Sodium Selenite Improves In Vitro Maturation of Bos primigenius taurus Oocytes

  • Raúl Martín Lizarraga
  • Juan Mateo Anchordoquy
  • Esteban Martín Galarza
  • Nicolás Agustín Farnetano
  • Ana Carranza-Martin
  • Cecilia Cristina Furnus
  • Guillermo Alberto Mattioli
  • Juan Patricio AnchordoquyEmail author


Selenium (Se) is an essential trace element with important functions in animals and whose deficiency is associated with reproductive failures. The aim of this study was to investigate the effect of Se concentrations during in vitro maturation (IVM) of Bos taurus oocyte within the reference ranges for Se status in cattle. For this purpose, Aberdeen Angus cumulus–oocyte complexes (COCs) were matured in IVM medium supplemented with 0, 10, 50, and 100 ng/mL Se (control, deficient, marginal, and adequate, respectively). The results demonstrated that marginal and adequate Se concentrations added during IVM increased viability and non-apoptotic cumulus cells (CC). Moreover, the addition of Se to culture media decreased malondialdehyde level in COC with all studied concentrations and increased total glutathione content in CC and oocytes with 10 ng/mL Se. On the other hand, total antioxidant capacity of COC, nuclear maturation, and the developmental capacity of oocytes were not modified by Se supplementation. However, 10 ng/mL Se increased hatching rate. In conclusion, supplementation with 10 ng/mL Se during in vitro maturation of Bos primigenius taurus oocytes should be considered to improve embryo quality.


Selenium MDA TAC Apoptosis GSH Embryo development 


Author contributions

R.M.L. and J.M.A. designed the study, E.M.G., N.A.F., and A.C-M. assisted with data collection. C.C.F. and G.A.M analyzed the data and J.P.A. coordinated the experiments and revised the manuscript. All co-authors participated in lab work.

Funding information

We are grateful to Centro de Inseminación Artificial La Elisa S.A. (CIALE) for providing bovine frozen semen, and the Staff of SENASA from Frigorífico Gorina S.A. for providing the bovine ovaries. This work was supported by Grant PICT 2015-2154 from Agencia Nacional de Promoción Científica y Tecnológica de la República Argentina (MINCyT). Thanks are also due to A. Di Maggio for manuscript correction and edition.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.


  1. 1.
    Boland MP (2003) Trace minerals in production and reproduction in dairy cows Adv dairy technol 15:319Google Scholar
  2. 2.
    Mehdi Y, Dufrasne I (2016) Selenium in cattle: a review. Molecules 21:545. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Singh AK, Rajak SK, Kumar P, Shilpi Kerketta Yogi RK (2018) Nutrition and bull fertility: a review. J Entomol Zool Stud 6(6):635–643Google Scholar
  4. 4.
    Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, Iqbal Z (2014) Role of selenium in male reproduction - a review. Anim Reprod Sci 146:55–62CrossRefGoogle Scholar
  5. 5.
    Wu ASH, Oldfield JE, Shull LR, Cheeke PR (1979) Specific effect of selenium deficiency on rat sperm. Biol Reprod 20:793–798. CrossRefPubMedGoogle Scholar
  6. 6.
    Behne D, Weiler H, Kyriakopoulos A (1996) Effects of selenium deficiency on testicular morphology and function in rats. Reproduction 106:291–297. CrossRefGoogle Scholar
  7. 7.
    Kaur R, Kaur K (2000) Effects of dietary selenium (SE) on morphology of testis and cauda epididymis in rats. Indian J Physiol Pharmacol 44:265–272PubMedGoogle Scholar
  8. 8.
    Marai IFM, El-Darawany A-HA, Ismail E-SA-F, Abdel-Hafez MAM (2009) Reproductive and physiological traits of Egyptian Suffolk rams as affected by selenium dietary supplementation and housing heat radiation effects during winter of the sub-tropical environment of Egypt (Short Communication). Arch Anim Breed 52:402–409. CrossRefGoogle Scholar
  9. 9.
    Spears JW, Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J 176:70–76. CrossRefPubMedGoogle Scholar
  10. 10.
    Hefnawy AEG, Tórtora-Pérez JL (2010) The importance of selenium and the effects of its deficiency in animal health. Small Ruminant Res 89:185–192. CrossRefGoogle Scholar
  11. 11.
    Sordillo LM (2013) Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Vet Med Int 2013:154045. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kommisrud E, Osterås O, Vatn T (2005) Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Vet Scand 46:229–240CrossRefGoogle Scholar
  13. 13.
    Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130:1653–1656. CrossRefPubMedGoogle Scholar
  14. 14.
    Pehrson B, Hakkarainen J, Työppönen J (1986) Nutritional muscular degeneration in young heifers. Nord Vet Med 38:26–30PubMedGoogle Scholar
  15. 15.
    Smith KL, Hogan JS, Conrad HR (1988) Selenium in dairy cattle: Its role in disease resistance. Vet Med 83:72–78Google Scholar
  16. 16.
    Gerloff BJ (1992) Effect of selenium supplementation on dairy cattle. J Anim Sci 70:3934–3940CrossRefGoogle Scholar
  17. 17.
    Ceballos MA, Wittwer F (1996) Metabolismo del selenio en rumiantes. Arch Med Vet XXVIII:15Google Scholar
  18. 18.
    Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303. CrossRefPubMedGoogle Scholar
  19. 19.
    Rivera RE, Christensen VL, Edens FW, Wineland MJ (2005) Influence of selenium on heat shock protein 70 expression in heat stressed turkey embryos (Meleagris gallopavo). Comp Biochem Physiol Part A Mol Integr Physiol 142:427–432. CrossRefGoogle Scholar
  20. 20.
    Zeng H (2009) Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules 14:1263–1278. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gopalakrishna R, Chen ZH, Gundimeda U (1997) Selenocompounds induce a redox modulation of protein kinase C in the cell, compartmentally independent from cytosolic glutathione: its role in inhibition of tumor promotion. Arch Biochem Biophys 348:37–48. CrossRefPubMedGoogle Scholar
  22. 22.
    Fontenelle LC, Feitosa MM, Morais JBS et al (2018) The role of selenium in insulin resistance. Braz J Pharm Sci 54:1–11. CrossRefGoogle Scholar
  23. 23.
    Raghu HM, Reddy SM, Nandi S (2002) Effect of insulin, transferrin and selenium and epidermal growth factor on development of buffalo oocytes to the blastocyst stage in vitro in serum-free, semidefined media. Vet Rec 151:260–265. CrossRefPubMedGoogle Scholar
  24. 24.
    Jeong YW, Hossein MS, Bhandari DP, Kim YW, Kim JH, Park SW, Lee E, Park SM, Jeong YI, Lee JY, Kim S, Hwang WS (2008) Effects of insulin-transferrin-selenium in defined and porcine follicular fluid supplemented IVM media on porcine IVF and SCNT embryo production. Anim Reprod Sci 106:13–24. CrossRefPubMedGoogle Scholar
  25. 25.
    Córdova B, Morató R, Izquierdo D, Paramio T, Mogas T (2010) Effect of the addition of insulin-transferrin-selenium and/or L-ascorbic acid to the in vitro maturation of prepubertal bovine oocytes on cytoplasmic maturation and embryo development. Theriogenology 74:1341–1348. CrossRefPubMedGoogle Scholar
  26. 26.
    Makki M, Saboori E, Sabbaghi MA et al (2012) Effects of selenium, calcium and calcium ionophore on human oocytes in vitro maturation in a chemically defined medium. Iran J Reprod Med 10:343–348PubMedPubMedCentralGoogle Scholar
  27. 27.
    Baker RD, Baker SS, Rao R (1998) Selenium deficiency in tissue culture: implications for oxidative metabolism. J Pediatr Gastroenterol Nutr 27:387–392CrossRefGoogle Scholar
  28. 28.
    Xiong X, Lan D, Li J, Lin Y, Li M (2018) Selenium supplementation during in vitro maturation enhances meiosis and developmental capacity of yak oocytes. Anim Sci J 89:298–306. CrossRefPubMedGoogle Scholar
  29. 29.
    Anchordoquy JP, Anchordoquy JM, Sirini MA, Mattioli G, Picco SJ, Furnus CC (2013) Effect of different manganese concentrations during in vitro maturation of bovine oocytes on DNA integrity of cumulus cells and subsequent embryo development. Reprod Domest Anim 48:905–911. CrossRefPubMedGoogle Scholar
  30. 30.
    Picco SJ, Anchordoquy JM, de Matos DG et al (2010) Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes. Theriogenology 74:1141–1148. CrossRefPubMedGoogle Scholar
  31. 31.
    Picco SJ, Rosa DE, Anchordoquy JP, Anchordoquy JM, Seoane A, Mattioli GA, Furnus CC (2012) Effects of copper sulphate concentrations during in vitro maturation of bovine oocytes. Theriogenology 77:373–381. CrossRefPubMedGoogle Scholar
  32. 32.
    Parrish JJ, Susko-Parrish JL, Leibfried-Rutledge ML, Critser ES, Eyestone WH, First NL (1986) Bovine in vitro fertilization with frozen-thawed semen. Theriogenology 25:591–600CrossRefGoogle Scholar
  33. 33.
    Tervit HR, Whittingham DG, Rowson LE (1972) Successful culture in vitro of sheep and cattle ova. J Reprod Fertil 30:493–49734CrossRefGoogle Scholar
  34. 34.
    Gardner DK, Lane M, Spitzer A, Batt PA (1994) Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod 50:390–400CrossRefGoogle Scholar
  35. 35.
    Anchordoquy JP, Anchordoquy JM, Pascua AM et al (2017) The copper transporter (SLC31A1/CTR1) is expressed in bovine spermatozoa and oocytes: Copper in IVF medium improves sperm quality. Theriogenology 97:124–133. CrossRefPubMedGoogle Scholar
  36. 36.
    Izadyar F, Colenbrander B, Bevers MM (1997) Stimulatory effect of growth hormone on in vitro maturation of bovine oocytes is exerted through the cyclic adenosine 3’,5’-monophosphate signaling pathway. Biol Reprod 57:1484–1489CrossRefGoogle Scholar
  37. 37.
    Süss U, Wüthrich K, Stranzinger G (1988) Chromosome configurations and time sequence of the first meiotic division in bovine oocytes matured in vitro. Biol Reprod 38:871–880CrossRefGoogle Scholar
  38. 38.
    Glander HJ, Schaller J (1999) Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage. Mol Hum Reprod 5:109–115CrossRefGoogle Scholar
  39. 39.
    Paasch U, Sharma RK, Gupta AK et al (2004) Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod 71:1828–1837. CrossRefPubMedGoogle Scholar
  40. 40.
    Furnus CC, de Matos DG, Moses DF (1998) Cumulus expansion during in vitro maturation of bovine oocytes: relationship with intracellular glutathione level and its role on subsequent embryo development. Mol Reprod Dev 51:76–83.<76::AID-MRD9>3.0.CO;2-T CrossRefGoogle Scholar
  41. 41.
    Mauro MO, Sartori D, Oliveira RJ, Ishii PL, Mantovani MS, Ribeiro LR (2011) Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells. Mutat Res 715:7–12. CrossRefPubMedGoogle Scholar
  42. 42.
    Zou Y, Shao J, Li Y, et al (2019) Protective effects of inorganic and organic selenium on heat stress in bovine mammary epithelial cells. In: Oxidative medicine and cellular longevity. Accessed 28 Mar 2019Google Scholar
  43. 43.
    Uhm SJ, Gupta MK, Yang JH, Lee SH, Lee HT (2007) Selenium improves the developmental ability and reduces the apoptosis in porcine parthenotes. Mol Reprod Dev 74:1386–1394. CrossRefPubMedGoogle Scholar
  44. 44.
    Sunde RA (1990) Molecular biology of selenoproteins. Annu Rev Nutr 10:451–474. CrossRefPubMedGoogle Scholar
  45. 45.
    Mihailović M, Cvetković M, Ljubić A, Kosanović M, Nedeljković S, Jovanović I, Pesut O (2000) Selenium and malondialdehyde content and glutathione peroxidase activity in maternal and umbilical cord blood and amniotic fluid. Biol Trace Elem Res 73:47–54. CrossRefPubMedGoogle Scholar
  46. 46.
    Ansar S, Alshehri SM, Abudawood M, Hamed SS, Ahamad T (2017) Antioxidant and hepatoprotective role of selenium against silver nanoparticles. Int J Nanomedicine 12:7789–7797. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ceko MJ, Hummitzsch K, Hatzirodos N, Bonner WM, Aitken JB, Russell DL, Lane M, Rodgers RJ, Harris HH (2015) X-Ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics 7:71–82. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Abedelahi A, Salehnia M, Allameh AA, Davoodi D (2010) Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Hum Reprod 25:977–985. CrossRefPubMedGoogle Scholar
  49. 49.
    Basini G, Tamanini C (2000) Selenium stimulates estradiol production in bovine granulosa cells: possible involvement of nitric oxide. Domest Anim Endocrinol 18:1–17. CrossRefPubMedGoogle Scholar
  50. 50.
    Paszkowski T, Traub AI, Robinson SY, McMaster D (1995) Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin Chim Acta 236:173–180CrossRefGoogle Scholar
  51. 51.
    Shamsuddin M, Larsson B, Gustafsson H, Rodriguez-Martinez H (1994) A serum-free, cell-free culture system for development of bovine one-cell embryos up to blastocyst stage with improved viability. Theriogenology 41:1033–1043CrossRefGoogle Scholar
  52. 52.
    de Matos DG, Furnus CC, Moses DF, Baldassarre H (1995) Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro. Mol Reprod Dev 42:432–436. CrossRefPubMedGoogle Scholar
  53. 53.
    Funahashi H, Day BN (1995) Effect of cumulus cells on glutathione content of porcine oocytes during in vitro maturation. J Anim Sci 73(1):90Google Scholar
  54. 54.
    Miyamura M, Yoshida M, Hamano S, Kuwayama M (1995) Glutathione concentration during maturation and fertilization in bovine oocytes. Theriogenology 43(1):282CrossRefGoogle Scholar
  55. 55.
    de Matos DG, Furnus CC, Moses DF, Martinez AG, Matkovic M (1996) Stimulation of glutathione synthesis of in vitro matured bovine oocytes and its effect on embryo development and freezability. Mol Reprod Dev 45:451–457.<451::AID-MRD7>3.0.CO;2-Q CrossRefPubMedGoogle Scholar
  56. 56.
    Batist G, Katki AG, Klecker RW, Myers CE (1986) Selenium-induced cytotoxicity of human leukemia cells: interaction with reduced glutathione. Cancer Res 46:5482–5485PubMedGoogle Scholar
  57. 57.
    Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100CrossRefGoogle Scholar
  58. 58.
    Lee KH, Jeong D (2012) Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox (Review). Mol Med Rep 5:299–304. CrossRefPubMedGoogle Scholar
  59. 59.
    Shalini S, Bansal MP (2007) Co-operative effect of glutathione depletion and selenium induced oxidative stress on API and NFkB expression in testicular cells in vitro: insights to regulation of spermatogenesis. Biol Res 40:307–317 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Raúl Martín Lizarraga
    • 1
  • Juan Mateo Anchordoquy
    • 1
    • 2
  • Esteban Martín Galarza
    • 1
    • 2
  • Nicolás Agustín Farnetano
    • 1
  • Ana Carranza-Martin
    • 1
  • Cecilia Cristina Furnus
    • 1
    • 3
  • Guillermo Alberto Mattioli
    • 1
    • 2
  • Juan Patricio Anchordoquy
    • 1
    • 2
    Email author
  1. 1.IGEVET – Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA) Facultad de Ciencias VeterinariasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Cátedra de Fisiología, Facultad de Ciencias VeterinariasUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Cátedra de Citología, Histología y Embriología “A” Facultad de Ciencias Médicas MédicasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations