Advertisement

Comparing the Influence of High Doses of Different Zinc Salts on Oxidative Stress and Energy Depletion in IPEC-J2 Cells

  • Lingjun Chen
  • Xiaonan Yu
  • Haoxuan Ding
  • Yang Zhao
  • Caihong Hu
  • Jie FengEmail author
Article
  • 37 Downloads

Abstract

The current study aimed to investigate the influence of four supplemental zinc salts (chelated: Zn glycine; non-chelated: Zn sulfate, Zn citrate, Zn gluconate) among different zinc concentrations (30–300 μM) on cell proliferation, oxidative stress, and energy depletion in intestinal porcine jejunum epithelial cells (IPEC-J2). Different zinc salts affected cell viability in a time- and dose-dependent manner, which was mainly dependent on the uptake of intracellular Zn2+. Intracellular Zn2+ of Zn sulfate has taken up almost twice as high as Zn glycine when cells were loaded with 100–200 μM zinc. After loading cells with 300 μM zinc, Zn glycine and Zn sulfate had a similar trend in accumulation of Zn2+. When the intracellular Zn2+ overloads, cells will gradually be damaged and subsequently die bearing biochemical features of necrosis or late apoptosis. Meanwhile, obviously, increased levels of intracellular ROS, mitochondrial ROS, MDA, and NO and decreased levels of GSH were observed. Excessive intracellular Zn2+ significantly decreased mitochondria membrane potential accompanied by an obvious loss of ATP and NAD+ levels. Overall, exposure to high doses of zinc salts caused cell damage, which was mainly dependent on the uptake of Zn2+. Zinc overload induced oxidative stress and energy depletion in IPEC-J2 cells, and the cell damage with non-chelated zinc addition was more serious than Zn glycine.

Keywords

Zinc salts Biosafety Oxidative stress Energy depletion IPEC-J2 cells 

Notes

Funding Information

This work was supported by the National Key Technologies R & D Program of China (2016YFD0501201), National Natural Science Foundation of China (No. 31972998) and Zhejiang Provincial Key Research and Development Program (2019C02051).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chasapis CT, Loutsidou AC, Spiliopoulou CA (2012) Zinc and human health: an update. Arch Toxicol 86(4):521–534.  https://doi.org/10.1007/s00204-011-0775-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Lukacik M, Thomas RL, Aranda JV (2008) A meta-analysis of the effects of oral zinc in the treatment of acute and persistent diarrhea. Pediatrics 121(2):326–336.  https://doi.org/10.1542/peds.2007-0921 CrossRefPubMedGoogle Scholar
  3. 3.
    World Health Organization. WHO/UNICEF joint statement: clinical management of acute diarrhoea (2004)Google Scholar
  4. 4.
    Walker CLF, Lamberti L, Roth D, Robert BE (2011) Zinc and infectious diseases. In: Rink L (ed) Zinc in human health, Biomedical and health research. IOS Press, AmsterdamGoogle Scholar
  5. 5.
    Zhao J (2015) Creating a Zn deficient model to understand the impact of different Zn sources on performance and oxidative status in pigs. Asas 2015Google Scholar
  6. 6.
    Buchet JP, Lauwerys R, Vandevoorde A, Pycke JM (1983) Oral daily intake of cadmium, lead, manganese, copper, chromium, mercury, zinc and arsenic in Belgium: a duplicate meal study. Food Chem Toxicol 21(1):19–24.  https://doi.org/10.1016/0278-6915(83)90263-6 CrossRefPubMedGoogle Scholar
  7. 7.
    Ma W, Niu H, Feng J, Yong Y, Feng J (2011) Effects of zinc glycine chelate on oxidative stress, contents of trace elements, and intestinal morphology in broilers. Biol Trace Elem Res 142(3):546–556.  https://doi.org/10.1007/s12011-010-8824-9 CrossRefPubMedGoogle Scholar
  8. 8.
    Mocchegiani E, Giacconi R, Cipriano C, Muzzioli M, Fattoretti P, Bertoni-Freddari C, Isani G, Zambenedetti P, Zatta P (2016) Zinc-bound metallothioneins as potential biological markers of ageing. Brain Res Bull 55(2):147–153.  https://doi.org/10.1016/S0361-9230(01)00468-3 CrossRefGoogle Scholar
  9. 9.
    Mirjana K, Srdjana T, Dora G, Tomislav B, Katja GR (2014) Zinc-induced gastric ulcer: case report on two patients with Wilson’s disease. Acta Medica International 1(2):140–142 http://www.actamedicainternational.com CrossRefGoogle Scholar
  10. 10.
    Berry EV, Toms NJ (2006) Pyruvate and oxaloacetate limit zinc-induced oxidative HT-22 neuronal cell injury. Neurotoxicology 27(6):1043–1051.  https://doi.org/10.1016/j.neuro.2006.05.011 CrossRefPubMedGoogle Scholar
  11. 11.
    Ostan R, Alberti S, Bucci L, Salvioli S, Pasi S, Cevenini E, Capri M, Di Iorio A, Ginaldi L, De Martinis M, Franceschi C, Monti D (2006) Effect of zinc ions on apoptosis in PBMCs from healthy aged subjects. Biogerontology 7(5–6):437–447.  https://doi.org/10.1007/s10522-006-9059-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Rudolf E, Rudolf K, Cervinka M (2005) Zinc induced apoptosis in HEP-2 cancer cells: the role of oxidative stress and mitochondria. BioFactors 23(2):107–120.  https://doi.org/10.1002/biof.5520230206 CrossRefPubMedGoogle Scholar
  13. 13.
    Kim YH, Koh JY (2002) The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly (ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol 177(2):407–418.  https://doi.org/10.1006/exnr.2002.7990 CrossRefPubMedGoogle Scholar
  14. 14.
    Hsieh H, Vignesh KS, Deepe GSJ, Choubey D, Shertzer HG, Genter MB (2016) Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora. Toxicol In Vitro 35:24–30.  https://doi.org/10.1016/j.tiv.2016.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J (2007) Restoration of barrier function in injured intestinal mucosa. Physiol Rev 87(2):545–564.  https://doi.org/10.1152/physrev.00012.2006 CrossRefGoogle Scholar
  16. 16.
    Bishop GM, Dringen R, Robinson SR (2007) Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radic Biol Med 42(8):1222–1230.  https://doi.org/10.1016/j.freeradbiomed.2007.01.022 CrossRefPubMedGoogle Scholar
  17. 17.
    Dineley KE, Scanlon JM, Kress GJ, Stout AK, Reynolds IJ (2000) Astrocytes are more resistant than neurons to the cytotoxic effects of increased [Zn (2+)] (i). Neurobiol Dis 7(4):310–320.  https://doi.org/10.1006/nbdi.2000.0303 CrossRefPubMedGoogle Scholar
  18. 18.
    Kim EY, Koh JY, Kim YH, Sohn S, Joe E, Gwag BJ (2010) Zn2+ entry produces oxidative neuronal necrosis in cortical cell cultures. Eur J Neurosci 11(1):327–334.  https://doi.org/10.1046/j.1460-9568.1999.00437.x CrossRefGoogle Scholar
  19. 19.
    Abe S, Ohnishi H, Tsuchiya K, Ishizawa K, Torii M, Kanematsu Y, Kawazoe MK, Yoshizumi M, Tamaki T (2006) Calcium and reactive oxygen species mediated Zn2+-induced apoptosis in PC12 cells. J Pharmacol Sci 102(1):103–111.  https://doi.org/10.1254/jphs.FP0060342 CrossRefPubMedGoogle Scholar
  20. 20.
    Sharma AK, Singh V, Gera R, Purohit MP, Ghosh D (2016) Zinc oxide nanoparticle induces microglial death by NADPH-oxidase-independent reactive oxygen species as well as energy depletion. Neurobiol 54(8):6273–6286.  https://doi.org/10.1007/s12035-016-0133-7 CrossRefGoogle Scholar
  21. 21.
    Guo D, Du Y, Wu Q, Jiang W, Bi H (2014) Disrupted calcium homeostasis is involved in elevated zinc ion-induced photoreceptor cell death[J]. Arch Biochem Biophys 56:044–051.  https://doi.org/10.1016/j.abb.2014.07.014 CrossRefGoogle Scholar
  22. 22.
    Bettina Z, Zeiner M, Sargazi M, Roberts N, Marktl W, Steffan L, Ekmekcioglu C (2003) Toxic and biochemical effects of zinc in Caco-2 cells. J Inorg Biochem 97(4):324–330.  https://doi.org/10.1016/S0162-0134(03)00312-X CrossRefGoogle Scholar
  23. 23.
    Cario E, Jung S, D'Heureuse JH, Schulte C, Sturm A, Wiedenmann B, Goebell H, Dignass AU (2000) Effects of exogenous zinc supplementation on intestinal epithelial repair in vitro. Eur J Clin Investig 30(5):419–428 :.  https://doi.org/10.1046/j.1365-2362.2000.00618.x CrossRefGoogle Scholar
  24. 24.
    Lodemann U, Einspanier R, Scharfen F, Martens H, Bondzio A (2013) Effects of zinc on epithelial barrier properties and viability in a human and a porcine intestinal cell culture model. Toxicol in Vitro 27(2):834–843.  https://doi.org/10.1016/j.tiv.2012.12.019 CrossRefPubMedGoogle Scholar
  25. 25.
    Pavlica S, Gaunitz F, Gebhardt R (2009) Comparative in vitro toxicity of seven zinc-salts towards neuronal PC12 cells. Toxicol in Vitro 23(4):653–659.  https://doi.org/10.1016/j.tiv.2009.03.003 CrossRefPubMedGoogle Scholar
  26. 26.
    Sargeant HR, Shaw MA, Abuoun M, Collins JW, Woodward MJ, Ragione RWL, Miller HM (2010) The metabolic impact of zinc oxide on porcine intestinal cells and enterotoxigenic Escherichia coli K88. Livest Sci 133(1–3):0–48 : https://doi.org/10.1016/j.livsci.2010.06.021 CrossRefGoogle Scholar
  27. 27.
    Bae SN, Kim J, Lee YS, Kim JD, Kim MY, Park LO (2007) Cytotoxic effect of zinc-citrate compound on choriocarcinoma cell lines. Placenta 28(1):22–30.  https://doi.org/10.1016/j.placenta.2006.01.003 CrossRefPubMedGoogle Scholar
  28. 28.
    Ralph DM, Robinson SR, Campbell MS, Bishop GM (2010) Histidine, cystine, glutamine, and threonine collectively protect astrocytes from the toxicity of zinc. Free Radic Biol Med 49(4):649–657.  https://doi.org/10.1016/j.freeradbiomed.2010.05.023 CrossRefPubMedGoogle Scholar
  29. 29.
    Rudolf E, Rudolf K, Radocha J, Peychl J, Cervinka M (2003) The role of intracellular zinc in modulation of life and death of Hep-2 cells. Toxicol Lett 227(1):29–40.  https://doi.org/10.1023/a:1020603110255 CrossRefGoogle Scholar
  30. 30.
    Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99(8):1515–1522.  https://doi.org/10.1111/j.1349-7006.2008.00854.x CrossRefPubMedGoogle Scholar
  31. 31.
    Wood JP, Osborne NN (2010) The influence of zinc on caspase-3 and DNA breakdown in cultured human retinal pigment epithelial cells. Arch Ophthalmol 119(1):81. :10-1001/pubs.Ophthalmol.-ISSN-0003-9950-119-1-els90057Google Scholar
  32. 32.
    Evans GW, Johnson PE (1976) Zinc-binding factor in acrodermatitis enteropathica. Lancet 308(7998):1310.  https://doi.org/10.1016/s0140-6736(76)92082-1 CrossRefGoogle Scholar
  33. 33.
    Gillooly M, Bothwell TH, Torrance JD, MacPhail AP, Derman DP, Bezwoda WR, Mills W, Charlton RW, Mayet F (1983) The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br J Nutr 49(3):331–342.  https://doi.org/10.1079/BJN19830042 CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang L, Wang YX, Xiao X, Wang JS, Wang Q, Li KX, Zhan XA (2017) Effects of zinc glycinate on productive and reproductive performance, zinc concentration and antioxidant status in broiler breeders. Biol Trace Elem Res 178(2):320–326.  https://doi.org/10.1007/s12011-016-0928-4 CrossRefPubMedGoogle Scholar
  35. 35.
    Pavlica S, Gebhardt R (2010) Comparison of uptake and neuroprotective potential of seven zinc-salts. Neurochemistry International 56(1):84–93. https://www.sciencedirect.com/science/article/pii/_blank.  https://doi.org/10.1016/j.neuint.2009.09.005 CrossRefPubMedGoogle Scholar
  36. 36.
    Kim YH, Kim EY, Gwag BJ, Sohn S, Koh JY (1999) Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals. Neuroscience 89(1):175–182.  https://doi.org/10.1016/S0306-4522(98)00313-3 CrossRefPubMedGoogle Scholar
  37. 37.
    Roy R, Singh SK, Chauhan LK, Das M, Tripathi A, Dwivedi PD (2014) Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol Lett 227(1):29–40.  https://doi.org/10.1016/j.toxlet.2014.02.024 CrossRefPubMedGoogle Scholar
  38. 38.
    Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine:7845–7857.  https://doi.org/10.2147/IJN.S29129
  39. 39.
    Salazar G, Huang J, Feresin RG, Zhao Y, Griendling KK (2017) Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radic Biol Med 108:225–235.  https://doi.org/10.1016/j.freeradbiomed.2017.03.032 CrossRefPubMedGoogle Scholar
  40. 40.
    Lobner D, Canzoniero LM, Manzerra P, Gottron F, Ying H, Knudson M, Tian M, Dugan LL, Kerchner GA, Sheline CT, Korsmeyer SJ, Choi DW (2000) Zinc-induced neuronal death in cortical neurons. Cell Mol Biol 46(4):797–806.  https://doi.org/10.1247/csf.25.195 CrossRefPubMedGoogle Scholar
  41. 41.
    Boonstra J, Post JA (2004) Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337:0–13.  https://doi.org/10.1016/j.gene.2004.04.032 CrossRefGoogle Scholar
  42. 42.
    Schafer FQ, Buettner GR (2010) Redox environment of the cell as viewed through the Redox state of the glutathione disulfide/glutathione couple. Free. Radic. Biol. Med. 30(11):1191–1212.  https://doi.org/10.1016/S0891-5849(01)00480-4 CrossRefGoogle Scholar
  43. 43.
    Perry G, Nunomura A, Hirai K, Zhu X, Pérez PM, Avila J, Castellani RJ, Atwood CS, Aliev G, Sayre LM, Takeda A, Smith MA (2002) Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic Biol Med 33(11):1475–1479.  https://doi.org/10.1016/S0891-5849(02)01113-9 CrossRefPubMedGoogle Scholar
  44. 44.
    Ryu R, Shin Y, Choi JW, Min W, Ryu CR, Choi H (2002) Depletion of intracellular glutathione mediates zinc-induced cell death in rat primary astrocytes. Exp Brain Res 143(2):257–263.  https://doi.org/10.1007/s00221-001-0991-7 CrossRefPubMedGoogle Scholar
  45. 45.
    Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5(1):55–65.  https://doi.org/10.1016/j.mito.2004.11.001 CrossRefPubMedGoogle Scholar
  46. 46.
    Aimo L, Cherr MGN, Oteiza MPI (2010) Low extracellular zinc increases neuronal oxidant production through NADPH oxidase and nitric oxide synthase activation. Free Radic Biol Med 48(12):1577–1587.  https://doi.org/10.1016/j.freeradbiomed.2010.02.040 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhu C, Lv H, Chen Z, Wang L, Wu X, Chen Z, Zhang W, Liang R, Jiang Z (2016) Dietary zinc oxide modulates antioxidant capacity, small intestine development, and Jejunal gene expression in weaned piglets. Biol Trace Elem Res 175(2):1–8.  https://doi.org/10.1007/s12011-016-0767-3 CrossRefGoogle Scholar
  48. 48.
    Sargazi M, Shenkin A, Roberts NB (2013) Zinc induced damage to kidney proximal tubular cells: studies on chemical speciation leading to a mechanism of damage. J Trace Elem Med Biol 27(3):242–248.  https://doi.org/10.1016/j.jtemb.2012.12.004 CrossRefPubMedGoogle Scholar
  49. 49.
    Cortese MM, Suschek CV, Wetzel W, Kröncke KD, Kolb-Bachofen V (2008) Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med 44(12):2002–2012.  https://doi.org/10.1016/j.freeradbiomed.2008.02.013 CrossRefPubMedGoogle Scholar
  50. 50.
    Wan C, Zhang M, Fang Q, Xiong L, Zhao X, Hasunuma T, Bai F, Kondo A (2015) The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc. Metallomics 7(2):322–332.  https://doi.org/10.1039/C4MT00275J CrossRefPubMedGoogle Scholar
  51. 51.
    Untergasser G, Rumpold H, Plas E, Witkowski M, Pfister G, Berger P (2000) High levels of zinc ions induce loss of mitochondrial potential and degradation of antiapoptotic Bcl-2 protein in in vitro cultivated human prostate epithelial cells. Biochem Biophys Res Commun 279(2):0–614. : https://doi.org/10.1006/bbrc.2000.3975, 607CrossRefGoogle Scholar
  52. 52.
    Dineley KE, Votyakova TV, Reynolds IJ (2003) Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 85(3):563–570.  https://doi.org/10.1046/j.1471-4159.2003.01678.x CrossRefPubMedGoogle Scholar
  53. 53.
    Yang MS, Gupta RC (2003) Modulation of energy metabolism in C6 Glioma cells as possible mechanism contributing to zinc neurotoxicity. Toxicol Mech Methods 13(4):269–275.  https://doi.org/10.1080/713857192 CrossRefPubMedGoogle Scholar
  54. 54.
    Sheline CT, Behrens MM, Choi DW (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD (+) and inhibition of glycolysis. J Neurosci 20(9):3139–3146.  https://doi.org/10.1523/JNEUROSCI.20-09-03139.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Fouquerel E, Goellner EM, Yu Z, Gagné JP, Barbi DMM, Feinstein T, Wheeler D, Redpath P, Li J, Romero G, Migaud M, Van HB, Poirier GG, Sobol RW (2014) ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep 8(6):1819–1831.  https://doi.org/10.1016/j.celrep.2014.08.036 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kim SW, Lee HK, Kim HJ, Yoon SH, Lee JK (2016) Neuroprotective effect of ethyl pyruvate against Zn2+ toxicity via NAD replenishment and direct Zn2+ chelation. Neuropharmacology 105:411–419.  https://doi.org/10.1016/j.neuropharm.2016.02.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal SciencesZhejiang UniversityHangzhouChina

Personalised recommendations