural parameters of cortical bone in vitro. Bone 3(1):90–95CrossRefGoogle Scholar
  12. 12.
    Pineda-Gomez P, Hernandez-Becerra E, Rojas-Molina I, Rosales-Rivera A, Rodriguez-Garcia ME (2019) The effect of calcium deficiency on bone properties in growing rats. Curr Nutr & Food Sci 15(5):1–5. CrossRefGoogle Scholar
  13. 13.
    Reeves PG, Nielsen FH, Fahey JGC (1993) AIN-93 purified diets for laboratory rodents, final report of the American Institute of Nutrition ad hoc writing committee on reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951CrossRefGoogle Scholar
  14. 14.
    Hernández-Becerra E, Gutiérrez-Cortez E, Del Real A, Rojas-Molina A, Rodriguez-Garcia ME, Rubio E, Quintero-Garcia M, Rojas-Molina JI (2017) Bone mineral density, mechanical, microstructural properties and mineral content of the femur in growing rats fed with Opuntia ficus indica as calcium source in diet. Nutrients 9(2):108–125. CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Miyazato S, Nakagawa C, Kishimoto Y, Tagami H, Hara H (2010) Promotive effects of resistant maltodextrin on apparent absorption of calcium, magnesium, iron and zinc in rats. Eur J Nutr 49(3):165–171CrossRefGoogle Scholar
  16. 16.
    Hernández-Becerra E, Mendoza-Avilez M, Jiménez-Mendoza M, Gutiérrez-Cortez E, Rodriguez-Garcia ME, Rojas-Molina I (2019) Effect of Nopal (Opuntia ficus indica) consumption at different maturity stages as an only calcium source on bone mineral metabolism in growing rats. J. Biol Trace Elem Res:1–9.
  17. 17.
    Jimenez-Mendoza D, Espinosa-Arbelaez DG, Giraldo-Betancur AL, Hernandez-Urbiola MI, Vargas-Vazquez D, Rodriguez-Garcia ME (2011) Single X-ray transmission system for bone mineral density determination. The Rev Sci Instr 82(12):125105–125111CrossRefGoogle Scholar
  18. 18.
    Kim C, Park D (2013) The effect of restriction of dietary calcium on trabecular and cortical bone mineral density in the rats. J Exer Nutr Biochemy 17(4):123–131CrossRefGoogle Scholar
  19. 19.
    Takakura I, Creasy DM, Yokoi R, Terashimaa Y, Onozato T, Maruyama Y, Chino T, Tahara T, Tamura T, Kuroda J, Kusama H (2013) Effects of male sexual maturity of reproductive endpoints relevant to DART studies in Wistar Hannover rats. J Toxicol 39(2):269–279Google Scholar
  20. 20.
    Sengupta P (2013) The laboratory rat: Relating its age with human’s. Int J Prev Med 4:624–630PubMedPubMedCentralGoogle Scholar
  21. 21.
    Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. The FEBS J 280(17):4294–4314. CrossRefPubMedGoogle Scholar
  22. 22.
    Tamaki T, Uchiyama S (1995) Absolute and relative growth of rat skeletal muscle. Physiol Behav 57(5):913–919CrossRefGoogle Scholar
  23. 23.
    Gallagher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, DeLuca HF (1979) Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients: effect of age and dietary calcium. The J Clin Invest 64:729–736CrossRefGoogle Scholar
  24. 24.
    Bronner F (2003) Mechanisms of intestinal calcium absorption. J Cell Biochem 88(2):387–393CrossRefGoogle Scholar
  25. 25.
    Mehrotra M, Gupta KS, Kumar K, Awassthi K, Dubey M, Pandey MC, Godbole M (2006) Calcium deficiency-induced secondary hyperparathyroidism and osteopenia are rapidly reversible with calcium supplementation in growing rabbit pups. Br J Nutr 95:582–590. CrossRefPubMedGoogle Scholar
  26. 26.
    Londoño-Restrepo SM, Ramírez-Gutiérrez CF, Del Real A, Rubio-Rosas E, Rodríguez-García ME (2016) Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air. J Mat Scien 51:4431–4441. CrossRefGoogle Scholar
  27. 27.
    Creedon AFA, Cashman K (1999) The effect of moderately and severely restricted dietary magnesium intakes on bone composition and bone metabolism in the rat. The Brit J Nutr 82(1):63–71. CrossRefPubMedGoogle Scholar
  28. 28.
    Gruber HE, Rude RK, Wei L, Fausto A, Mills BG, Norton HJ (2003) Magnesium deficiency: effect on bone mineral density in the mouse appendicular skeleton. BMC Musculoskelet Disord 3:4–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Escuela Nacional de Estudios SuperioresUniversidad Nacional Autónoma de MéxicoQuerétaroMéxico
  2. 2.Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoQuerétaroMéxico
  3. 3.Departamento de Ingeniería Física, División de Ciencias e IngenieríasUniversidad de GuanajuatoGuanajuatoMéxico
  4. 4.Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de ColombiaManizalesColombia
  5. 5.Facultad de Ciencias Exactas y NaturalesUniversidad de CaldasManizalesColombia
  6. 6.Programa de Doctorado en Ciencias Químico Biológicas, Facultad de QuímicaUniversidad Autónoma de QuerétaroQuerétaroMexico
  7. 7.Departamento de Nanotecnología, Centro de Física Aplica y Tecnología AvanzadaUniversidad Nacional Autónoma de México campus JuriquillaQuerétaroMéxico

Personalised recommendations